
Glossary
ab
or
ted

Is a . node status

When the ECF_JOB_CMD fails or the sends a –abort , then the task is placed into an aborted state. job file ecflow_client child command

ac
tive

Is a . node status

If was successful, and has started, then the –init is received by the and the is placed into a active state job creation job file ecflow_client child command ecflow_server task

au
to
ca
nc
el

autocancel is a way to automatically delete a which has completed. node

The delete may be delayed by an amount of time in hours and minutes or expressed in days. Any node may have a single autocancel attribute. If the auto cancelled node is referenced in the expression of trigger
other nodes it may leave the node waiting. This can be solved by making sure the expression also checks for the state. i.e...: trigger unknown

trigger node_to_cancel == complete or node_to_cancel == unknown

This guards against the ‘node_to_cancel’ being undefined or deleted

For python see and . For text BNF see ecflow.Autocancel ecflow.Node.add_autocancel autocancel

ch
ec
k
po
int

The check point file is like the , but includes all the state information. It is periodically saved by the (this period can be changed, see ecflow_client --help check_pt) suite definition ecflow_server

It can be used to recover the state of the node tree should server die, or machine crash.

By default when a is started it will look to load the check point file. ecflow_server

The default check point file name is <host>.<port>.ecf.check. This can be overridden by the ECF_CHECK environment variable.

The check point file format is the same as the defs file format.(from release 4.7.0 onwards). However, the indentation has been removed to preserve space. To view with indentation use :

ecflow_client --load=<check_point_file> print check_only

ch
ild
co
m
m
and

Child command’s(or task requests) are called from within the files. ecf script

The table also includes the default action(from version 4.0.4) if the child command is part of a zombie.

'block' means the job will be held by ecflow_client command. Until time out, or manual/automatic intervention.

Child Command Description Zombie
(default
action)

 ecflow_client –init Sets the to the task active status block

 ecflow_client –event Set an event fob

 ecflow_client –meter Change a meter fob

 ecflow_client –label Change a label fob

 ecflow_client –wait wait for an expression to evaluate. block

 ecflow_client –queue Update queue step in server block

 ecflow_client –abort Sets the to the task aborted status block

 ecflow_client –complete Sets the to the task complete status block

The following environment variables must be set for the child commands. ECF_HOST, ECF_NAME ,ECF_PASS and ECF_RID. See . ecflow_client

https://software.ecmwf.int/wiki/display/ECFLOW/ecFlow+Python+Api#ecflow.Autocancel
https://software.ecmwf.int/wiki/display/ECFLOW/ecFlow+Python+Api#ecflow.Node.add_autocancel
https://software.ecmwf.int/wiki/display/ECFLOW/Definition+file+Grammar#grammar-token-autocancel

cl
ock

A clock is an attribute of a . suite

A gain can be specified to offset from the given date.

The hybrid and real clock’s always runs in phase with the system clock (UTC in UNIX) but can have any offset from the system clock.

The clock can be :

hybrid clock
 real clock (default if not explicitly specified)

 time , and and work a little differently under the clocks. day date cron dependencies

If the is or the job is suspended. If this suspension is left for period of time, then it can affect task submission under and clocks. In particular it will affect s ecflow_server shutdown halted scheduling hybrid real task
with , or . time today cron dependencies

 dependencies with time series, can result in missed time slots:

time 10:00 20:00 00:15 # If server is suspended > 15 minutes, time slots can be missed
time +00:05 20:00 00:15 # start 5 minutes after the start of the suite, then every 15m until 20:00

When the server is placed back into state any time with an expired time slot are submitted straight away. i.e... if is at 10:59 and then running dependencies ecflow_server halted
placed back into state at 11:20 running

time 11:00

Then any with an expired single time slot dependency will be submitted straight away. task

For python see and . For text BNF see ecflow.Clock ecflow.Suite.add_clock clock

co
m
pl
ete

Is a . node status

The node can be set to complete:

By the complete expression

At job end when the receives the –complete task ecflow_client child command
Manually via the command line or GUI. When this happens any time attributes are expired in order.

co
m
pl
et
e
ex
pr
es
si
on

Force a node to be complete the expression evaluates, without running any of the nodes.if

This allows you to have tasks in the suite which a run only if others fail. In practice the node would need to have a also. trigger

For python see and ecflow.Expression ecflow.Node.add_complete

https://software.ecmwf.int/wiki/display/ECFLOW/ecFlow+Python+Api#ecflow.Clock
https://software.ecmwf.int/wiki/display/ECFLOW/ecFlow+Python+Api#ecflow.Suite.add_clock
https://software.ecmwf.int/wiki/display/ECFLOW/Definition+file+Grammar#grammar-token-clock
https://software.ecmwf.int/wiki/display/ECFLOW/ecFlow+Python+Api#ecflow.Expression
https://software.ecmwf.int/wiki/display/ECFLOW/ecFlow+Python+Api#ecflow.Node.add_complete

cr
on

Like , cron defines time dependency for a , but it will be repeated time node indefinitely

cron -w <weekdays> -d <days> -m <months> <start_time> <end_time> <increment>
weekdays: range [0...6], Sunday=0, Monday=1, etc e.g. -w, 0,3,6
days: range [1..31] e.g. -d 1,2,20,30 if the month does not have a
day, i.e. February 21st it is ignored
months: range [1..12] e.g. -m 5,6,7,8
start_time: The starting time. format hh:mm e.g. 15:21
end_time: The end time, if multiple times used
increment: The increment in time if multiple times are given

-w day of the week valid values are , 0 6 where 0 is Sunday , 1 is Monday etc AND
 0L6L, where 0L means last Sunday of the month, and 1L means the last Monday of the
month, etc
 It is an error to overlay, i.e. cron -w 0,1,2,1L,2L,3L 23:00 will throw an exception
-d day of the month valid values are in range 0-31,L Extended so that we now use 'L' to mean the last
day of the month
-m month valid values are in range 0-12

cron 11:00 # single time
cron 10:00 22:00 00:30 # <start> <finish> <increment>
cron +00:20 23:59 00:30 # relative to suite start time, or when re-queued as part of a repeat
loop. Note: maximum relative time is 24 hours
cron -w 0,1 10:00 11:00 01:00 # run every Sunday & Monday at 10 and 11 am
cron -d 15,16 -m 1 10:00 11:00 01:00 # run 15,16 January at 10 and 11 am
cron -w 5L 23:00 # run on *last* Friday(5L) of each month at 23pm,
 # Python: cron = Cron("23:00",last_week_days_of_the_month=[5])
cron -w 0,1L 23:00 # run every Sunday(0) and *last* Monday(1L) of the month at 23pm
 # Python: cron = Cron("23:00",days_of_week=[0],
last_week_days_of_the_month=[1])
cron -w 0L,1L,2L,3L,4L,5L,6L 10:00 # run on the last Monday,Tuesday..Saturday,Sunday of the month at 10 am
 # Python: cron = Cron("10:00",last_week_days_of_the_month=
[0,1,2,3,4,5,6])
cron -d 1,L 23:00 # Run on the first and last of the month at 23pm
 # Python: cron = Cron("23:00",days_of_week=[1],
last_day_of_the_month=True)

When the node becomes complete it will be . This means that the suite will complete, and the output is not directly accessible through queued immediately never ecflow_ui

If tasks abort, the will not schedule it again. ecflow_server

If the time the job takes to complete is longer than the interval a time "slot" is missed, e.g.

cron 10:00 20:00 01:00

if the 10:00 run takes more than an hour, the 11:00 run will be skipped.

If the cron defines months, days of the month, or week days or a single time slot the it relies on a day change, hence if a is defined, then it will be set to at the beginning of the , without hybrid clock complete suite
running the corresponding job. Otherwise under a hybrid clock the would never suite .complete

Since a cron never completes, it would not be wise to use with repeat attributes, since repeat requires completion in order to increment.

For python see and . For text BNF see ecflow.Cron ecflow.Node.add_cron cron

da
te

This defines a date dependency for a node.

There can be multiple date dependencies. In this case the node is free to run when any of dates occur.

The European format is used for dates, which is: dd.mm.yy as in 31.12.2007. Any of the three number fields can be expressed with a wildcard to mean any valid value. Thus, 01.*.* means the first day of every *
month of every year.

If a is defined, any node held by a date dependency will be set to at the beginning of the , without running the corresponding job. Otherwise under a hybrid clock the would never hybrid clock complete suite suite comp
. lete

For python see: and . For text BNF see ecflow.Date ecflow.Node.add_date date

day This defines a day dependency for a node.

