A risk-based decision-making game relevant to water management.
Try it yourself!

Florian Pappenberger
Schalk Jan van Andel
Andy Wood
Maria-Helena Ramos & Louise Crochemore

EGU 2013 - Vienna, Austria, 07-12 April
You are the newly appointed water manager for Lake Dual.

It is a reservoir that serves two primary functions:

1. Water supply for Swof Town
2. Flood control for Safe Town
Water management game: instructions

1. **Swof Town:** would like to see the reservoir full on August 1\(^{st}\) (500 Mm\(^{3}\)) so that its residents can count on water all summer.

2. **Safe Town:** residents are interested in keeping releases below 60 Mm\(^{3}\) each month (anything more causes flood damage to their homes)
You are going to be the **water manager** for Lake Dual during the season running **from April to August**:

- you will be presented with **probabilistic forecasts** of inflows, and

- at the beginning of each month you have to **decide on the reservoir releases** for the remaining months.
Water management game: remember!

- your aim is to have the reservoir level as close as possible to 500 Mm3 on August 1st, but you can never exceed this level.

- You have to maintain a minimum release of 15 Mm3 for environmental flow and your maximum release cannot exceed 60 Mm3.

If you fail to meet these constraints, you will be fired! The WINNER of the game is the manager that has the highest level on August 1st (but < 500 Mm3)
Water management game: worksheet

You have a worksheet to mark your decisions! Remember to return it after the game!

NOW LET’S DO AN EXAMPLE BEFORE WE START!

A risk-based decision-making game relevant to water management

Try it yourself!

<table>
<thead>
<tr>
<th></th>
<th>Your release schedule 15 ≤ release ≤ 60</th>
<th>The actual inflow of the month (Mm³)</th>
<th>Your initial reservoir volume for the next forecast:</th>
<th>Did you overtop the reservoir? (reservoir > 500)</th>
</tr>
</thead>
<tbody>
<tr>
<td>EXAMPLE:</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>It’s 1st March</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Median inflow</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>over the</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>previous 30</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>years: 4 Mm³</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>March : 15</td>
<td></td>
<td>5</td>
<td>460 + 5 - 15 = 450</td>
<td>No, I still have my job X Yes, I got fired □</td>
</tr>
<tr>
<td>April : 30</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>May : 60</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>June : 30</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>July : 15</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>It’s 1st April</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Median inflow</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>over the</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>previous 30</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>years: 12 Mm³</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>April : ____</td>
<td></td>
<td>____</td>
<td>450 + ____ - ____ = ____</td>
<td>No, I still have my job □ Yes, I got fired □</td>
</tr>
<tr>
<td>May : ____</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>June : ____</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>July : ____</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>It’s 1st May</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Median inflow</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>over the</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>previous 30</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>years: 52 Mm³</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>May : ____</td>
<td></td>
<td>____</td>
<td>____ + ____ · ____ = ____</td>
<td>No, I still have my job □ Yes, I got fired □</td>
</tr>
</tbody>
</table>
Water management game: example

Its March 1\(^{st}\):
this is the probabilistic forecast of inflows
issued on March 1\(^{st}\) for the next months

ESP Forecast on: March 1

<table>
<thead>
<tr>
<th>Month</th>
<th>Forecast Inflow Volume</th>
</tr>
</thead>
<tbody>
<tr>
<td>M</td>
<td>2</td>
</tr>
<tr>
<td>A</td>
<td>5</td>
</tr>
<tr>
<td>M</td>
<td>18</td>
</tr>
<tr>
<td>J</td>
<td>70</td>
</tr>
<tr>
<td>J</td>
<td>130</td>
</tr>
</tbody>
</table>

max (95%)
75%
50%
25%
min (5%)
Water management game: **example**

You have to decide on your releases for all the next months…

Mark the releases in your worksheet!

A risk-based decision-making game relevant to water management

<table>
<thead>
<tr>
<th>Try it yourself!</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Your release schedule</th>
<th>The actual inflow of the month (Mm³)</th>
<th>Your initial reservoir volume for the next forecast:</th>
<th>Did you overtop the reservoir? (reservoir > 500)</th>
</tr>
</thead>
<tbody>
<tr>
<td>EXAMPLE:</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>It’s 1st March</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Median inflow over the previous 30 years: 4 Mm³</td>
<td></td>
<td></td>
<td>No, I still have my job X</td>
</tr>
<tr>
<td>March: 15</td>
<td>5</td>
<td>460 + 5 - 15 = 450</td>
<td>□</td>
</tr>
<tr>
<td>April: 30</td>
<td></td>
<td></td>
<td>Yes, I got fired □</td>
</tr>
<tr>
<td>May: 60</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>June: 30</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>July: 15</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

It’s 1st April				
Median inflow over the previous 30 years: 12 Mm³			No, I still have my job □	
April: _____	_____	450 + _____ - _____ = _____	Yes, I got fired □	
May : _____				
June: _____				
July: _____				

It’s 1st May				
Median inflow over the previous 30 years: 52 Mm³			No, I still have my job □	
May: _____	_____	_____ + _____ - _____ = _____	Yes, I got fired □	
Water management game: example

At the end of the month, you will be informed of the actual inflow and you can update your reservoir volume for the next month.

March has gone by.

March inflow was: \(5 \, Mm^3\)

The March release was: \(15 \, Mm^3\)

The volume on April 1st is therefore:

\[460 \, Mm^3 + 5 \, Mm^3 - 15 \, Mm^3 = 450 \, Mm^3\]
Water management game: example

Update your worksheet and check if you still have a job!

You’re ready to go to the next forecast and decision

March has gone by.

March inflow was: \(5 \text{ Mm}^3\)

The March release was: \(15 \text{ Mm}^3\)

The volume on April 1st is therefore:
\[460 \text{ Mm}^3 + 5 \text{ Mm}^3 - 15 \text{ Mm}^3 = 450 \text{ Mm}^3\]
Water management game: let’s play!

Worksheets shall be used to indicate your own releases

To represent the group....

We need a VOLUNTEER!

Who in the room?
Water management game: let’s play!

Game Start

River

Water Supply

Reservoir
“Lake Dual”

Flood Control

Swof Town

Safe Town
It is April 1st.

The reservoir is at 450 Mm^3
You are given the inflow forecasts on April 1st.

Please fill in your release schedule. Remember: $15 Mm^3 \leq \text{Release} \leq 60 Mm^3$

Reservoir should be close to 500 Mm^3 on August 1st.
If the volume exceeds 500 Mm^3, you are fired.
It is April 1st.

And our volunteer?

Let’s see which release option our volunteer will choose.
April has gone by.

April inflow was: $18 \, Mm^3$

You can update your reservoir volume:
The volume on May 1st is:
April 1 volume $+ 18 \, Mm^3$ - April release = ?

Did you overtop your reservoir?

☐ NO, I still have my job.
☐ YES, I got fired...

What about our volunteer?
April has gone by.

