
ecflow v4

Dependencies

cmake (install cmake (sudo apt-get install cmake))
g++ (install g++ (sudo apt-get install g++))
Python 2.7 or Python 3
If you intend to use Python API, You will need to install Python. (install (sudo apt-get install))ecFlow python-dev python-dev
Please ensure that is accessible on $PATH otherwise, you may need to customise python $BOOST_ROOT/tools/build/v2/site-config.jam .
The python installation include the packages should development
If you do not need the python api, then you can build without it, see below.
Xlib, X11, XMotif for . ecflowview

Do use Lesstif library to compile ecflowview as a replacement for Motif. not

OpenMotif can be downloaded from http://www.ist.co.uk/downloads/motif_download.html
If you do not want use the GUI, then you can configure the build to ignore this dependency.
Qt for (Qt5 preferred).ecFlowUI
For self-installed Qt libraries, consider setting CMAKE_PREFIX_PATH (see below). See also for further http://doc.qt.io/qt-5/cmake-manual.html
details.

Setting up the build environment

ecFlow consists of two tar files i.e.:

boost_1_53_0.tar.gz
ecFlow-4.17.0-Source.tar.gz

Create a directory for the build:

mkdir /tmp/ecflow_build

Copy the two tar file into this directory, then change directory to /tmp/ecflow_build
Un-zip then un-tar the two file files:

tar -zxf boost_1_53_0.tar.gz
tar -zxf ecFlow-4.17.0-Source.tar.gz

You should have two directories created:

boost_1_53_0
ecFlow-4.17.0-Source

Create two environment variables. These are used by some of the scripts:

export WK=/tmp/ecflow_build/ecFlow-4.17.0-Source
export BOOST_ROOT=/tmp/ecflow_build/boost_1_53_0

If you have a module system, please ensure that before you start, gcc,cmake,python2,python3,etc are available in $PATH.

module load gnu
module load cmake
module load python3
module load qt

Build boost

ecflow v4 is no longer actively developed, only critical issues will be fixed. Please migrate to ecflow 5 at your earliest convenience

https://confluence.ecmwf.int/display/ECFLOW/Glossary#term-ecflowview
http://www.ist.co.uk/downloads/motif_download.html
https://confluence.ecmwf.int/display/ECFLOW/ecFlowUI+Documentation
http://doc.qt.io/qt-5/cmake-manual.html

Boost uses bjam for building the boost libs.
bjam source is available in boost, hence we first need to build bjam itself:

cd $BOOST_ROOT
./bootstrap.sh

For python3

./bootstrap.sh --with-python=/path/to/python3

You may need to update $BOOST_ROOT/project-config.jam, with path to executable and path to include files.

using python
: # version
: # cmd-or-prefix
: # includes
: # libraries
: # condition
;
using python : 3.6 : /usr/local/apps/python3/3.6.8-01/bin/python3 : /usr/local/apps/python3/3.6.8-01
/include/python3.6m ; # remember to preserve the spaces, as they are significant

IF you do not require the ecFlow python API, you can avoid building boost python libs by setting.

Disable boost python, ecflow python API not requiredIF

 export ECF_NO_PYTHON=1

before calling $WK/build_scripts/boost_build.sh (see below)
You will also need to disable python when building ecFlow. See the instruction under cmake

ecFlow uses some of the compiled libraries in boost. The following script will build the required lib’s and configure boost build according to your
platform

Build boost libraries including python3 used by ecflow.

cd $BOOST_ROOT
$WK/build_scripts/boost_1_53_fix.sh # fix for boost, only for some platforms
$WK/build_scripts/boost_build.sh # compile boost libs used by ecFlow. Please see notes in
boost_build.sh, if you want to build both for python2 and python3

 If you want to build python2 and python3. Then ALWAYS build the python3 first. See earlier steps

Building boost python2 libs

module load python
mv $BOOST_ROOT/project-config.jam $BOOST_ROOT/project-config.jam_python3 # move the python3 config to
the side
./bootstrap.sh # || ./bootstrap.sh --with-
python=/path/to/python2 to regenerate project-config.jam
./b2 --with-python --clean # Clean previous python3
build *VERY* important
$WK/build_scripts/boost_build.sh # Build boost python2 libs

Build

cmake

As configure, CMake will run some tests on the customer's system to find out if required third-party software libraries are available and note their locations
(paths). Based on this information it will produce the Makefiles needed to compile and install ecFlow

CMake is a cross-platform free software program for managing the build process of software using a compiler-independent method.