There can be multiple day dependencies. If any of day's occur the effect is to have type behaviour.or

If a is defined, any node held by a day dependency will be set to at the beginning of the , without running the corresponding job. Otherwise under a hybrid clock the would never hybrid clock complete suite suite compl
. ete

For python see: and . For text BNF see ecflow.Day ecflow.Node.add_day day

de
fst
at
us

Defines the default for a task/family to be assigned to the when the begin command is issued. status node

By default gets queued when you use begin on a . defstatus is useful in preventing suites from running automatically once begun or in setting tasks complete so they can be run selectively. node suite

For python see and . For text BNF see ecflow.DState ecflow.Node.add_defstatus defstatus

https://confluence.ecmwf.int/display/ECFLOW/ecFlowUI
https://software.ecmwf.int/wiki/display/ECFLOW/ecFlow+Python+Api#ecflow.Cron
https://software.ecmwf.int/wiki/display/ECFLOW/ecFlow+Python+Api#ecflow.Node.add_cron
https://software.ecmwf.int/wiki/display/ECFLOW/Definition+file+Grammar#grammar-token-cron
https://software.ecmwf.int/wiki/display/ECFLOW/ecFlow+Python+Api#ecflow.Date
https://software.ecmwf.int/wiki/display/ECFLOW/ecFlow+Python+Api#ecflow.Node.add_date
https://software.ecmwf.int/wiki/display/ECFLOW/Definition+file+Grammar#grammar-token-date
https://software.ecmwf.int/wiki/display/ECFLOW/ecFlow+Python+Api#ecflow.Day
https://software.ecmwf.int/wiki/display/ECFLOW/ecFlow+Python+Api#ecflow.Node.add_day
https://software.ecmwf.int/wiki/display/ECFLOW/Definition+file+Grammar#grammar-token-day
https://software.ecmwf.int/wiki/display/ECFLOW/ecFlow+Python+Api#ecflow.DState
https://software.ecmwf.int/wiki/display/ECFLOW/ecFlow+Python+Api#ecflow.Node.add_defstatus
https://software.ecmwf.int/wiki/display/ECFLOW/Definition+file+Grammar#grammar-token-defstatus

de
pe
nd
en
ci
es

Dependencies are attributes of node, that can suppress/hold a from taking part in . task job creation

They include , , , , , , , and . trigger date day time today cron complete expression inlimit limit

A that is dependent cannot be started as long as some dependency is holding it or any of its s. task parent node

The will check the dependencies every minute, during normal when any causes a state change in the . ecflow_server scheduling and child command suite definition

dir
ec
tiv
es

Directives appear in a ecf script. (i.e. typically .ecf file, but could be .py file). Directives start with a % character. This is referred to as character. ECF_MICRO

The directives are used in two main context.

Preprocessing directives. In this case the directive starts as the character on a line in a file. See the table below which shows the allowable values. Only one first ecf script
directive is allowed on the line.
Variable directives. We use two characters i.e. %VAR%, in this case they can occur on the line and in any number. ECF_MICRO anywhere

%CAR% %TYPE% %WISHLIST%

These directives take part in . variable substitution

If the micro characters are not paired (i.e.. uneven) then cannot take place hence an error message is issued. variable substitution

port=%ECF_PORT # error issued since '%' micro character are not paired.

However an uneven number of micro character are allowed, the line begins with ‘#’ comment charcter.If

 # This is a comment line with a single micro character % no error issued
port=%ECF_PORT again no error issued

Directives are expanded during . Examples include: pre-processing

Symbol Meaning

%include <filename> %ECF_INCLUDE% directory is searched for the and the contents included into the job file. If filename
that variable is not defined ECF_HOME is used. If the ECF_INCLUDE is defined but the file does not
exist, then we look in ECF_HOME. This allows specific files to be placed in ECF_INCLUDE and the
more general/common include files to be placed in ECF_HOME. This is the recommended format.

releases > 4.0.8 allow ECF_INCLUDE to have multiple paths. i.e..

When ECF_INCLUDE -> path1:path2:path3
%include <filename> -> path1/filename || path2/filename || path3/filename || ECF_HOME/filename

It should be noted that if one include file includes another, then includes are processed in a depth first
manner.

%include “./filename”

%include "../filename"

%include "filename"

%include "./filename" -> script_file_location/./filename

%include "../filename" -> script_file_location/../filename

%include "filename" -> %ECF_HOME%/%SUITE%/%FAMILY%/filename

Include the contents of the file: %ECF_HOME%/%SUITE%/%FAMILY%/filename into the job file

%include filename Include the contents of the file into the output. The only form that can be used safely must start filename
with a slash ‘/’

%includeonce <filename> Same as %include, but file is included once. Subsequent %includeonce of the same 'filename' are only
ignored and removed. Introduced in ecFlow release 4.6.0

%includenopp filename Same as %include, but the file is not interpreted at all.

%comment Start’s a comment, which is ended by %end directive. The section enclosed by %comment - %end is
removed during pre-processing

%manual Start’s a manual, which is ended by %end directive. The section enclosed by %manual - %end is
removed during . The manual directive is used to create the show in pre-processing manual page ecflow
_ui

%nopp Stop pre-processing until a line starting with %end is found. No interpretation of the text will be done(i.
e.. no variable substitutions)

%end End processing of %comment or %manual or %nopp

%ecfmicro CHAR Change the directive character, to the character given. If set in an include file the effect is retained for
the rest of the job(or until set again). It should be noted that the ecfmicro directive specified in the ecf

file, does effect the variable substitution for ECF_JOB_CMD, ECF_KILL_CMD or script not
ECF_STATUS_CMD variables. They still use . If no ecfmicro directive exists, we default to ECF_MICRO
using from the ECF_MICRO suite definition

From ecflow release 4.4.0, use of %VAR% (variable substitution) can be a part of the include filename. i.e.

%include <%file%.h> # %file% must be defined, on the task, or on the parent hierarchy
%include %INCLUDEFILE:<file>% # use %INCLUDEFILE% if defined (on the task, or on the parent hierarchy,
 # and follow one of format above. ".filename", "../filename", "filename", <filename>) use <file>MUST otherwise

Care should be taken to avoid spaces in the variable values.

https://confluence.ecmwf.int/display/ECFLOW/ecFlowUI
https://confluence.ecmwf.int/display/ECFLOW/ecFlowUI

1.
2.
3.
4.

1.
2.
3.
4.

ec
f
fil
e
lo
ca
tio
n
al
go
rit
hm

 ecflow_server and job creation checking uses the following algorithm to locate the ‘.ecf’ file corresponding to a . task

To search for files with a different extension, i.e. to look for python file '.py'. Override ECF_EXTN variable. Its default value is '.ecf'

ECF_SCRIPT

First it uses the generated variable ECF_SCRIPT to locate the script. This variable is generated from: <ECF_HOME>/<path to task>.<ECF_EXTN>

Hence if the task path is /suite/f1/f2/t1, then ECF_SCRIPT=<ECF_HOME>/suite/f1/f2/t1.<ECF_EXTN>
ECF_FETCH (user variable)
file is obtained from running the command after some postfix arguments are added. (Output of)popen
ECF_SCRIPT_CMD(user variable) file is obtained from running the command. (Output of)popen
ECF_FILES

Second it checks for the user defined ECF_FILES variable. If defined the value of this variable must correspond to a directory. This directory is searched in reverse order(i.e. prune root)

i.e.. let's assume we have a task: /o/12/fc/model and ECF_FILES is defined as: /home/ecmwf/emos/def/o/ECFfiles

The ecFlow will use the following search pattern.

/home/ecmwf/emos/def/o/ECFfiles/o/12/fc/model.ecf
/home/ecmwf/emos/def/o/ECFfiles/12/fc/model.ecf
/home/ecmwf/emos/def/o/ECFfiles/fc/model.ecf
/home/ecmwf/emos/def/o/ECFfiles/model.ecf

 If the directory does not exist, the server will try variable substitution. This allows additional configuration.
 edit ECF_FILES /home/ecmwf/emos/def/o/%FILE_DIR:ECFfiles%

 The search can be reversed, by adding a variable ECF_FILES_LOOKUP, with a value of "prune_leaf". (from ecflow 4.12.0)

 Then ecFlow will use the following search pattern.

/home/ecmwf/emos/def/o/ECFfiles/o/12/fc/model.ecf
/home/ecmwf/emos/def/o/ECFfiles/o/12/model.ecf
/home/ecmwf/emos/def/o/ECFfiles/o/model.ecf
/home/ecmwf/emos/def/o/ECFfiles/model.ecf

 However please be aware this will affect the search in ECF_HOMEalso

ECF_HOME

Thirdly it searches for the script in reverse order using ECF_HOME (i.e. like ECF_FILES) If this fails, then the is placed into the state. We can check that file can be located before loading the task aborted
suites into the server.
Note: The addition of variable with a name ECF_FILES_LOOKUP and value 'prune_leaf', affects the search in ECF_FILES and ECF_HOMEBOTH

Checking job creation
ecflow.Defs.check_job_creation

ec
f
sc
ript

The ecFlow script refers to an '.ecf' file. However it could be any file, i.e. perl, python. By overriding ECF_EXTN, any ascii file is possible.

The script file is transformed into the by the process. job file job creation

The base name of the script file match its corresponding . i.e.. t1.ecf , corresponds to the task of name ‘t1’. The script if placed in the ECF_FILES directory, may be re-used by multiple tasks belonging to must task
different families, providing the name matches. task

The ecFlow script is typically similar to a UNIX shell script, with special pre-processing directives. Equally it can use any file, perl, python, java,ruby.