April inflow was: 18 Mm^3

Our volunteer’s April release was: 37 Mm^3

The volume on May 1st is therefore:

$450 \text{ Mm}^3 + 18 \text{ Mm}^3 - 37 \text{ Mm}^3 = 431 \text{ Mm}^3$

No overtop!

The volunteer still has a job!

Let’s go to the next forecast!
It is May 1st.

The reservoir is at 431 Mm^3

You are given the inflow forecasts on May 1st.

Please fill in your release schedule. Remember: $15 \text{ Mm}^3 \leq \text{Release} \leq 60 \text{ Mm}^3$

Reservoir should be close to 500 Mm^3 on August 1st.

If the volume exceeds 500 Mm^3, you are fired.
It is May 1st.

And our volunteer?

Let’s see which release option our volunteer will choose.
May has gone by.

May inflow was: \(55 \, Mm^3\)

You can update your reservoir volume:

The volume on June 1st is:

May 1 volume + \(55 \, Mm^3\) - May release = ?

Did you overtop your reservoir?

☐ NO, I still have my job.
☐ YES, I got fired...

What about our volunteer?
May has gone by.

May inflow was: $55 \, Mm^3$

Our volunteer’s May release was: $59 \, Mm^3$

The volume on June 1st is therefore:

$431 \, Mm^3 + 55 \, Mm^3 - 59 \, Mm^3 = 427 \, Mm^3$

No overtop!

The volunteer still has a job!

Let’s go to the next forecast!
It is June 1st.

The reservoir is at $427 \text{ } Mm^3$
You are given the inflow forecasts on June 1st.

Please fill in your release schedule. Remember: $15 \text{ } Mm^3 \leq \text{Release} \leq 60 \text{ } Mm^3$

Reservoir should be close to $500 \text{ } Mm^3$ on August 1st.
If the volume exceeds $500 \text{ } Mm^3$, you are fired.
It is June 1st.

And our volunteer?

Let’s see which release option our volunteer will choose.
June has gone by.

June inflow was: \(120 \, \text{Mm}^3\)

You can update your reservoir volume:

The volume on July 1st is:

June 1 volume + \(120 \, \text{Mm}^3\) - June release = ?

Did you overtop your reservoir?

☐ NO, I still have my job.
☐ YES, I got fired...

What about our volunteer?
June has gone by.

June inflow was: $120 \, Mm^3$

Our volunteer’s June release was: $28 \, Mm^3$

The volume on July 1st is therefore:

$427 \, Mm^3 + 120 \, Mm^3 - 28 \, Mm^3 = 519 \, Mm^3$

Overtop!

The volunteer got fired!

Can it be fixed?
It is July 1st.

The reservoir is at 519 Mm^3

You are given the inflow forecasts on July 1st.

Please fill in your release schedule. Remember: $15 Mm^3 \leq \text{Release} \leq 60 Mm^3$

Reservoir should be close to 500 Mm^3 on August 1st.

If the volume exceeds 500 Mm^3, you are fired.
It is July 1st.

And our volunteer?

Let’s see which release option our volunteer will choose.
July has gone by.

July inflow was: 22 Mm^3

You can update your reservoir volume:
The volume on August 1st is:
July 1 volume $+ 22 \text{ Mm}^3 - \text{July release} = ?$

Did you overtop your reservoir?

☐ NO, I still have my job.
☐ YES, I got fired...

What about our volunteer?
July has gone by.

July inflow was: $22 \ Mm^3$

Our volunteer’s July release was: $60 \ Mm^3$

The volume on August 1st is therefore:

$519 \ Mm^3 + 22 \ Mm^3 - 60 \ Mm^3 = 481 \ Mm^3$

No overtop!

The volunteer got the job back!

NEXT
GAME OVER

August 1st has arrived.

If you did not overtop the reservoir, you still have a job and you are hired for the next season!

How did you like this experience as a decision-maker?
It is April 1st.

The reservoir is at 450 Mm^3

You are given the inflow forecasts on April 1st.

Please fill in your release schedule. Remember: $15 \text{ Mm}^3 \leq \text{Release} \leq 60 \text{ Mm}^3$

Reservoir should be close to 500 Mm^3 on August 1st.

If the volume exceeds 500 Mm^3, you are fired.
It is April 1st.

And our volunteer?

Let’s see which release option our volunteer will choose.
April has gone by.

April inflow was: 18 Mm^3

You can update your reservoir volume:
The volume on May 1st is:
April 1 volume + 18 Mm^3 - April release = ?

Did you overtop your reservoir?

☐ NO, I still have my job.
☐ YES, I got fired...

What about our volunteer?
April has gone by.

April inflow was: $18 \ Mm^3$

Our volunteer’s April release was: $55 \ Mm^3$

The volume on May 1st is therefore:

$450 \ Mm^3 +18 \ Mm^3 -55 \ Mm^3 = 413 \ Mm^3$

No overtop!

The volunteer still has a job!

Let’s go to the next forecast!
It is May 1st.

The reservoir is at $413 \ Mm^3$.

You are given the inflow forecasts on May 1st.

Please fill in your release schedule. Remember: $15 \ Mm^3 \leq \text{Release} \leq 60 \ Mm^3$

Reservoir should be close to $500 \ Mm^3$ on August 1st.

If the volume exceeds $500 \ Mm^3$, you are fired.
It is May 1st.

And our volunteer?

Let’s see which release option our volunteer will choose.
May has gone by.

May inflow was: 55 Mm^3

You can update your reservoir volume:
The volume on June 1st is:
May 1 volume + 55 Mm^3 - May release = ?

Did you overtop your reservoir?

☐ NO, I still have my job.
☐ YES, I got fired...

What about our volunteer?
May has gone by.

May inflow was: 55 \text{ Mm}^3

Our volunteer’s May release was: 59 \text{ Mm}^3

The volume on June 1st is therefore:

\[413 \text{ Mm}^3 + 55 \text{ Mm}^3 - 59 \text{ Mm}^3 = 409 \text{ Mm}^3\]

No overtop!

The volunteer still has a job!

Let’s go to the next forecast!
It is June 1st.

The reservoir is at 409 \(Mm^3 \)

You are given the inflow forecasts on June 1st.

Please fill in your release schedule. Remember: \(15 \ Mm^3 \leq \text{Release} \leq 60 \ Mm^3 \)

Reservoir should be close to 500 \(Mm^3 \) on August 1st.

If the volume exceeds 500 \(Mm^3 \), you are fired.
It is June 1st.

And our volunteer?

Let’s see which release option our volunteer will choose.
June has gone by.

June inflow was: \(120 \text{ Mm}^3\)

You can update your reservoir volume:
The volume on July 1st is:
June 1 volume + 120 \(\text{Mm}^3\) - June release = ?

Did you overtop your reservoir?

\(\square\) NO, I still have my job.
\(\square\) YES, I got fired...

What about our volunteer?
June has gone by.

June inflow was: 120 Mm^3

Our volunteer’s June release was: 28 Mm^3

The volume on July 1st is therefore:

$$409 \text{ Mm}^3 + 120 \text{ Mm}^3 - 28 \text{ Mm}^3 = 501 \text{ Mm}^3$$

Overtop!