Generating the Makefiles with CMake

After changing into the build ecflow directory, the user has to run CMake with his/her own options. The command gives feedback on what requirements are
fulfilled and what software is still required. The table below gives an overview of the different options of configure. The default (without any options) will
install in /usr/local/.

cmake options doc default

CMAKE_INSTALL_PREFIX where you want to install your ecFlow /usr/local

CMAKE_BUILD_TYPE to select the type of compilation:

Debug
RelWithDebInfo
Release (fully optimised compiler options)
Production

Release

CMAKE_CXX_FLAGS more flags for the C++ compiler

ENABLE_SERVER build the ecFlow server on

ENABLE_PYTHON enable python interface on

PYTHON_EXECUTABLE Pyhon3. Path to python3 executable. required if cmake version is less than 3.12.0ONLY

ENABLE_UI enable build of ecflowUI (requires Qt) on

CMAKE_PREFIX_PATH use to provide a path to dependent libraries that are installed in non-system locations.
For example, if you have installed Qt in a non-system location, you should set the path in this variable.

ENABLE_GUI enable the build of ecflowview (requires X11 and motif) on

ENABLE_ALL_TESTS enable performance, migration, memory leak , and regression tests off

ENABLE_SSL Encrypted communication for user commands (experimental, from ecFlow release 4.5.0).

Please see: for more details.Open ssl

off

ENABLE_SECURE_USER password-based protection for user commands (experimental, from ecFlow release 4.5.0)

Please see: for more details.Black list file (experimental)

off

BOOST_ROOT where to find boost (if non-standard installation)

If not specified cmake will look for an environment variable of the same name.

The C++ compilers are chosen by CMake. (This can be overwritten by setting the environment variables on the command line before you call ,CXX cmake
to the preferred compiler).

Further, the variable can be used to set compiler flags for optimisation or debugging. CMAKE_CXX_FLAGS

https://confluence.ecmwf.int/display/ECFLOW/Open+ssl
https://confluence.ecmwf.int/pages/viewpage.action?pageId=65223577

cmake/ecbuild

cd $WK
mkdir build; cd build;

Go with defaults, will build with CMAKE_BUILD_TYPE=Release and install to /usr/local
cmake ..

build release with debug info
cmake .. -DCMAKE_BUILD_TYPE=RelWithDebInfo

Override install prefix
cmake .. -DCMAKE_INSTALL_PREFIX=/usr/local/apps/ecflow/4.14.0

do NOT build the gui.
cmake .. -DCMAKE_INSTALL_PREFIX=/usr/local/apps/ecflow -DCMAKE_BUILD_TYPE=Release -DENABLE_GUI=OFF

ignore Wdeprecated-declarations compiler warning messages and do NOT build python api
cmake .. -DCMAKE_CXX_FLAGS="-Wno-deprecated-declarations" -DENABLE_PYTHON=OFF

Use -j option to speed up compilation. Determine number of cpu's
CPUS=$(lscpu -p | grep -v '#' | wc -l)
make -j${CPUS}
make check
make install

To use the , you need to add/change PYTHONPATH . ecFlow Python Api

export PYTHONPATH=$PYTHONPATH:<prefix>/4.17.0/lib/python2.7/site-packages/ecflow
If you used the default's then <prefix>=/usr/local
otherwise you should use whatever you entered for -DCMAKE_INSTALL_PREFIX, hence in the examples above we
would have:
export PYTHONPATH=$PYTHONPATH:/usr/local/apps/ecflow/4.17.0/lib/python2.7/site-packages/ecflow

Installing ecFlow Python to a custom directory

The default install for ecFlow will install python(if it was enabled) under the directory given to CMAKE_INSTALL_PREFIX.

However, sometimes we may need to install the ecFlow python module to a different prefix. (starting with release 4.3.0)

This can be done using:

cd $WK/build # change to the build directory
cmake -DCMAKE_INSTALL_PREFIX=/tmp/avi/custom/ecflow/4.17.0 -DCOMPONENT=python -P cmake_install.cmake -- make
install # install python module under /tmp/avi/custom/ecflow/4.17.0

ecflow_ui: Make a list servers accessible to all users

If you experience problem with your installation, and need to fix your install of dependent libraries like QT,Python,Boost,gcc etc, then it is VERY
important that you the build directory and start cmake build again. (This is because cmake keeps a cache of your configuration, and re-delete
uses this unless the build directory is deleted).

Always remember to delete build directory if there is a change in system configuration

cd $WK
rm -rf build
mkdir build; cd build
cmake .. # or use whatever cmake configuration you used before

https://confluence.ecmwf.int/display/ECFLOW/ecFlow+Python+Api#python-api

The GUI used by ecFlow is called ecflow_ui. This is used to interact and visualize the ecFlow servers.

You can make the list of servers available for your users by:

creating a file called servers
The format of the server's file is very easy:

server file format

<server_name> <machine_name> <port>

An example might be:

servers file

server machineX 3141
projectX machineabc 4141
exp1 machineabc 4141
mars bigmac 11031

Copy this file to CMAKE_INSTALL_PREFIX/share/ecflow/. This makes the list of servers accessible to all users of ecflow_ui

cp servers /tmp/avi/custom/ecflow/4.17.0/share/ecflow/.

	ecflow v4