The differences, however, includes the addition of 'c' like pre-processing and ecFlow ‘s. Also the script include calls to the and s so that the is directives variable must init complete child command ecflow_server
aware when the job starts (i.e... changes state to) and finishes (i.e.. changes state to) active complete

E
C
F
_
D
U
M
M
Y
_
T
A
SK

This is a user variable that can be added to to indicate that there is no associated file. task ecf script

If this variable is added to or then all child tasks are treated as dummy. suite family

This stops the server from reporting an error during . job creation

edit ECF_DUMMY_TASK ''

E
C
F
_
E
X
TN

defines the extension for the script that will be turned into a job file. This has a default value of '.ecf'. But could be any extension.This is used by the server as part of 'ecf file location algorithm'

https://software.ecmwf.int/wiki/display/ECFLOW/Checking+job+creation#checking-job-creation
https://software.ecmwf.int/wiki/display/ECFLOW/ecFlow+Python+Api#ecflow.Defs.check_job_creation

E
C
F
_
F
E
T
CH

{{ }}experimental

 This is used to specify a command, whose output can be used as a job script. The ecflow server will run the command with popen. Hence create care needs to be taken not to doom the server, with command that
can hang. As this could severely affect servers ability to schedule jobs.

edit ECF_FETCH my_custom_cmd.sh

After variable substitution, the server will add the following.

my_custom_cmd.sh -s <task_name>.<ECF_EXTN> # to extract the script and create the job
my_custom_cmd.sh -i # to extract the includes
my_custom_cmd.sh -m <task_name>.<ECF_EXTN> # to extract the manual, i.e. for display in the info tab
my_custom_cmd.sh -c <task_name>.<ECF_EXTN> # to extract the comments

The output of running these commands (-s) is used to create the job.

E
C
F
_
H
O
ME

This is user defined variable; it has four functions:

it is used as a prefix portion of the path of the job files created by ecFlow server; see the description of the ECF_JOB generated variable.
it is a default directory where ecFlow server looks for scripts (with file extension defined by ECF_EXTN,default is .ecf); overridden by ECF_FILES user defined variable. See the "ecf file location algorithm"
entry for more detail.
it is a default directory where ecFlow server looks for include files; overridden by ECF_INCLUDE user defined variable. See the "directives" entry for more detail.
it is used as a default prefix portion of the job output path (the ECF_JOBOUT generated variable); overridden by ECF_OUT user defined variable. See descriptions of ECF_JOBOUT and ECF_OUT variables
for more detail.

E
C
F
_I
N
C
L
U
DE

This is a user defined variable. It is used to specify directory locations, that are used to search for include files.

edit ECF_INCLUDE /home/fred/course/include # a single directory

edit ECF_INCLUDE /home/fred/course/include:/home/fred/course/include2:/home/fred/course/include_me # set of directories to search

E
C
F
_J
OB

This is a generated . If defines the path name location of the job file. variable

The variable is composed as: ECF_HOME/ECF_NAME.job<ECF_TRYNO>

E
C
F
_J
O
B
_
C
MD

This variable should point to a script that can submit the job. (i.e. to the queuing system, via, SLURM,PBS).

The ecFlow server will detect abnormal termination of this command. Hence for errors in the job file, should call 'ecflow_client --abort", then exits cleanly.

Otherwise server detects abnormal job termination, and abort flag is set. Which will prevent job re-queue(due to ECF_TRIES). If the job also sends an abort, zombies can be created.

If ECF_JOB_CMD command fails, and the task is in a submitted state, then the task is set to the aborted state.

However if the task was active or complete, then we do NOT abort the task. Instead the zombie flag is set. (since ecflow 4.17.1)

E
C
F
_J
O
B
O
UT

This is a generated . This variable defines the path name for the job output file. The variable is composed as following. variable

If ECF_OUT is specified:

 ECF_OUT/ECF_NAME.ECF_TRYNO

otherwise:

 ECF_HOME/ECF_NAME.ECF_TRYNO

#

E
C
F
_L
IS
TS

This is the server variable. The variable specifies the path to the White list file. This file controls who has read/write access to the server via the commands.user

The user name can be found using linux, command and is typically the login name. The file has a very simple format.id

The file path specified by ECF_LISTS environment, is read by the server on start up. The contents of the white list can be modified, and reloaded by the server.

(However the path to the white-list file can NOT be modified after the server has started)

If ECF_LISTS is not set, the server will look for a file named <host>.<port>.ecf.lists (i.e.. my_host.3141.ecf.lists) in same directory where the server was started.

If the file specified by ECF_LISTS or <host>.<port>.ecf.lists, does not exist or exists but is empty, then all users will have read/write access to suites on the server.

Special care must be taken, so that user reloading the white list file does not remove write access for the administrator.

re load white list file

ecflow_client --help=reloadwsfile
ecflow_client --reloadwsfile

read write access for specific users

4.4.14 # this is a comment, the first non-comment line must include a version.

These users have read and write access to the server
uid1 # user uid1,uid2,cog have read and write access to the server
uid2
cog

Read only users
-fred # users fred,bill and jake have read only access
-bill
-jake

example where all users have read access

4.4.14 # this is a comment, the first non-comment line must include a version.

These users have read and write access to the server
uid1 # user uid1,uid2,cog have read and write access to the server
uid2
cog

User with read access
-* # all users have read access

From ecflow release 4.1.0, users can be restricted via node paths

4.4.5
fred # has read /write access to all suites
-joe # has read access to all suites

* /x /y # all users have read/write access to suites /x /y
-* /w /z # all users have read access to suites /w /z

user1 /a,/b,/c # user1 has read/write access to suite /a /b /c
user2 /a
user2 /b
user2 /c # user2 has read write access to suite /a /b /c
user3 /a /b /c # user3 has read write access to suite /a /b /c

-user4 /a,/b,/c # user4 has read access to suite /a /b /c
-user5 /a
-user5 /b
-user5 /c # user5 has read access to suite /a /b /c
-user6 /a /b /c # user6 has read access to suite /a /b /c

E
C
F
_
P
A
S
S
WD

This is environment variable that point to a password file for both client and server.

This enables password based authentication for ecFlow commands.user

The password file is required for the client and server.

Example client password file. The same file can be used for multiple servers

4.5.0
<user> <host> <port> <passwd>
user1 machine1 3141 xxxty
user1 machine2 3142 shhert

Example server password file for machine1 and port 3141

4.5.0
user1 machine1 3141 xxxty
user2 machine1 3141 bbsdd7

The server administrator needs to set Unix file permissions, so that this file is readable by ecFlow server and the administrator.only

E
C
F
_
MI
C
RO

This is a suite and generated . The default value is %. This variable is used in during command invocation and default directive character during . It can be overridden, but variable variable substitution pre-processing
must be replaced by a single character.

E
C
F
_
N
A
ME

This is a generated . It defines the path name of the task. It will typically be used inside script file, referring to the corresponding task. variable

t1.ecf

%include <head.h>
....
ecflow_client --alter change variable "fred" "bill" %ECF_NAME% # change variable on corresponding task
...
%include <tail.h>

E
C
F
_
N
O
_
S
C
RI
PT

This is a user variable, that can be added to a Node.(introduced with ecFlow release 4.3.0). It is used to inform the ecflow_server that there is no associated with a task. SCRIPT

However unlike ECF_DUMMY_TASK, the task can still be submitted provided the ECF_JOB_CMD is set up.

This is suitable for very tasks that want to minimize latency. The output can still be seen, if it is redirected to ECF_JOBOUT. Care must be taken to ensure the path to ecflow_client is accessible. lightweight

ECF_NO_SCRIPT examples

family no_script
 edit ECF_NO_SCRIPT "1" # the server will not look for .ecf files
 edit ECFLOW_CLIENT ecflow_client
 edit DIROUT %VERBOSE%
 edit SILENT ""
 edit VERBOSE " > %ECF_JOBOUT 2>&1"

task non_script_task
 edit ECF_JOB_CMD "export ECF_PASS=%ECF_PASS%;export ECF_PORT=%ECF_PORT%;export ECF_HOST=%ECF_HOST%;export
ECF_NAME=%ECF_NAME%;export ECF_TRYNO=%ECF_TRYNO%; %ECF_CLIENT% --init=$$; echo 'test test_ecf_no_script' %
DIROUT% && %ECF_CLIENT% --complete"
 # this command is not expected to fail. hence no error handling.(i.e.. will stay active)

 task ecf_no_script
 edit ECF_JOB_CMD "ecf_no_script --pass %ECF_PASS% --host %ECF_HOST% --port %ECF_PORT% " # %DIROUT%
 # ecf_no_script contains init, complete, call to ecflow_client and trapping to raise abort
 # use this approach for robust error handling

 task ymd2jul
 edit ECF_JOB_CMD "ECF_PASS=%ECF_PASS% ECF_NAME=%ECF_NAME% /usr/local/bin/ymd2jul.sh -p %ECF_PORT% -n %
ECF_HOST% -r /%SUITE%/%FAMILY% -y %YMD% > %ECF_JOBOUT% 2>&1 &"
 # /usr/local/bin/ymd2jul.sh can be called on command line or as ecflow_client
endfamily

E
C
F
_
P
A
SS

This is a generated . During job generation process in the server, a unique password is generated and stored in the task. It then replaces %ECF_PASS% in the scripts(.ecf), with the actual value. When the variable
job runs, ecflow_client reads this, as an environment variable, and passes it to the server. The server then compares this password with the one held on the task. This is used as a part of the authentication for child
commands, and is used to detect zombies.

The authentication process can be bypassed, and allow the job to proceed (i.e.. when the user is that there is only a single process, trying to communicate with the server), by adding it as a user variable. i.e..sure

 ecflow_client --alter add variable ECF_PASS FREE <path to task>

This functionality is also available in the GUI. Select a task. RMB->Special->Free password.

However it is important not leave this in place, as it will always bypass the authentication. Just delete the variable.

E
C
F
_
S
C
RI
PT

This is a generated . If defines the path name for the variable ecf script

E
C
F
_
S
C
RI
P
T
_
C
MD

[[experimental]]

This allows the output of running a command to be treated as a script. The command is run after variable substitution. The output is obtained from running the system function in the server. Great care should popen
be taken when running this command, to ensure errors in the command do not crash the server. This approach could be used for short lived tasks, where extremely low latency is required. Commands that take more
than 20s can interfere with job scheduling and should be avoided. Could possibly be used to checkout a script from a version control system.