The volunteer got fired!

Can it be fixed?
It is July 1st.

The reservoir is at 501 Mm^3

You are given the inflow forecasts on July 1st.

Please fill in your release schedule. Remember: 15 $Mm^3 \leq \text{Release} \leq 60 \ Mm^3$

Reservoir should be close to 500 Mm^3 on August 1st.

If the volume exceeds 500 Mm^3, you are fired.
It is July 1st.

And our volunteer?

Let’s see which release option our volunteer will choose.
July has gone by.

July inflow was: $22 \ M m^3$

You can update your reservoir volume:

The volume on August 1st is:

July 1 volume $+ 22 \ M m^3 - \text{July release} = ?$

Did you overtop your reservoir?

☐ NO, I still have my job.
☐ YES, I got fired...

What about our volunteer?
July has gone by.

July inflow was: 22 Mm^3

Our volunteer’s July release was: 60 Mm^3

The volume on August 1st is therefore:

$501 \ Mm^3 + 22 \ Mm^3 - 60 \ Mm^3 = 463 \ Mm^3$

No overtop!

The volunteer got the job back!
GAME OVER

August 1st has arrived.
If you did not overtop the reservoir, you still have a job and you are hired for the next season!

How did you like this experience as a decision-maker?
It is April 1st.

The reservoir is at 450 Mm^3

You are given the inflow forecasts on April 1st.

Please fill in your release schedule. Remember: $15 Mm^3 \leq \text{Release} \leq 60 Mm^3$

Reservoir should be close to 500 Mm^3 on August 1st.

If the volume exceeds 500 Mm^3, you are fired.
It is April 1st.

And our volunteer?

Let’s see which release option our volunteer will choose.
April has gone by.

April inflow was: \(18 \text{ } Mm^3\)

You can update your reservoir volume:

The volume on May 1st is:

April 1 volume + \(18 \text{ } Mm^3\) - April release = ?

Did you overtop your reservoir?

☐ NO, I still have my job.
☐ YES, I got fired...

What about our volunteer?
April has gone by.

April inflow was: 18 Mm^3

Our volunteer’s April release was: 17 Mm^3

The volume on May 1st is therefore:

$$450\ Mm^3 + 18\ Mm^3 - 17\ Mm^3 = 451\ Mm^3$$

No overtop!

The volunteer still has a job!

Let’s go to the next forecast!
Previous decisions: C

It is May 1st.

The reservoir is at $451 \, Mm^3$
You are given the inflow forecasts on May 1st.

Please fill in your release schedule. Remember: $15 \, Mm^3 \leq \text{Release} \leq 60 \, Mm^3$

Reservoir should be close to $500 \, Mm^3$ on August 1st.
If the volume exceeds $500 \, Mm^3$, you are fired.
It is May 1st.

And our volunteer?

Let’s see which release option our volunteer will choose.

Option A
Release
59 60 56
Reservoir volume
500 600 700
Current reservoir volume
Reservoir volume assuming inflow is median forecast
Reservoir volume assuming inflow is min/max forecast

Option B
45 47 39
Reservoir volume
500 600 700
Current reservoir volume
Reservoir volume assuming inflow is median forecast
Reservoir volume assuming inflow is min/max forecast

Option C
26 24 25
Reservoir volume
500 600 700
Current reservoir volume
Reservoir volume assuming inflow is median forecast
Reservoir volume assuming inflow is min/max forecast

Forecast inflow volume

Forecast issued on the previous month

min (5%)

max (95%)
May has gone by.

May inflow was: 55 Mm^3

You can update your reservoir volume:
The volume on June 1st is:
May 1 volume + 55 Mm^3 - May release = ?

Did you overtop your reservoir?

□ NO, I still have my job.
□ YES, I got fired...

What about our volunteer?
May has gone by.

May inflow was: \(55 \, Mm^3\)

Our volunteer’s May release was: \(59 \, Mm^3\)

The volume on June 1st is therefore:

\[451 \, Mm^3 + 55 \, Mm^3 - 59 \, Mm^3 = 447 \, Mm^3\]

No overtop!

The volunteer still has a job!

Let’s go to the next forecast!
It is June 1st.

The reservoir is at 447 \, Mm^3
You are given the inflow forecasts on June 1st.

Please fill in your release schedule. Remember: $15 \text{ \, Mm}^3 \leq \text{Release} \leq 60 \text{ \, Mm}^3$

Reservoir should be close to 500 \, Mm^3 on August 1st.
If the volume exceeds 500 \, Mm^3, you are fired.
It is June 1st.

And our volunteer?

Let’s see which release option our volunteer will choose.
June has gone by.

June inflow was: \(120 \text{ } Mm^3\)

You can update your reservoir volume:
The volume on July 1st is:
June 1 volume + \(120 \text{ } Mm^3\) - June release = ?

Did you overtop your reservoir?

☐ NO, I still have my job.
☐ YES, I got fired...

What about our volunteer?
June has gone by.

June inflow was: \(120 \ Mm^3\)

Our volunteer’s June release was: \(28 \ Mm^3\)

The volume on July 1st is therefore:
\[447 \ Mm^3 + 120 \ Mm^3 - 28 \ Mm^3 = 539 \ Mm^3\]

Overtop!

The volunteer got fired!

Can it be fixed?
It is July 1st.

The reservoir is at $539 \ Mm^3$

You are given the inflow forecasts on July 1st.

Please fill in your release schedule. Remember: $15 \ Mm^3 \leq \text{Release} \leq 60 \ Mm^3$

Reservoir should be close to $500 \ Mm^3$ on August 1st.

If the volume exceeds $500 \ Mm^3$, you are fired.
It is July 1st.

And our volunteer?

Let’s see which release option our volunteer will choose.
July has gone by.

July inflow was: $22 \text{ } Mm^3$

You can update your reservoir volume:
The volume on August 1st is:
July 1 volume $+ 22 \text{ } Mm^3$ - July release $=$?

Did you overtop your reservoir?

☐ NO, I still have my job.
☐ YES, I got fired...

What about our volunteer?
July has gone by.

July inflow was: 22 Mm^3

Our volunteer’s July release was: 60 Mm^3

The volume on August 1st is therefore:

\[539 \ Mm^3 + 22 \ Mm^3 - 60 \ Mm^3 = 501 \ Mm^3 \]

Overtop!

The volunteer did not get the job back!

NEXT
GAME OVER

August 1st has arrived.

If you did not overtop the reservoir, you still have a job and you are hired for the next season!

How did you like this experience as a decision-maker?
It is April 1st.

The reservoir is at 450 Mm^3.

You are given the inflow forecasts on April 1st.

Please fill in your release schedule. Remember: $15 \text{ Mm}^3 \leq \text{Release} \leq 60 \text{ Mm}^3$

Reservoir should be close to 500 Mm^3 on August 1st.

If the volume exceeds 500 Mm^3, you are fired.
It is April 1st.

And our volunteer?

Let’s see which release option our volunteer will choose.
April has gone by.