If the output contains %include,%manual,%noop they are treated in the same manner as a normal '.ecf' script.

Here the output of the 'cat' command is treated as a script

suite test
 family family
 task check
 edit ECF_SCRIPT_CMD "cat /tmp/ECF_SCRIPT_CMD/family/check.ecf"
 task t1
 trigger check == complete
 edit ECF_SCRIPT_CMD "cat /tmp/ECF_SCRIPT_CMD/family/t1.ecf"
 endfamily
endsuite

https://software.ecmwf.int/#term-variable

E
C
F
_
T
RI
ES

This is generated variable added at the server level with a default value of 2. It can be overridden by the user and controls the number of times job should re-run should it abort. Provided:

the task/job has NOT been killed(user action)
The job process(created from .ecf or .py) exited cleanly and not with exit 1 || sys.exit(1) as process death is captured by the server. Always ensure your script exits cleanly. i.e. exit(0)
the task has NOT been set to abort by the user(user action)
job creation has not failed . i.e. task pre-processing(include file expansion,variable substitution, change of file permission for job file)
the value of the variable ECF_TRIES must be convertible to an integer.

Please note this allows your scripts to be self-aware of the number times it is being run. i.e.

task.ecf

%include <head.h>
"echo do some work\n";
if [%ECF_TRYNO% -eq 1] ; then
 echo "first attempt"

fi
if [%ECF_TRYNO% -eq 2] ; then
 echo "first attempt failed, trying a different approach, clean data, etc"

fi
%include <tail.h>

E
C
F
_
T
R
Y
NO

This is a generated that is used in file name generation. It represents the current try number for the . variable task

It can also be referenced inside .ecf script, to allow the job to take a different course dependent on the ECF_TRYNO.

After it is set to 1. The number is advanced if the job is re-run. It is re-set back to 1 after a .begin re-queue

It is used in output and numbering. (i.e.. It avoids overwriting the output during multiple re-runs) job file job file

E
C
F
_
O
UT

This is user/suite variable that specifies a directory PATH. It controls the location of job output(stdout and stderr of the process) on a file system.remote

It provides an alternate location for the job and cmd output files. If it exists, it is used as a base for ECF_JOBOUT, but it is also used to search for the output by ecFlow, when asked by /CLI. ecflow_ui

If the output is in ECF_OUT/ECF_NAME.ECF_TRYNO it is returned, otherwise ECF_HOME/ECF_NAME.ECF_TRYNO is used.

The user that all the directories exists, including suite/family. If this is not done, you may well find task remains in a state.must ensure stuck submitted

At ECMWF our submission scripts will ensure that directories exists.

ec
Fl
ow

Is the ECMWF work flow manager.

A general purpose application designed to schedule a number of computer process in a heterogeneous environment.large

Helps computer jobs design, submission and monitoring both in the research and operation departments.

https://confluence.ecmwf.int/display/ECFLOW/ecFlowUI

ec
flo
w
_c
lie
nt

This executable is a command line program; it is used for communication with the .all ecflow_server

To see the full range of commands that can be sent to the type the following in a UNIX shell: ecflow_server

ecflow_client –help

This functionality is also provided by python . Client Server API

The following variables affect the execution of ecflow_client.

Since the can call ecflow_client(i.e..) then typically some are set in an include header. i.e.. . ecf script child command head.h

Environment Variable common for user and child commands

Variable Name Explanation Compulsory Example

ECF_PORT Port number of the ecflow_server Yes/No We can use: ecflow_client --port 3141 ,

As an alternative to specifying the ECF_PORT.

Must match the port of the server

ECF_HOST Name of the host running the ecflow_server Yes/No We can use: ecflow --host machine1,

As an alternative to specifying ECF_HOST

NO_ECF If set exits ecflow_client immediately with success.

This allows the scripts to be tested independent of the server

No export NO_ECF=1

ECF_DENIED If server denies client communication and this flag is set,

exit with an error.

Avoids 24hr hour connection attempt to . ecflow_server

No export ECF_DENIED=1

ECF_SSL For secure socket communication with server.

Requires client/server built with openssl libs

No export ECF_SSL=1 # Use same certificate for multiple server

export ECF_SSL=<host>.<port> # Use server specific certificates.

Alternatively to avoid setting environmental variables we can use:

ecflow_client --ssl ...

The client will first look for

$HOME/. / /server.crt ecflowrc ssl then

$HOME/. / /<host>.<port>.ecflowrc ssl crt

Environment Variables for child commands

Variable Name Explanation Compulsory Example

ECF_NAME Path to the task Yes /suite/family/task

ECF_PASS Jobs password.

Generated by the server, will replace %ECF_PASS% in the scripts,during job generation.

Used for authenticating child commands.

Yes (generated)

ECF_RID Remote id. Allow easier job kill, and disambiguate a zombie from the real job. Yes (generated)

ECF_TRYNO The number of times the job has run.

This is allocated by the server and used in job/output file name generation.

No (generated)

ECF_HOSTFILE File that lists alternate hosts to try, if connection to main host fails No /home/user/avi/.ecfhostfile

ECF_TIMEOUT Maximum time in seconds for the child(init,abort,complete,etc)

client to deliver message to the server

No 24*3600 (default value),

export ECF_TIMEOUT=360

ECF_ZOMBIE_TIMEOUT Maximum time in seconds for the child(init,abort,complete,etc)

zombie client to get a reply from the server.

No 12*3600 (default value)

export ECF_ZOMBIE_TIMEOUT=360

Variables specific to User commands

Variable Name Explanation Compulsory Example

ECF_PASSWD path to the client password file, used for password based authentication. No export ECF_PASSWD=polonius.3141.ecf.passwd

ECF_USER When user need to pose as another user.

i.e. when users id on the client machine, doesn't match his id on the remote server.

Requires password file

No export ECF_USER=fred

To avoid setting environment variable we can use:

ecflow_client --user fred

https://software.ecmwf.int/wiki/display/ECFLOW/ecFlow+Python+Api#client-server-python-api
https://software.ecmwf.int/wiki/display/ECFLOW/Understanding+Includes#head-h
https://software.ecmwf.int/wiki/display/ECFLOW/Glossary#term-ecflow-server
https://software.ecmwf.int/wiki/display/ECFLOW/Glossary#term-ecflow-server
https://software.ecmwf.int/wiki/display/ECFLOW/Glossary#term-ecflow-server

ec
flo
w
_s
er
ver

This executable is the server.

It is responsible for the jobs and responding to requests scheduling ecflow_client

Multiple servers can be run on the same machine/host providing they are assigned a unique port number.

The server record’s all request’s in the log file.

The server will periodically(See ECF_CHECKINTERVAL) write out a file. check point

The following environment variables control the execution of the server and may be set before the start of the server. ecflow_server will start happily without any of these variables being set, since all of them have
default values.

Variable Name Explanation Default value

ECF_HOME Home for all the files ecFlow Current working directory

ECF_PORT Server port number. Must be unique 3141

ECF_LOG History or log file <host>.<port>.ecf.log

ECF_CHECK Name of the checkpoint file <host>.<port>.ecf.check

ECF_CHECKOLD Name of the backup checkpoint file <host>.<port>.ecf.check.b

ECF_CHECKINTERVAL Interval in second to save file check point 120

ECF_LISTS White list file. Controls read/write access to the server for each user <host>.<port>.ecf.lists

ECF_TASK_THRESHOLD Report in log file all task/job that take longer than given threshold.

Used to debug/instrument, those scripts that are very large.

4000ms, (release 4.0.6 default was 2000ms), where 1000ms = 1
second

ECF_PASSWD path to server password file, used to authenticate user commands.

Use when should be password authenticated ALL

<host>.<port>.ecf.passwd

ECF_CUSTOM_PASSWD path to server password file, used to authenticate user commands.

Use when a number of users need to be password authenticated.small

Typically client would use:

ecflow_client --user=fred
export ECF_USER=fred; ecflow_client ...

<host>.<port>.ecf.custom_passwd

ECF_PRUNE_NODE_LOG When the checkpoint point file is loaded, node log history older than 30 days

is automatically pruned. The variable allows this value to be changed.

Setting the variable to zero, means there will be no pruning. All history is preserved

at the cost increasing server memory, and time taken to write checkpoint file.

export ECF_PRUNE_NODE_LOG=40

Prune node log history older than 40 days, upon reload of

checkpoint file.

ECF_SSL For secure socket communication with client.

Requires client/server built with openssl libs

export ECF_SSL=1 #Use same certificate for multiple server

export ECF_SSL=<host>.<port> # Use server specific certificates.

Alternatively to avoid setting environmental variables we can use:

ecflow_server --ssl ... || ecflow_start.sh -s

The server will then first look for

$HOME/. / /server.crt ecflowrc ssl then

$HOME/. / /<host>.<port>.ecflowrc ssl crt

The server can be in several states. The default when first started is , See halted server states

ec
flo
w
_ui

ecflow_ui executable in the new GUI based client. It is used to visualise and monitor the hierarchical structure of the . suite definition

ec
flo
w
vi
ew

ecflowview executable is the GUI based client, that is used to visualise and monitor the hierarchical structure of the suite definition.

() this is deprecated for ecflow 5 series

state changes in the ‘s and the , using colour coding node ecflow_server

Attributes of the nodes and any dependencies

 ecf script file and the corresponding job file

ev
ent

The purpose of an event is to signal partial completion of a and to be able to trigger another job which is waiting for this partial completion. task

There can be many events and they are displayed as nodes.

The event is updated by placing the –event in a . Events on family nodes can be set using 'ecflow_client --alter' command. child command ecf script

An event has a number and possibly a name. If it is only defined as a number, its name is the text representation of the number without leading zeroes.

For python see: and For text BNF see ecflow.Event ecflow.Node.add_event event

If the event s, results in a , then the default action if for the server to , this allows the ecflow_client command to exit normally. (i.e. without any errors).child command zombie fob

This default can be overridden by using a zombie attribute.

Events can be referenced in and s. trigger complete expression

https://software.ecmwf.int/wiki/display/ECFLOW/Glossary#term-suite-definition
https://software.ecmwf.int/wiki/display/ECFLOW/ecFlow+Python+Api#ecflow.Event
https://software.ecmwf.int/wiki/display/ECFLOW/ecFlow+Python+Api#ecflow.Node.add_event
https://software.ecmwf.int/wiki/display/ECFLOW/Definition+file+Grammar#grammar-token-event

ex
te
rn

This allows an external to be used in a expression. node trigger

All ‘s in ‘s must be known to by the end of the load command. node trigger ecflow_server

No cross-suite are allowed unless the names of tasks outside the suite are declared as external. dependencies

An external reference is considered unknown if it is not defined when the is evaluated. trigger trigger

You are strongly advised to avoid cross-suite . dependencies

Families and suites that depend on one another should be placed in a single . suite

If you think you need cross-suite dependencies, you should consider merging the suites together and have each as a top-level family in the merged suite. For BNF see extern

fa
mi
ly

A family is an organisational entity that is used to provide hierarchy and grouping. It consists of a collection of ‘s and families. task

Typically you place tasks that are related to each other inside the same family, analogous to the way you create directories to contain related files.

For python see . For BNF see ecflow.Family family

It serves as an intermediate in a . node suite definition

ha
lted

Is a state. See ecflow_server server states

hy
bri
d
cl
ock

A hybrid is a complex notion: the date and time are not connected. clock

The date has a fixed value during the complete execution of the . This will be mainly used in cases where the suite does not in less than 24 hours. This guarantees that all tasks of this suite are using suite complete
the same . On the other hand, the time follows the time of the machine. date

Hence the never changes unless specifically altered or unless the suite restarts, either automatically or from a begin command. date

Under a hybrid any held by a , or dependency will be set to complete at the beginning of the suite. (i.e.. without its job ever running). Otherwise the would never . clock node date day cron suite complete

https://software.ecmwf.int/wiki/display/ECFLOW/Definition+file+Grammar#grammar-token-extern
https://software.ecmwf.int/wiki/display/ECFLOW/ecFlow+Python+Api#ecflow.Family
https://software.ecmwf.int/wiki/display/ECFLOW/Definition+file+Grammar#grammar-token-family

inl
im
it

The inlimit works in conjunction with / for providing simple load management limit ecflow.Limit

inlimit is added to the that needs to be limited. node

Limiting tasks, only allow 5 tasks to run in parallel

suite suite
 limit disk 100
 family anon
 inlimit /suite:disk 5
 task t1
 ...
 task t100
 endfamily
endsuite

Limiting Families, only two families can run in parallel. The tasks are unconstrained

suite test
 limit fam 2
 family f1
 inlimit -n fam
 task t1

 endfamily
 family f2
 inlimit -n fam
 task t1

 endfamily
 family f3
 inlimit -n fam
 task t1

 endfamily
endsuite

Limit submission.

Hence we could have more than 2 active jobs, since we are only control the number in the submitted state.
If we removed the -s then we can only have two active jobs running at one time
suite test_limit_on_submission
 limit disk 2
 family anon
 inlimit -s disk # Inlimit submission
 task t1
 task t2

 endfamily
endsuite

For python see and . For text BNF see ecflow.InLimit ecflow.Node.add_inlimit inlimit

https://software.ecmwf.int/wiki/display/ECFLOW/ecFlow+Python+Api#ecflow.Limit
https://software.ecmwf.int/wiki/display/ECFLOW/ecFlow+Python+Api#ecflow.InLimit
https://software.ecmwf.int/wiki/display/ECFLOW/ecFlow+Python+Api#ecflow.Node.add_inlimit

jo
b
cr
ea
tion

Job creation or task invocation can be initiated manually via but also by the during when a (and of its parent s) is free of its . ecflow_ui ecflow_server scheduling task all node dependencies

The process of job creation includes:

o Generating a unique password ECF_PASS, which is placed in during . See ecf script pre-processing head.h

o Locating files , corresponding to the in the , See ecf script task suite definition ecf file location algorithm

o the contents of the file pre-processing ecf script

The steps above transforms an to a that can be submitted by performing on the ECF_JOB_CMD and invoking the command. ecf script job file variable substitution variable

The running jobs will communicate back to the by calling ‘s and user commands. ecflow_server child command

This causes changes on the ‘s in the and flags can be set to indicate various events. status node ecflow_server

If a is to be treated as a dummy task(i.e.. is used as a scheduling task) and is not meant to be run, then a variable of name can be added. task ECF_DUMMY_TASK

 task.add_variable("ECF_DUMMY_TASK", "")

jo
b
file

The job file is created by the during using the ecflow_server job creation ECF_TRYNO variable

It is derived from the after expanding the pre-processing . ecf script directives

It has the form <task name>.job< >, i.e.. t1.job1. ECF_TRYNO

Note job creation checking will create a job file with an extension with zero. i.e.. ‘.job0’. See ecflow.Defs.check_job_creation

When the job is run the output file has the as the extension. i.e.. t1.1 where ‘t1’ represents the task name and ‘1’ the ECF_TRYNO ECF_TRYNO

la
bel

A label has a name and a value and is a way of information in displaying ecflow_ui

By placing a label s in the the user can be informed about progress in . child command ecf script ecflow_ui

Labels can be added to family nodes. To change the labels, scripts should use: 'ecflow_client --alter change label <label_name> <new_value> /path/to/family_node/with/label

If the label s, results in a zombie then the default action if for the server to , this allows the ecflow_client command to exit normally. (i.e. without any errors).child command fob

This default can be overridden by using a zombie attribute.

For python see and . For text BNF see ecflow.Label ecflow.Node.add_label label

https://confluence.ecmwf.int/display/ECFLOW/ecFlowUI
https://software.ecmwf.int/wiki/display/ECFLOW/Understanding+Includes#head-h
https://software.ecmwf.int/wiki/display/ECFLOW/ecFlow+Python+Api#ecflow.Defs.check_job_creation
https://confluence.ecmwf.int/display/ECFLOW/ecFlowUI
https://confluence.ecmwf.int/display/ECFLOW/ecFlowUI
https://software.ecmwf.int/wiki/display/ECFLOW/ecFlow+Python+Api#ecflow.Label
https://software.ecmwf.int/wiki/display/ECFLOW/ecFlow+Python+Api#ecflow.Node.add_label
https://software.ecmwf.int/wiki/display/ECFLOW/Definition+file+Grammar#grammar-token-label

late Define a tag for a node to be late. A node can only have late attribute. The late attribute only applies to a task. You can define it on a Suite/Family in which case it will be inherited. Any late defined lower down one
the hierarchy will override the aspect(submitted,active, complete) defined higher up.

-s submitted: The time node can stay submitted (format [+]hh:mm). submitted is always relative, so + is simple ignored, if present. If the node stays submitted longer than the time specified, the late flag is set
-a Active : The time of day the node must have become active (format hh:mm). If the node is still queued or submitted, the late flag is set
-c Complete : The time node must become complete (format {+}hh:mm). If relative, time is taken from the time the node became active, otherwise node must be complete by the time given.

suite late
 family familyName
 task t1
 late -s +00:15 -a 20:00 -c +02:00
 task t2
 late -a 20:00 -c +02:00 -s +00:15
 task t3
 late -c +02:00 -a 20:00 -s +00:15
 task t4
 late -s 00:02 -c +00:05
 task t5
 late -s 00:01 -a 14:30 -c +00:01
 endfamily
endsuite

Suites and families cannot be late, but you can define a late tag for submitted in a suite, to be inherited by the families and tasks. When a node is classified as being late, the only action takes is to set a ecflow_server
flag. will display these alongside the ecflow_ui node name as an icon (and optionally pop up a window).

suite late
 late -s +00:15 # report late for all task taking longer than 15 minutes in submitted state
 family familyName
 late -c +02:00 # all child task that take longer than 2 hours to complete should raise a late flag
 task t1
 # effective late -s +00:05 -c +02:00
 late -s +00:05
 task t2
 # effective late -s +00:15 -c +02:00
 task t5
 # effective late -c +03:00 -a 18:00 -s +00:15
 late -c +03:00 -a 18:00
 endfamily
endsuite

The late attribute can be added/deleted to any suite/family/task.

ecflow_client --alter add late "-s 00:15" <path-to-node>
ecflow_client --alter change late "-s 00:01 -a 14:30 -c +00:01" <path-to-node>
ecflow_client --alter delete late <path-to-node>

For python see and . For text BNF see ecflow.Late ecflow.Node.add_late late

https://software.ecmwf.int/wiki/display/ECFLOW/Glossary#term-ecflow-server
https://software.ecmwf.int/wiki/display/ECFLOW/Glossary#term-ecflowview
https://confluence.ecmwf.int/display/ECFLOW/ecFlowUI
https://software.ecmwf.int/wiki/display/ECFLOW/Glossary#term-node
https://software.ecmwf.int/wiki/display/ECFLOW/Glossary#term-ecflowview
https://software.ecmwf.int/wiki/display/ECFLOW/ecFlow+Python+Api#ecflow.Late
https://software.ecmwf.int/wiki/display/ECFLOW/ecFlow+Python+Api#ecflow.Node.add_late
https://software.ecmwf.int/wiki/display/ECFLOW/Definition+file+Grammar#grammar-token-late

li
mit

Limits provide simple load management by limiting the number of tasks submitted by a specific . ecflow_server

Typically you either define limits on level or define a separate suite to hold limits so that they can be used by multiple suites. suite

Setting limits on a separate suite, has the benefit that by setting the limit value to zero, you can control task submission over a number of suites.