April inflow was: $18 \ Mm^3$

You can update your reservoir volume:
The volume on May 1st is:
April 1 volume $+ 18 \ Mm^3$ - April release $= ?$

Did you overtop your reservoir?

☐ NO, I still have my job.
☐ YES, I got fired...

What about our volunteer?
April has gone by.

April inflow was: \(18 \, Mm^3\)

Our volunteer’s April release was: \(37 \, Mm^3\)

The volume on May 1st is therefore:
\[
450 \, Mm^3 \, + \, 18 \, Mm^3 \, - \, 37 \, Mm^3 = 431 \, Mm^3
\]

No overtop!

The volunteer still has a job!

Let’s go to the next forecast!
It is May 1st.

The reservoir is at 431 Mm^3.
You are given the inflow forecasts on May 1st.

Please fill in your release schedule. Remember: $15 \text{ Mm}^3 \leq \text{Release} \leq 60 \text{ Mm}^3$

Reservoir should be close to 500 Mm^3 on August 1st.
If the volume exceeds 500 Mm^3, you are fired.
It is May 1st.

And our volunteer?

Let’s see which release option our volunteer will choose.
May has gone by.

May inflow was: \(55 \, Mm^3\)

You can update your reservoir volume:
The volume on June 1st is:
May 1 volume + 55 \(Mm^3\) - May release = ?

Did you overtop your reservoir?

□ NO, I still have my job.
□ YES, I got fired...

What about our volunteer?
May has gone by.

May inflow was: $55 \, Mm^3$

Our volunteer’s May release was: $45 \, Mm^3$

The volume on June 1st is therefore:

$$431 \, Mm^3 + 55 \, Mm^3 - 45 \, Mm^3 = 441 \, Mm^3$$

No overtop!

The volunteer still has a job!

Let’s go to the next forecast!
It is June 1st.

The reservoir is at \(441 \, Mm^3 \).

You are given the inflow forecasts on June 1st.

Please fill in your release schedule. Remember: \(15 \, Mm^3 \leq \text{Release} \leq 60 \, Mm^3 \)

Reservoir should be close to \(500 \, Mm^3 \) on August 1st.

If the volume exceeds \(500 \, Mm^3 \), you are fired.
It is June 1st.

And our volunteer?

Let’s see which release option our volunteer will choose.
June has gone by.

June inflow was: 120 Mm^3

You can update your reservoir volume:

The volume on July 1st is:

June 1 volume $+ 120 \text{ Mm}^3 - \text{June release} = ?$

Did you overtop your reservoir?

☐ NO, I still have my job.
☐ YES, I got fired...

What about our volunteer?
June has gone by.

June inflow was: $120 \, Mm^3$

Our volunteer’s June release was: $28 \, Mm^3$

The volume on July 1st is therefore:

$441 \, Mm^3 + 120 \, Mm^3 - 28 \, Mm^3 = 533 \, Mm^3$

Overtop!

The volunteer got fired!

Can it be fixed?
It is July 1st.

The reservoir is at $533 \text{ } Mm^3$
You are given the inflow forecasts on July 1st.

Please fill in your release schedule. Remember: $15 \text{ } Mm^3 \leq \text{Release} \leq 60 \text{ } Mm^3$

Reservoir should be close to $500 \text{ } Mm^3$ on August 1st.
If the volume exceeds $500 \text{ } Mm^3$, you are fired.
It is July 1st.

And our volunteer?

Let’s see which release option our volunteer will choose.
July has gone by.

July inflow was: \(22 \text{ \(Mm^3\)}\)

You can update your reservoir volume:
The volume on August 1st is:
July 1 volume + \(22 \text{ \(Mm^3\)}\) - July release = ?

Did you overtop your reservoir?

□ NO, I still have my job.
□ YES, I got fired...

What about our volunteer?
July has gone by.

July inflow was: \(22 \, Mm^3\)

Our volunteer’s July release was: \(60 \, Mm^3\)

The volume on August 1st is therefore:
\[533 \, Mm^3 \, + \, 22 \, Mm^3 \, - \, 60 \, Mm^3 \, = \, 495 \, Mm^3\]

No overtop!

The volunteer got the job back!

NEXT
GAME OVER

August 1st has arrived.
If you did not overtop the reservoir, you still have a job and you are hired for the next season!

How did you like this experience as a decision-maker?
It is April 1st.

The reservoir is at $450 \text{ } Mm^3$
You are given the inflow forecasts on April 1st.

Please fill in your release schedule. Remember: $15 \text{ } Mm^3 \leq \text{Release} \leq 60 \text{ } Mm^3$

Reservoir should be close to $500 \text{ } Mm^3$ on August 1st.
If the volume exceeds $500 \text{ } Mm^3$, you are fired.
It is April 1st.

And our volunteer?

Let’s see which release option our volunteer will choose.
April has gone by.

April inflow was: $18 \ M m^3$

You can update your reservoir volume:
The volume on May 1st is:
April 1 volume $+ 18 \ M m^3$ - April release $=$?

Did you overtop your reservoir?

□ NO, I still have my job.
□ YES, I got fired...

What about our volunteer?
April has gone by.

April inflow was: $18 \, Mm^3$

Our volunteer’s April release was: $55 \, Mm^3$

The volume on May 1st is therefore:

$450 \, Mm^3 + 18 \, Mm^3 - 55 \, Mm^3 = 413 \, Mm^3$

No overtop!

The volunteer still has a job!

Let’s go to the next forecast!
It is May 1st.

The reservoir is at $413 \, Mm^3$

You are given the inflow forecasts on May 1st.

Please fill in your release schedule. Remember: $15 \, Mm^3 \leq \text{Release} \leq 60 \, Mm^3$

Reservoir should be close to $500 \, Mm^3$ on August 1st.

If the volume exceeds $500 \, Mm^3$, you are fired.
It is May 1st.

And our volunteer?

Let’s see which release option our volunteer will choose.
May has gone by.

May inflow was: \(55 \, Mm^3\)

You can update your reservoir volume:

The volume on June 1st is:

May 1 volume \(+\) 55 \(Mm^3\) - May release = ?

Did you overtop your reservoir?

□ NO, I still have my job.
□ YES, I got fired...

What about our volunteer?
May has gone by.

May inflow was: $55 \, Mm^3$

Our volunteer’s May release was: $45 \, Mm^3$

The volume on June 1st is therefore:

$$413 \, Mm^3 + 55 \, Mm^3 - 45 \, Mm^3 = 423 \, Mm^3$$

No overtop!

The volunteer still has a job!

Let’s go to the next forecast!
It is June 1st.

The reservoir is at $423\ Mm^3$

You are given the inflow forecasts on June 1st.

Please fill in your release schedule. Remember: $15\ Mm^3 \leq \text{Release} \leq 60\ Mm^3$

Reservoir should be close to $500\ Mm^3$ on August 1st.

If the volume exceeds $500\ Mm^3$, you are fired.
It is June 1st.

And our volunteer?

Let’s see which release option our volunteer will choose.
June has gone by.