Limits

suite suiteName
 limit sg1 10
 limit mars 10
endsuite

The limits are used in conjunction with inlimit

The limit max value can be changed on the command line

>ecflow_client --alter change limit_max <limit-name> <new-limit-value> <path-to-limit>
>ecflow_client --alter change limit_max limit 2 /suite

It can also be changed in python:

#!/usr/bin/env python2.7
import ecflow
try:
 ci = ecflow.Client()
 ci.alter("/suite","change","limit_max","limit", "2")
except RuntimeError, e:
 print "Failed: " + str(e)

For python see and . For BNF see and ecflow.Limit ecflow.Node.add_limit limit inlimit

m
an
ua
l
pa
ge

Manual pages are part of the . ecf script

This is to ensure that the manual page is updated when the is updated. The manual page is a very important operational tool allowing you to view a description of a task, and possibly describing solutions to ecf script
common problems. The can be used to extract the manual page from the script file and is visible in . The manual page is the text contained within the %manual and %end . They pre-processing ecflow_ui directives
can be seen using the manual button on . ecflow_ui

The text in the manual page in included in the .not job file

There can be multiple manual sections in the same file. When viewed they are simply concatenated. It is good practice to modify the manual pages when the script changes. ecf script

The manual page may have the %include .directives

Suite and families may also have a manual page. These will also be available in the GUI. Ecflow will look for a file <node_name>.man (where node_name is the name of suite or family) using a backwards search
algorithm first in ECF_FILES directory, then ECF_HOME directory. Note that errors in variable pre-processing are ignored inside of a manual section. It should also be noted that for family and suite manuals, the %
manual and %end directives are not strictly necessary, as the whole file is treated as a manual.

 If we have family: /suite/big/f1, ecflow will search for "f1.man" in:

<ECF_FILES>/suite/big/f1.man
<ECF_FILES>/suite/f1.man
<ECF_FILES>/f1.man
<ECF_HOME>/suite/big/f1.man
<ECF_HOME>/suite/f1.man
<ECF_HOME>/f1.man

m
et
er

The purpose of a meter is to signal proportional completion of a task and to be able to trigger another job which is waiting on this proportional completion.

The meter is updated by placing the –meter in a . child command ecf script

Meters can be added to family nodes. To change the meters, in the scripts should use: ecflow_client --alter change meter <meter_name> <new_value> /path/to/family_node/with/meter

For python see: and . For text BNF see ecflow.Meter ecflow.Node.add_meter meter

If the meter s, results in a zombie, then the default action if for the server to , this allows the ecflow_client command to exit normally. (i.e. without any errors). This default can be overridden by child command fob
using a zombie attribute.

Meter’s can be referenced in and expressions. trigger complete expression

no
de

 suite , and form a hierarchy. Where a serves as the root of the hierarchy. The provides the intermediate nodes, and the provide the leaf’s. family task suite family task

Collectively , and can be referred to as nodes. suite family task

For python see . ecflow.Node

https://software.ecmwf.int/wiki/display/ECFLOW/Glossary#term-inlimit
https://software.ecmwf.int/wiki/display/ECFLOW/Glossary#term-inlimit
https://software.ecmwf.int/wiki/display/ECFLOW/ecFlow+Python+Api#ecflow.Limit
https://software.ecmwf.int/wiki/display/ECFLOW/ecFlow+Python+Api#ecflow.Node.add_limit
https://software.ecmwf.int/wiki/display/ECFLOW/Definition+file+Grammar#grammar-token-limit
https://confluence.ecmwf.int/display/ECFLOW/ecFlowUI
https://confluence.ecmwf.int/display/ECFLOW/ecFlowUI
https://software.ecmwf.int/wiki/display/ECFLOW/ecFlow+Python+Api#ecflow.Meter
https://software.ecmwf.int/wiki/display/ECFLOW/ecFlow+Python+Api#ecflow.Node.add_meter
https://software.ecmwf.int/wiki/display/ECFLOW/Definition+file+Grammar#grammar-token-meter
https://software.ecmwf.int/wiki/display/ECFLOW/ecFlow+Python+Api#ecflow.Node

pr
e-
pr
oc
es
si
ng

Pre-processing takes place during and acts on specified in file. job creation directives ecf script

This involves:

o expanding any include file . i.e.. similar to ‘c’ language pre-processing directives

o removing comments and manual directives

o performing variable substitution

qu
eu
ed

Is a . node status

After the begin command, the task a are placed into the queued statewithout defstatus

re
al
cl
ock

A using a real will have its matching the clock of the machine. Hence the advances by one day at midnight. suite clock clock date

re
pe
at

Repeats provide looping functionality. There can only be a single repeat on a . node

repeat day step # only for suites

repeat integer VARIABLE start end [step]

repeat enumerated VARIABLE first [second [third ...]]

repeat string VARIABLE str1 [str2 ...]

repeat file VARIABLE filename

repeat date VARIABLE yyyymmdd yyyymmdd [delta]

repeat datelist VARIABLE yyyymmdd yyyymmdd

The repeat variable name is available as a generated variable.

The defines additional generated variables(from ecflow 4.7.0) , which are scoped with prefix of the variable name i.e.repeat date

<variable> # the default, the value is the current date
<variable>_YYYY # The year
<variable>_MM # the month
<variable>_DD # The day of the month
<variable>_DOW # day of the week
<variable>_JULIAN # the julian value for the date

For example:

repeat date generated variables, accessible for trigger expressions

repeat date YMD 20090101 20220101
The following generated variables, are accessible for trigger expressions
YMD, YMD_YYYY, YMD_MM, YMD_DD, YMD_DOW,YMD_JULIAN

As the repeat variable changes so do the generated variables. (See the tutorial for an example.)Repeat

If a repeat is added to a family/suite, then the repeat will loop(and automatically re-queue its children) if the children are complete. ONLY all

Hence additional care needs to be taken. i.e.. if the parent node has a repeat and the child has a cron attribute then the cron will always force a re-queue on the node once it has run, and hence will stop the
parent from looping.

If we use relative time attribute. i.e. time +02:00, under a repeat, then the time is relative to the repeat re-queue.

The repeat VARIABLE can be used in and expressions. Depending on the kind of repeat the value can vary: trigger complete expression

 RepeatDate -> value
 RepeatDateList -> value
 RepeatString -> index (will always return a index)
 RepeatInteger -> value
 RepeatEnumerated -> value | index (return value at index if cast-able to integer, otherwise return index)
 RepeatDay -> value

If a “repeat date” or "repeat datelist" VARIABLE is used in a trigger expression then date arithmetic is used, when the expression uses addition and subtraction. i.e..

defs = ecflow.Defs()
s1 = defs.add_suite("s1");
t1 = s1.add_task("t1").add_repeat(ecflow.RepeatDate("YMD",20090101,20091231,1));
t2 = s1.add_task("t2").add_trigger("t1:YMD - 1 eq 20081231");
assert t2.evaluate_trigger(), "Expected trigger to evaluate. 20090101 - 1 == 20081231"

https://confluence.ecmwf.int/display/ECFLOW/Repeat
https://software.ecmwf.int/wiki/display/ECFLOW/Glossary#term-trigger
https://software.ecmwf.int/wiki/display/ECFLOW/Glossary#term-complete-expression

When we use relative time attributes under a Repeat. They are automatically reset when the repeat loops. Take for example:

suite s1
 family hc00
 repeat integer HYEAR 1993 2017
 time +00:01 # when the repeat loops delay starting task a, for 1 minute
 task a
 task b
 trigger a == complete
 endfamily
endsuite

Now when task 'a' and Task 'b' complete, the repeat is incremented, and any relative time attributes are reset.
In this case effectively delaying the starting of task 'a' for 1 minute.