June inflow was: $120 \, Mm^3$

You can update your reservoir volume:

The volume on July 1st is:

June 1 volume $+ 120 \, Mm^3 - \text{June release} = ?$

Did you overtop your reservoir?

☐ NO, I still have my job.
☐ YES, I got fired...

What about our volunteer?
June has gone by.

June inflow was: $120 \ M m^3$

Our volunteer’s June release was: $28 \ M m^3$

The volume on July 1st is therefore:

$423 \ M m^3 + 120 \ M m^3 - 28 \ M m^3 = 515 \ M m^3$

Overtop!

The volunteer got fired!

Can it be fixed?
It is July 1st.

The reservoir is at 515 \(Mm^3 \)

You are given the inflow forecasts on July 1st.

Please fill in your release schedule. Remember: \(15 \ Mm^3 \leq \text{Release} \leq 60 \ Mm^3 \)

Reservoir should be close to 500 \(Mm^3 \) on August 1st.

If the volume exceeds 500 \(Mm^3 \), you are fired.

\[\text{NEXT} \]
It is July 1st.

And our volunteer?

Let's see which release option our volunteer will choose.

Option A

Option B

Option C

Current reservoir volume

Reservoir volume assuming inflow is median forecast

Reservoir volume assuming inflow is min/max forecast
July has gone by.

July inflow was: $22 \ Mm^3$

You can update your reservoir volume:

The volume on August 1st is:

July 1 volume $+ 22 \ Mm^3$ - July release $= ?$

Did you overtop your reservoir?

□ NO, I still have my job.
□ YES, I got fired...

What about our volunteer?
July has gone by.

July inflow was: $22\ Mm^3$

Our volunteer’s July release was: $60\ Mm^3$

The volume on August 1st is therefore:

$515\ Mm^3 + 22\ Mm^3 - 60\ Mm^3 = 477\ Mm^3$

No overtop!

The volunteer got the job back!
GAME OVER

August 1st has arrived.
If you did not overtop the reservoir, you still have a job and you are hired for the next season!

How did you like this experience as a decision-maker?
It is April 1st.

The reservoir is at $450 \ \text{Mm}^3$
You are given the inflow forecasts on April 1st.

Please fill in your release schedule. Remember: $15 \ \text{Mm}^3 \leq \text{Release} \leq 60 \ \text{Mm}^3$

Reservoir should be close to $500 \ \text{Mm}^3$ on August 1st.
If the volume exceeds $500 \ \text{Mm}^3$, you are fired.
It is April 1st.

And our volunteer?

Let’s see which release option our volunteer will choose.
April has gone by.

April inflow was: $18 \, Mm^3$

You can update your reservoir volume:
The volume on May 1st is:
April 1 volume $+ 18 \, Mm^3$ - April release $= ?$

Did you overtop your reservoir?

☐ NO, I still have my job.
☐ YES, I got fired...

What about our volunteer?
April has gone by.

April inflow was: \(18 \text{ Mm}^3\)

Our volunteer’s April release was: \(17 \text{ Mm}^3\)

The volume on May 1st is therefore:

\[450 \text{ Mm}^3 + 18 \text{ Mm}^3 - 17 \text{ Mm}^3 = 451 \text{ Mm}^3\]

No overtop!

The volunteer still has a job!

Let’s go to the next forecast!
Previous decisions: C

It is May 1st.

The reservoir is at 451 Mm^3

You are given the inflow forecasts on May 1st.

Please fill in your release schedule. Remember: $15 Mm^3 \leq \text{Release} \leq 60 Mm^3$

Reservoir should be close to 500 Mm^3 on August 1st.

If the volume exceeds 500 Mm^3, you are fired.
It is May 1st.

And our volunteer?

Let’s see which release option our volunteer will choose.
May has gone by.

May inflow was: $55 \, Mm^3$

You can update your reservoir volume:
The volume on June 1st is:
May 1 volume $+ \, 55 \, Mm^3 - \text{May release} = ?$

Did you overtop your reservoir?

- □ NO, I still have my job.
- □ YES, I got fired...

What about our volunteer?
May has gone by.

May inflow was: 55 Mm^3

Our volunteer’s May release was: 45 Mm^3

The volume on June 1st is therefore:

$451 \text{ Mm}^3 + 55 \text{ Mm}^3 - 45 \text{ Mm}^3 = 461 \text{ Mm}^3$

No overtop!

The volunteer still has a job!

Let’s go to the next forecast!
It is June 1st.

The reservoir is at 461 Mm^3
You are given the inflow forecasts on June 1st.

Please fill in your release schedule. Remember: $15 Mm^3 \leq \text{Release} \leq 60 Mm^3$

Reservoir should be close to 500 Mm^3 on August 1st.
If the volume exceeds 500 Mm^3, you are fired.
It is June 1st.

And our volunteer?

Let's see which release option our volunteer will choose.
June has gone by.

June inflow was: \(120 \, Mm^3\)

You can update your reservoir volume:

The volume on July 1st is:

June 1 volume + \(120 \, Mm^3\) - June release = ?

Did you overtop your reservoir?

□ NO, I still have my job.
□ YES, I got fired...

What about our volunteer?
June has gone by.

June inflow was: $120\, Mm^3$

Our volunteer’s June release was: $28\, Mm^3$

The volume on July 1st is therefore:

$461\, Mm^3 + 120\, Mm^3 - 28\, Mm^3 = 553\, Mm^3$

Overtop!

The volunteer got fired!

Can it be fixed?
It is July 1st.

The reservoir is at 553 Mm^3
You are given the inflow forecasts on July 1st.

Please fill in your release schedule. Remember: $15 \, Mm^3 \leq \text{Release} \leq 60 \, Mm^3$

Reservoir should be close to 500 Mm^3 on August 1st.
If the volume exceeds 500 Mm^3, you are fired.
It is July 1st.

And our volunteer?

Let’s see which release option our volunteer will choose.
July has gone by.

July inflow was: \(22 \text{ Mm}^3\)

You can update your reservoir volume:

The volume on August 1st is:

July 1 volume + \(22 \text{ Mm}^3\) - July release = ?

Did you overtop your reservoir?

\(\square\) NO, I still have my job.
\(\square\) YES, I got fired...

What about our volunteer?
July has gone by.

July inflow was: $22 \text{ } Mm^3$

Our volunteer’s July release was: $60 \text{ } Mm^3$

The volume on August 1st is therefore:

$553 \text{ } Mm^3 + 22 \text{ } Mm^3 - 60 \text{ } Mm^3 = 515 \text{ } Mm^3$

Overtop!

The volunteer did not get the job back!
GAME OVER

August 1st has arrived.
If you did not overtop the reservoir, you still have a job and you are hired for the next season!

How did you like this experience as a decision-maker?
It is April 1st.

The reservoir is at 450 Mm^3
You are given the inflow forecasts on April 1st.

Please fill in your release schedule. Remember: $15 \text{ Mm}^3 \leq \text{Release} \leq 60 \text{ Mm}^3$

Reservoir should be close to 500 Mm^3 on August 1st.
If the volume exceeds 500 Mm^3, you are fired.
It is April 1st.

And our volunteer?

Let’s see which release option our volunteer will choose.
April has gone by.

April inflow was: $18 \ M m^3$

You can update your reservoir volume:
The volume on May 1st is:
April 1 volume $+ 18 \ M m^3 - April \ release = ?$

Did you overtop your reservoir?

☐ NO, I still have my job.
☐ YES, I got fired...

What about our volunteer?
April has gone by.

April inflow was: 18 Mm^3

Our volunteer’s April release was: 37 Mm^3

The volume on May 1st is therefore:

$450 \text{ Mm}^3 + 18 \text{ Mm}^3 - 37 \text{ Mm}^3 = 431 \text{ Mm}^3$

No overtop!

The volunteer still has a job!

Let’s go to the next forecast!
It is May 1st.

The reservoir is at 431 Mm^3
You are given the inflow forecasts on May 1st.

Please fill in your release schedule. Remember: $15 \text{ Mm}^3 \leq \text{Release} \leq 60 \text{ Mm}^3$

Reservoir should be close to 500 Mm^3 on August 1st.
If the volume exceeds 500 Mm^3, you are fired.
It is May 1st.

And our volunteer?

Let’s see which release option our volunteer will choose.

<table>
<thead>
<tr>
<th>Option A</th>
<th>Option B</th>
<th>Option C</th>
</tr>
</thead>
<tbody>
<tr>
<td>Release</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Release</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>59 60 56</td>
<td>45 46 39</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Release</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>26 24 25</td>
<td>26 24 25</td>
</tr>
</tbody>
</table>

Current reservoir volume
Reservoir volume assuming inflow is median forecast
Reservoir volume assuming inflow is min/max forecast
May has gone by.

May inflow was: $55 \, Mm^3$

You can update your reservoir volume:

The volume on June 1st is:

May 1 volume $+ 55 \, Mm^3 - \text{May release} = ?$

Did you overtop your reservoir?

☐ NO, I still have my job.
☐ YES, I got fired...

What about our volunteer?
May has gone by.

May inflow was: $55 \, Mm^3$

Our volunteer’s May release was: $26 \, Mm^3$

The volume on June 1st is therefore:

$$431 \, Mm^3 + 55 \, Mm^3 - 26 \, Mm^3 = 460 \, Mm^3$$

No overtop!

The volunteer still has a job!

Let’s go to the next forecast!
It is June 1st.

The reservoir is at \(460 \, Mm^3\)
You are given the inflow forecasts on June 1st.

Please fill in your release schedule. Remember: \(15 \, Mm^3 \leq \text{Release} \leq 60 \, Mm^3\)

Reservoir should be close to \(500 \, Mm^3\) on August 1st.
If the volume exceeds \(500 \, Mm^3\), you are fired.
Previous decisions: A C

It is June 1st.

And our volunteer?

Let’s see which release option our volunteer will choose.
June has gone by.

June inflow was: 120 Mm^3

You can update your reservoir volume:
The volume on July 1st is:
June 1 volume + 120 Mm^3 - June release = ?

Did you overtop your reservoir?

☐ NO, I still have my job.
☐ YES, I got fired...

What about our volunteer?
June has gone by.

June inflow was: 120 Mm^3

Our volunteer’s June release was: 28 Mm^3

The volume on July 1st is therefore:

$460 \text{ Mm}^3 + 120 \text{ Mm}^3 - 28 \text{ Mm}^3 = 552 \text{ Mm}^3$

Overtop!

The volunteer got fired!

Can it be fixed?
It is July 1st.

The reservoir is at 552 Mm^3

You are given the inflow forecasts on July 1st.

Please fill in your release schedule. Remember: $15 Mm^3 \leq \text{Release} \leq 60 Mm^3$

Reservoir should be close to 500 Mm^3 on August 1st.

If the volume exceeds 500 Mm^3, you are fired.

NEXT
It is July 1st.

And our volunteer?

Let's see which release option our volunteer will choose.

Option A

- **Release**: 60

Option B

- **Release**: 25

Option C

- **Release**: 40

Current reservoir volume

- **Reservoir volume assuming inflow is median forecast**
- **Reservoir volume assuming inflow is min/max forecast**
July has gone by.

July inflow was: 22 Mm^3

You can update your reservoir volume:
The volume on August 1st is:
July 1 volume $+ 22 \text{ Mm}^3 - $ July release $= ?$

Did you overtop your reservoir?

☐ NO, I still have my job.
☐ YES, I got fired...

What about our volunteer?
July has gone by.

July inflow was: $22 \, Mm^3$

Our volunteer’s July release was: $60 \, Mm^3$

The volume on August 1st is therefore:

$$552 \, Mm^3 + 22 \, Mm^3 - 60 \, Mm^3 = 514 \, Mm^3$$

Overtop!

The volunteer did not get the job back!
GAME OVER

August 1st has arrived.

If you did not overtop the reservoir, you still have a job and you are hired for the next season!

How did you like this experience as a decision-maker?
It is April 1st.

The reservoir is at 450 Mm^3

You are given the inflow forecasts on April 1st.

Please fill in your release schedule. Remember: $15 \, Mm^3 \leq \text{Release} \leq 60 \, Mm^3$

Reservoir should be close to 500 Mm^3 on August 1st.

If the volume exceeds 500 Mm^3, you are fired.
It is April 1st.

And our volunteer?

Let’s see which release option our volunteer will choose.
April has gone by.

April inflow was: 18 Mm^3

You can update your reservoir volume:
The volume on May 1st is:
April 1 volume + 18 Mm^3 - April release = ?

Did you overtop your reservoir?

☐ NO, I still have my job.
☐ YES, I got fired...

What about our volunteer?
April has gone by.

April inflow was: 18 Mm^3

Our volunteer’s April release was: 55 Mm^3

The volume on May 1st is therefore:

$$450 \text{ Mm}^3 + 18 \text{ Mm}^3 - 55 \text{ Mm}^3 = 413 \text{ Mm}^3$$

No overtop!

The volunteer still has a job!

Let’s go to the next forecast!
It is May 1st.

The reservoir is at $413 \ Mm^3$

You are given the inflow forecasts on May 1st.

Please fill in your release schedule. Remember: $15 \ Mm^3 \leq \text{Release} \leq 60 \ Mm^3$

![Graph showing inflow forecasts]

Reservoir should be close to $500 \ Mm^3$ on August 1st.

If the volume exceeds $500 \ Mm^3$, you are fired.
It is May 1st.

And our volunteer?

Let’s see which release option our volunteer will choose.

Option A
Option B
Option C

Current reservoir volume
Reservoir volume assuming inflow is median forecast
Reservoir volume assuming inflow is min/max forecast
May has gone by.

May inflow was: \(55 \text{ Mm}^3\)

You can update your reservoir volume:

The volume on June 1st is:

May 1 volume + 55 \text{ Mm}^3 - May release = ?

Did you overtop your reservoir?

□ NO, I still have my job.
□ YES, I got fired...

What about our volunteer?
May has gone by.