For python see , , , ecflow.Node.add_repeat ecflow.Repeat ecflow.RepeatDate ecflow.RepeatEnumerated repeat

ru
nn
ing

Is a state. See ecflow_server server states

sc
he
du
ling

The is responsible for scheduling. ecflow_server task

It will check in the every minute. If these are free, the will submit the task. See . dependencies suite definition dependencies ecflow_server job creation

se
rv
er
st
at
es

The following tables reflects the capabilities in the different states ecflow_server

State User Request Task Request Job Scheduling Auto-Check-pointing

running yes yes yes yes

shutdown yes yes no yes

halted yes no no no

sh
ut
do
wn

Is a state. See ecflow_server server states

st
at
us

Each in has a status. node suite definition

Status reflects the state of the . In the background colour of the text reflects the status. node ecflow_ui

 task status are: , , , , , and unknown queued submitted active complete aborted suspended

 ecflow_server status are: , , this is shown on the root node in shutdown halted running ecflow_ui

su
b
mi
tted

Is a . node status

When the are resolved/free the places the task into a submitted state. However if the ECF_JOB_CMD fails, the task is placed into the state task dependencies ecflow_server aborted

su
ite

A suite is organisational entity. It is serves as the root in a . node suite definition

It should be used to hold a set of jobs that achieve a common function. It can be used to hold user s that are common to all of its children. variable

Only a suite node can have a . clock

Suite generated variables:

SUITE The name of the suite
ECF_TIME 23:30 the current suite time
TIME 2330 time as integer, Can be used in a trigger expression, ideally using <=, <, >=, >
YYYY The year as an integer
DOW Day of the week, as an integer. Sunday=0,Monday=1,etc
DOY Day of the year, as an integer
DAY The days as a string, i.e. monday
DD Day of the month as an integer.
MM The month as an integer
MONTH as a string
ECF_DATE YYYMMDD year,month,day of the month as 8 digit integer
ECF_JULIAN The julian value of the current date(added in ecflow 4.7.0)
ECF_CLOCK <day>:<month>:<day of week>:<day of year>. i.e. Tuesday:December:2:348

It is a collection of ‘s, ‘s, and a single definition. For a complete list of attributes look at BNF for . For python see . family variable repeat clock suite ecflow.Suite

su
ite
de
fin
iti
on

The suite definition is the hierarchical tree. node

It describes how your ‘s run and interact. task

It can built up using:

Ascii text file by following the rules defined in the ecFlow . Definition file Grammar

Hence any language can be used, to generate this format.
Suite Definition API

Once the definition is built, it can be loaded into the (either via command line, or with the python api) and started. It can be monitored by ecflow_server ecflow_ui

su
sp
en
ded

Is a state. A can be placed into the suspended state via a or via node node defstatus ecflow_ui

A suspended including any of its children cannot take part in until the node is resumed. node scheduling

https://software.ecmwf.int/wiki/display/ECFLOW/ecFlow+Python+Api#ecflow.Node.add_repeat
https://software.ecmwf.int/wiki/display/ECFLOW/ecFlow+Python+Api#ecflow.Repeat
https://software.ecmwf.int/wiki/display/ECFLOW/ecFlow+Python+Api#ecflow.RepeatDate
https://software.ecmwf.int/wiki/display/ECFLOW/ecFlow+Python+Api#ecflow.RepeatEnumerated
https://software.ecmwf.int/wiki/display/ECFLOW/Definition+file+Grammar#grammar-token-repeat
https://confluence.ecmwf.int/display/ECFLOW/ecFlowUI
https://confluence.ecmwf.int/display/ECFLOW/ecFlowUI
https://software.ecmwf.int/wiki/display/ECFLOW/Definition+file+Grammar#grammar-token-suite
https://software.ecmwf.int/wiki/display/ECFLOW/ecFlow+Python+Api#ecflow.Suite
https://software.ecmwf.int/wiki/display/ECFLOW/Definition+file+Grammar#grammer
https://software.ecmwf.int/wiki/display/ECFLOW/ecFlow+Python+Api#suite-definition-python-api
https://confluence.ecmwf.int/display/ECFLOW/ecFlowUI
https://confluence.ecmwf.int/display/ECFLOW/ecFlowUI

ta
sk

A task represents a job that needs to be carried out. It serves as a leaf in a node suite definition

Only tasks can be submitted.

A job inside a task should generally be re-entrant so that no harm is done by rerunning it, since a task may be automatically submitted more than once if it aborts. ecf script

For python see . For text BNF see ecflow.Task task

ti
m
e
de
pe
nd
en
ci
es

This includes, time,today, day date, cron.

When we have multiple time dependencies on the same task, then time dependency of the same type are together, and with the different types. or'ed and'ed

This task will run on the 17th of February 2017 at 10am

task xx
 time 10:00
 date 17.2.2017

Run task xx. at 10am and 8pm, on the 17th and 19th of February 2017, that is four times in all. Notice the task is queued in between and

completes only after the last run

task xx
 time 10:00
 time 20:00
 date 17.2.2017
 date 19.2.2017

ti
me

This defines a time dependency for a node.

Time is expressed in the format [h]h:mm. Only numeric values are allowed.

There can be multiple time dependencies for a node, but overlapping times may cause unexpected results.

The task is free to run when the time is 10:00 or 11:00

task t
 time 10:00
 time 11:00

To define a series of times, specify the start time, end time and a time increment.

If the start time begins with ‘+’, times are relative to the beginning of the suite in repeated families, relative to the beginning/re-queue of the repeated family.or,

If the time the job takes to complete is longer than the interval a time 'slot' is missed, e.g.

 time 10:00 20:00 01:00

if the 10:00 run takes more than an hour, the 11:00 run will never occur.

For python see and . For BNF see ecflow.Time ecflow.Node.add_time time

to
day

Like , but If the suites begin time is the time given for the “today” , then the is free to run (as far as the time dependency is concerned). time past node

For example:

task x
 today 10:00

If we begin or re-queue the at 9.00 am, then the in held until 10.00 am. However if we begin or re-queue the suite at 11.00am, the is run immediately. suite task task

Now lets look at time:

task x
 time 10:00

If we begin or re-queue the at 9.00am, then the in held until 10.00 am. If we begin or re-queue the at 11.00am, the is still held. suite task suite task

If the time the job takes to complete is longer than the interval a 'slot' is missed, e.g.

 today 10:00 20:00 01:00

if the 10:00 run takes more than an hour, the 11:00 run will never occur.

For python see . For text BNF see ecflow.Today today

tri
gg
er

Triggers defines a dependency for a or . task family

There can be only one trigger dependency per , but that can be a complex boolean expression of the of several nodes. node status

Triggers cannot be added to the suite node.

A node with a trigger can only be activated when its trigger has expired. A trigger holds the node as long as the trigger’s expression evaluation returns false.

Trigger evaluation occurs when ever the communicates with the server. i.e.. whenever there is a state change in the suite definition and at least once every 60 seconds child command

https://software.ecmwf.int/wiki/display/ECFLOW/ecFlow+Python+Api#ecflow.Task
https://software.ecmwf.int/wiki/display/ECFLOW/Definition+file+Grammar#grammar-token-task
https://software.ecmwf.int/wiki/display/ECFLOW/ecFlow+Python+Api#ecflow.Time
https://software.ecmwf.int/wiki/display/ECFLOW/ecFlow+Python+Api#ecflow.Node.add_time
https://software.ecmwf.int/wiki/display/ECFLOW/Definition+file+Grammar#grammar-token-time
https://software.ecmwf.int/wiki/display/ECFLOW/ecFlow+Python+Api#ecflow.Today
https://software.ecmwf.int/wiki/display/ECFLOW/Definition+file+Grammar#grammar-token-today

The keywords in trigger expressions are: , , , , , , and and for status. unknown suspended complete queued submitted active aborted clear set event

Triggers can also reference Node attributes like , , , and generated variables and . Triggers can also reference the late, zombie and archived flag on a node. Trigger evaluation for event meter variable repeat limits
node attributes uses integer arithmetic:

 event has the integer value of 0(clear) and set(1)
 meter values are integers hence they are used as is

 variable value is converted to an integer, otherwise 0 is used. This can include the and See example belowgenerated variables suite time variables.
 repeat : We use the index values as integers. See example belowstring
 repeat : If the value at the index is convertible to a integer it is used, otherwise we use the index values as integers. See example belowenumerated
 repeat : Use the implicit integer valuesinteger
 repeat : Use the date values as integers. Use of plus/minus on repeat date variable uses date arithmeticdate
 repeat : Use the date values as integers. allows for an arbitrary date listdatelist

limit : the limit value is used as an integer. This allows a degree of prioritisation amongst tasks under a limit
 late : The value is stored in a flag, and is a simple boolean. Used to signify when a task is late.

Here are some examples:

Trigger examples

suite suite
 limit top_level_limit 20
 task a
 event EVENT
 meter METER 1 100 50
 edit VAR_DATE 20170701
 edit VAR_STRING "captain scarlett" # This is not convertible to an integer, if referenced will
use '0'
 late -c +02:00 # add late flag if task takes longer than 2 hours to complete
 family f1
 edit SLEEP 2
 repeat string NAME a b c d e f # This has values: a(0),b(1), c(3), d(4), e(5), f(6) i.e..
index
 family f2
 repeat integer VALUE 5 10 # This has values: 5,6,7,8,9,10
 family f3
 repeat enumerated ENUM_VAR red green blue # red(0), green(1), blue(2)
 task t1
 repeat date DATE 19991230 20000102 # This has values: 19991230,19991231,20000101,20000102
 # Here :VALUE, :NAME, :SLEEP will match with the first event,meter,user variable,repeat
variable or generated variable, up the parent hierarchy
 trigger :VALUE == 5 and :NAME == 0 and :SLEEP == 2 # references f2:VALUE,f1:NAME,f1:SLEEP new
for 4.7.0 release
 endfamily
 endfamily
 endfamily
 family f2
 inlimit /suite:top_level_limit
 task event_meter
 trigger /suite/a:EVENT == set and /suite/a:METER >= 30
 task variable
 trigger /suite/a:VAR_DATE >= 20170801 and /suite/a:VAR_STRING == 0
 task repeat_string
 trigger /suite/f1:NAME >= 4
 task repeat_integer
 trigger /suite/f1/f2:VALUE >= 7
 task repeat_enumerated
 trigger /suite/f1/f2/f3:ENUM_VAR >= 1
 task repeat_date
 trigger /suite/f1/f2/f3/t1:DATE >= 19991231
 task repeat_date_arithmitic
 # Using plus/minus on a repeat DATE will use date arithmetic
 # Since the starting value of DATE is 19991230, this task will run
 # straight away
 trigger /suite/f1/f2/f3/t1:DATE - 1 == 19991229
 task use_repeat_date_yyyy
 trigger /suite/f1/f2/f3/t1:DATE_YYYY == 2000 # DATE_YYYY(year)is a generated variable for
repeat date DATE 19991230 20000102
 task use_repeat_date_generated_mm
 trigger /suite/f1/f2/f3/t1:DATE_MM == 2 # DATE_MM(month) is a generated variable for
repeat date DATE 19991230 20000102
 task use_repeat_date_generated_dd
 trigger /suite/f1/f2/f3/t1:DATE_DD == 30 # DATE_DD(day of the month) is a generated
variable for repeat date DATE 19991230 20000102
 task use_repeat_date_generated_dow
 trigger /suite/f1/f2/f3/t1:DATE_DOW == 0 # DATE_DOW(day of week, 0-sunday,1-monday,etc) is