May inflow was: 55 Mm^3

Our volunteer’s May release was: 26 Mm^3

The volume on June 1st is therefore:

$413 \text{ Mm}^3 + 55 \text{ Mm}^3 - 26 \text{ Mm}^3 = 442 \text{ Mm}^3$

No overtop!

The volunteer still has a job!

Let’s go to the next forecast!
It is June 1st.

The reservoir is at 442 Mm^3

You are given the inflow forecasts on June 1st.

Please fill in your release schedule. Remember: $15 \text{ Mm}^3 \leq \text{Release} \leq 60 \text{ Mm}^3$

Reservoir should be close to 500 Mm^3 on August 1st.

If the volume exceeds 500 Mm^3, you are fired.
It is June 1st.

And our volunteer?

Let’s see which release option our volunteer will choose.
June has gone by.

June inflow was: \(120 \text{ } Mm^3\)

You can update your reservoir volume:
The volume on July 1st is:
June 1 volume \(+\) \(120 \text{ } Mm^3\) - June release = ?

Did you overtop your reservoir?

☐ NO, I still have my job.
☐ YES, I got fired...

What about our volunteer?
June has gone by.

June inflow was: \(120 \ Mm^3\)

Our volunteer’s June release was: \(28 \ Mm^3\)

The volume on July 1st is therefore:
\[
442 \ Mm^3 + 120 \ Mm^3 - 28 \ Mm^3 = 534 \ Mm^3
\]

Overtop!

The volunteer got fired!

Can it be fixed?
It is July 1st.

The reservoir is at 534 Mm^3

You are given the inflow forecasts on July 1st.

Please fill in your release schedule. Remember: $15 Mm^3 \leq \text{Release} \leq 60 Mm^3$

Reservoir should be close to 500 Mm^3 on August 1st.

If the volume exceeds 500 Mm^3, you are fired.
It is July 1st.

And our volunteer?

Let’s see which release option our volunteer will choose.
July has gone by.

July inflow was: \(22 \, Mm^3\)

You can update your reservoir volume:
The volume on August 1st is:
July 1 volume + \(22 \, Mm^3\) - July release = ?

Did you overtop your reservoir?

□ NO, I still have my job.
□ YES, I got fired...

What about our volunteer?
July has gone by.

July inflow was: 22 Mm^3

Our volunteer’s July release was: 60 Mm^3

The volume on August 1st is therefore:

$534 \text{ Mm}^3 + 22 \text{ Mm}^3 - 60 \text{ Mm}^3 = 496 \text{ Mm}^3$

No overtop!

The volunteer got the job back!
GAME OVER

August 1st has arrived.

If you did not overtop the reservoir, you still have a job and you are hired for the next season!

How did you like this experience as a decision-maker?
It is April 1st.

The reservoir is at $450 \ Mm^3$.
You are given the inflow forecasts on April 1st.

Please fill in your release schedule. Remember: $15 \ Mm^3 \leq \text{Release} \leq 60 \ Mm^3$.

Reservoir should be close to $500 \ Mm^3$ on August 1st.
If the volume exceeds $500 \ Mm^3$, you are fired.
It is April 1st.

And our volunteer?

Let’s see which release option our volunteer will choose.

![Graph showing forecast inflow volume and reservoir volume for options A, B, and C.](image)
April has gone by.

April inflow was: 18 Mm^3

You can update your reservoir volume:
The volume on May 1st is:
April 1 volume + 18 Mm^3 - April release = ?

Did you overtop your reservoir?

☐ NO, I still have my job.
☐ YES, I got fired...

What about our volunteer?
April has gone by.

April inflow was: 18 Mm^3

Our volunteer’s April release was: 17 Mm^3

The volume on May 1st is therefore:

$$450 \ Mm^3 + 18 \ Mm^3 - 17 \ Mm^3 = 451 \ Mm^3$$

No overtop!

The volunteer still has a job!

Let’s go to the next forecast!
It is May 1st.

The reservoir is at $451 \: Mm^3$
You are given the inflow forecasts on May 1st.

Please fill in your release schedule. Remember: $15 \: Mm^3 \leq \text{Release} \leq 60 \: Mm^3$

Reservoir should be close to $500 \: Mm^3$ on August 1st.
If the volume exceeds $500 \: Mm^3$, you are fired.
It is May 1st.

And our volunteer?

Let’s see which release option our volunteer will choose.

Option A

Option B

Option C

Current reservoir volume

Reservoir volume assuming inflow is median forecast

Reservoir volume assuming inflow is min/max forecast
May has gone by.

May inflow was: 55 \(Mm^3 \)

You can update your reservoir volume:
The volume on June 1st is:
May 1 volume + 55 \(Mm^3 \) - May release = ?

Did you overtop your reservoir?

☐ NO, I still have my job.
☐ YES, I got fired...

What about our volunteer?
May has gone by.

May inflow was: \(55 \text{ Mm}^3\)

Our volunteer’s May release was: \(26 \text{ Mm}^3\)

The volume on June 1st is therefore:

\[
451 \text{ Mm}^3 + 55 \text{ Mm}^3 - 26 \text{ Mm}^3 = 480 \text{ Mm}^3
\]

No overtop!

The volunteer still has a job!

Let’s go to the next forecast!
It is June 1st.

The reservoir is at 480 Mm^3
You are given the inflow forecasts on June 1st.

Please fill in your release schedule. Remember: $15 \ Mm^3 \leq \text{Release} \leq 60 \ Mm^3$

Reservoir should be close to 500 Mm^3 on August 1st.
If the volume exceeds 500 Mm^3, you are fired.
It is June 1st.

And our volunteer?

Let’s see which release option our volunteer will choose.
June has gone by.

June inflow was: 120 Mm^3

You can update your reservoir volume:
The volume on July 1st is:
June 1 volume $+ 120 \text{ Mm}^3 - \text{June release} = ?$

Did you overtop your reservoir?

☐ NO, I still have my job.
☐ YES, I got fired...

What about our volunteer?
June has gone by.

June inflow was: 120 Mm^3

Our volunteer’s June release was: 28 Mm^3

The volume on July 1st is therefore:

$480 \text{ Mm}^3 + 120 \text{ Mm}^3 - 28 \text{ Mm}^3 = 572 \text{ Mm}^3$

Overtop!

The volunteer got fired!

Can it be fixed?
It is July 1st.

The reservoir is at \(572 \ Mm^3\)
You are given the inflow forecasts on July 1st.

Please fill in your release schedule. Remember: \(15 \ Mm^3 \leq \text{Release} \leq 60 \ Mm^3\)

Reservoir should be close to \(500 \ Mm^3\) on August 1st.
If the volume exceeds \(500 \ Mm^3\), you are fired.
It is July 1st.

And our volunteer?

Let’s see which release option our volunteer will choose.

Option A

Option B

Option C
July has gone by.

July inflow was: $22 \ M m^3$

You can update your reservoir volume:
The volume on August 1st is:
July 1 volume $+ 22 \ M m^3 -$ July release $= ?$

Did you overtop your reservoir?