a generated variable for repeat date DATE 19991230 20000102
 task use_repeat_date_generated_julian
 trigger /suite/f1/f2/f3/t1:DATE_JULIAN > cal::date_to_julian(/suite/a:VAR_DATE) # DATE_JULIAN(the
julian of the date) is a generated variable for repeat date DATE 19991230 20000102
 task with_trigger_that_ref_a_limit
 trigger /suite:top_level_limit < 5 # low priority task, only valid when system is not loaded
 task trigger_with_ref_to_late_flag
 trigger /suite/a<flag>late # Only triggers if task /suite/a is late
 task trigger_with_ref_to_zombie_flag
 trigger /suite/a<flag>zombie # Only triggers if task /suite/a is a zombie
 task trigger_with_ref_to_archived_flag
 trigger /suite/f1<flag>archived # Only triggers if family /suite/f1 is archived -> only
family/suite can be archived
 endfamily
 family time_trigger
 trigger /suite:DOW == 0 or /suite:DOW == 1 # DOW is a generated variable on the suite representing
DAY of the week. i.e. Sundày and Monday in this case
 task with_time
 trigger /suite:TIME > 1330 # TIME is a generated variable on the suite , same as
time > 13:30
 endfamily
 endsuite

What happens when we have multiple node attributes of the same name, referenced in trigger expressions ?

Trigger priority when name clashes

task foo
 event blah
 meter blah 0 200 50
 edit blah 10
 repeat enumerated blah red green blue
task bar
 trigger foo:blah >= 0 # which 'blah' do we reference ?

In this case ecFlow will use the following precedence:

event
meter
variable
repeat
generated variables
limits

Hence in the example above expression ‘foo:blah >= 0’ will reference the event.

For python see and ecflow.Expression ecflow.Node.add_trigger

un
kn
o
wn

Is a . node status

This is the default when a is loaded into the node status suite definition ecflow_server

us
er
co
m
m
an
ds

User commands are any client to server requests that are s.not child command

va
ria
ble

ecFlow makes heavy use of different kinds of variables.There are several kinds of variables:

Environment variables: which are set in the UNIX shell before the starts. These control , and . ecFlow ecflow_server ecflow_client

suite definition variables: Also referred to as user variables. These control , and and are available for use in . ecflow_server ecflow_client job file

Generated variables: These are generated within the node tree during and are available for use in the . suite definition job creation job file

Variables can be referenced in and s . The value part of the variable should be convertible to an integer otherwise a default value of 0 is used. trigger complete expression

For python see . For BNF see ecflow.Node.add_variable variable

va
ria
bl
e
in
he
rit
an
ce

When a is needed at time, it is first sought in the itself. variable job creation task

If it is not found in the , it is sought from the task’s parent and so on, up through the levels until found. task node

For any , there are two places to look for variables. node

Suite definition variables are looked for first, and then any generated variables.

https://software.ecmwf.int/wiki/display/ECFLOW/ecFlow+Python+Api#ecflow.Expression
https://software.ecmwf.int/wiki/display/ECFLOW/ecFlow+Python+Api#ecflow.Node.add_trigger
https://software.ecmwf.int/wiki/display/ECFLOW/ecFlow+Python+Api#ecflow.Node.add_variable
https://software.ecmwf.int/wiki/display/ECFLOW/Definition+file+Grammar#grammar-token-variable

va
ria
bl
e
su
bs
tit
uti
on

Takes place during command invocation.(i.e.. ECF_JOB_CMD,ECF_KILL_CMD,etc) pre-processing or

It involves searching each line of file or command, for character. typically ‘%’ ecf script ECF_MICRO

The text between two % character, defines a variable. i.e.. %VAR%

This variable is searched for in the . suite definition

First the suite definition variables(sometimes referred to as user variables) are searched and then Repeat variable name, and finally the generated variables.

If no variable is found then the same search pattern is repeated up the node tree.

The value of the is replaced between the % characters. variable

If the micro character are not paired and an error message is written to the log file, and the task is placed into the state. aborted

If the variable is not found in the during pre-processing then fails, and an error message is written to the log file, and the task is placed into the state. suite definition job creation aborted

To avoid this, variables in the can be defined as: ecf script

%VAR:replacement%

This is similar to %VAR% but if VAR is not found in the then ‘replacement’ is used. suite definition

vir
tu
al
cl
ock

Like until the is suspended (i.e.. or), the suites is also suspended. real clock ecflow_server shutdown halted clock

Hence will honour relative times in , and dependencies. It is possible to have a combination of hybrid/real and virtual. cron today time

More useful when we want complete adherence to time related dependencies at the expense being out of sync with system time.

zo
m
bie

Zombies are running jobs that fail authentication when communicating with the ecflow_server

 child command s like (init, event,meter, label, abort,complete) are placed in the file and are used to communicate with the . ecf script ecflow_server

The authenticates each connection attempt made by the . Authentication can fail for a number of reasons: ecflow_server child command

password(ECF_PASS) supplied with the , does not match the one in the child command . (ecf_passwd)ecflow_server
path name(ECF_NAME) supplied with the , does not locate a in the child command task . (ecf_path)ecflow_server
process id(ECF_RID) supplied with , does not correspond with the one stored in the child command . (ecf_pid)ecflow_server

 task is already , but receives another init active (ecf)child command
 task is already , but receives another (ecf) complete child command
 task is already , but receives another (ecf) aborted child command

When authentication fails the job is considered to be a zombie. The will keep a note of the zombie for a period of time, before it is automatically removed. ecflow_server

However the removed zombie, may well re-appear. This is because each will continue attempting to contact the for 24 hours. child command ecflow_server

This is configurable see ECF_TIMEOUT/ECF_ZOMBIE_TIMEOUT on ecflow_client

For python see , ecflow.ZombieAttr ecflow.ZombieUserActionType

There are several types of zombies see and zombie type ecflow.ZombieType

zo
m
bi
e
att
rib
ute

The zombie attribute defines how a should be handled in an fashion. zombie automated

Very careful consideration should be taken before this attribute is added as it may hide a genuine problem. It can be added to any . node

But is best defined at the or level. suite family

If there is no attribute the default behaviour for init,complete,wait and abort s, is to block, whereas for label, event, meter the default behaviour is to . (from version 4.0.4, previously all zombie child command fob child
s blocked). command

To add a zombie attribute in python, please see: ecflow.ZombieAttr

zo
m
bi
e
ty
pe

See and class for further information. How do zombies arise. zombie ecflow.ZombieAttr

Server crashed (or terminated and restarted) and the recovered file is out of date. check point
A is repeatedly re-run, earlier copies will not be remembered. task
Job sent by another , but which cannot talk to the original ecflow_server ecflow_server
Network glitches/network down
errors in script, i.e. multiple calls to init, complete
errors in job submission i.e. job submitted twice.

There are several types of zombies:

path The task path cannot be found in the server, because node tree was deleted, replaced,reload, server crashed or backup server does not have node tree.
Jobs could have been created, via server or by scheduling user commands

us
er

Job is created by like, rerun, re-queue. User zombies are differentiated from server(scheduled) since they are automatically created when the force user commands
option is used and we have tasks in an or states. active submitted

ecf Jobs are created as part of the normal . Two commands or task complete or aborted but receives another child scheduling init cmd

ecf_pid pid mismatched, Job scheduled twice . Check submitter

ecf_passwd Password mismatch, PID matches, system has re-cycled PID or hacked job file?

ecf_pid_passwd Both PID and password mismatch. Re-queue & submit of active job?

The type of the zombie is not fixed and may change.

https://software.ecmwf.int/#term-task
https://software.ecmwf.int/#term-complete
https://software.ecmwf.int/#term-child-command
https://software.ecmwf.int/wiki/display/ECFLOW/ecFlow+Python+Api#ecflow.ZombieAttr
https://software.ecmwf.int/wiki/display/ECFLOW/ecFlow+Python+Api#ecflow.ZombieUserActionType
https://software.ecmwf.int/wiki/display/ECFLOW/ecFlow+Python+Api#ecflow.ZombieType
https://software.ecmwf.int/#term-child-command
https://software.ecmwf.int/#term-child-command
https://software.ecmwf.int/wiki/display/ECFLOW/ecFlow+Python+Api#ecflow.ZombieAttr
https://software.ecmwf.int/wiki/display/ECFLOW/ecFlow+Python+Api#ecflow.ZombieAttr

	Glossary