☐ NO, I still have my job.
☐ YES, I got fired...

What about our volunteer?
July has gone by.

July inflow was: 22 Mm^3

Our volunteer’s July release was: 60 Mm^3

The volume on August 1st is therefore:

$572 \text{ Mm}^3 + 22 \text{ Mm}^3 - 60 \text{ Mm}^3 = 534 \text{ Mm}^3$

Overtop!

The volunteer did not get the job back!
GAME OVER

August 1st has arrived.
If you did not overtop the reservoir, you still have a job and you are hired for the next season!

How did you like this experience as a decision-maker?
It is April 1st.

The reservoir is at 450 Mm^3

You are given the inflow forecasts on April 1st.

Please fill in your release schedule. Remember: $15 \text{ Mm}^3 \leq \text{Release} \leq 60 \text{ Mm}^3$

Reservoir should be close to 500 Mm^3 on August 1st.

If the volume exceeds 500 Mm^3, you are fired.
It is April 1st.

And our volunteer?

Let’s see which release option our volunteer will choose.
April has gone by.

April inflow was: 18 Mm^3

You can update your reservoir volume:
The volume on May 1st is:
April 1 volume $+ 18 \text{ Mm}^3$ - April release $=$?

Did you overtop your reservoir?

- □ NO, I still have my job.
- □ YES, I got fired...

What about our volunteer?
April has gone by.

April inflow was: 18 Mm^3

Our volunteer’s April release was: 37 Mm^3

The volume on May 1st is therefore:

$450 \text{ Mm}^3 + 18 \text{ Mm}^3 - 37 \text{ Mm}^3 = 431 \text{ Mm}^3$

No overtop!

The volunteer still has a job!

Let’s go to the next forecast!
It is May 1st.

The reservoir is at 431 Mm^3
You are given the inflow forecasts on May 1st.

Please fill in your release schedule. Remember: $15 \, Mm^3 \leq \text{Release} \leq 60 \, Mm^3$

Reservoir should be close to 500 Mm^3 on August 1st.
If the volume exceeds 500 Mm^3, you are fired.
It is May 1st.

And our volunteer?

Let’s see which release option our volunteer will choose.
May has gone by.

May inflow was: 55 \(Mm^3 \)

You can update your reservoir volume:
The volume on June 1st is:
May 1 volume + 55 \(Mm^3 \) - May release = ?

Did you overtop your reservoir?

- [] NO, I still have my job.
- [] YES, I got fired...

What about our volunteer?
May has gone by.

May inflow was: 55 Mm^3

Our volunteer’s May release was: 59 Mm^3

The volume on June 1st is therefore:

$$431 \text{ } Mm^3 + 55 \text{ } Mm^3 - 59 \text{ } Mm^3 = 427 \text{ } Mm^3$$

No overtop!

The volunteer still has a job!

Let’s go to the next forecast!
It is June 1st.

The reservoir is at 427 Mm^3
You are given the inflow forecasts on June 1st.

Please fill in your release schedule. Remember: $15 \text{ Mm}^3 \leq \text{Release} \leq 60 \text{ Mm}^3$

Reservoir should be close to 500 Mm^3 on August 1st.
If the volume exceeds 500 Mm^3, you are fired.
It is June 1st.

And our volunteer?

Let’s see which release option our volunteer will choose.
June has gone by.

June inflow was: \(120 \text{ } Mm^3\)

You can update your reservoir volume:

The volume on July 1st is:

June 1 volume + \(120 \text{ } Mm^3\) - June release = ?

Did you overtop your reservoir?

- NO, I still have my job.
- YES, I got fired...

What about our volunteer?
June has gone by.

June inflow was: $120 \, Mm^3$

Our volunteer’s June release was: $60 \, Mm^3$

The volume on July 1st is therefore:

$427 \, Mm^3 \, + \, 120 \, Mm^3 \, - \, 60 \, Mm^3 = 487 \, Mm^3$

No overtop!

The volunteer still has a job!

Let’s go to the next forecast!
It is July 1st.

The reservoir is at 487 Mm^3.

You are given the inflow forecasts on July 1st.

Please fill in your release schedule. Remember: $15 \text{ Mm}^3 \leq \text{Release} \leq 60 \text{ Mm}^3$

Reservoir should be close to 500 Mm^3 on August 1st.

If the volume exceeds 500 Mm^3, you are fired.
It is July 1st.

And our volunteer?

Let’s see which release option our volunteer will choose.

Previous decisions: A A B
July has gone by.

July inflow was: $22\ Mm^3$

You can update your reservoir volume:
The volume on August 1st is:
July 1 volume + $22\ Mm^3$ - July release = ?

Did you overtop your reservoir?

☐ NO, I still have my job.
☐ YES, I got fired...

What about our volunteer?
July has gone by.

July inflow was: $22 \ Mm^3$

Our volunteer’s July release was: $60 \ Mm^3$

The volume on August 1st is therefore:

$487 \ Mm^3 + 22 \ Mm^3 - 60 \ Mm^3 = 449 \ Mm^3$

No overtop!

The volunteer still has a job!

NEXT
GAME OVER

August 1st has arrived.
If you did not overtop the reservoir, you still have a job and you are hired for the next season!

How did you like this experience as a decision-maker?
It is April 1st.

The reservoir is at \(450 \, Mm^3\)

You are given the inflow forecasts on April 1st.

Please fill in your release schedule. Remember: \(15 \, Mm^3 \leq \text{Release} \leq 60 \, Mm^3\)

Reservoir should be close to \(500 \, Mm^3\) on August 1st.

If the volume exceeds \(500 \, Mm^3\), you are fired.
It is April 1st.

And our volunteer?

Let’s see which release option our volunteer will choose.
April has gone by.

April inflow was: $18 \ Mm^3$

You can update your reservoir volume:
The volume on May 1st is:
April 1 volume $+ 18 \ Mm^3$ - April release $= ?$

Did you overtop your reservoir?

☐ NO, I still have my job.
☐ YES, I got fired...

What about our volunteer?
April has gone by.

April inflow was: \(18 \text{ Mm}^3\)

Our volunteer’s April release was: \(55 \text{ Mm}^3\)

The volume on May 1st is therefore:
\[
450 \text{ Mm}^3 + 18 \text{ Mm}^3 - 55 \text{ Mm}^3 = 413 \text{ Mm}^3
\]

No overtop!

The volunteer still has a job!

Let’s go to the next forecast!
It is May 1st.

The reservoir is at 413 \(Mm^3 \)
You are given the inflow forecasts on May 1st.

Please fill in your release schedule. Remember: \(15 \ Mm^3 \leq \text{Release} \leq 60 \ Mm^3 \)

Reservoir should be close to 500 \(Mm^3 \) on August 1st.
If the volume exceeds 500 \(Mm^3 \), you are fired.
It is May 1st.

And our volunteer?

Let’s see which release option our volunteer will choose.

<table>
<thead>
<tr>
<th></th>
<th>Option A</th>
<th></th>
<th>Option B</th>
<th></th>
<th>Option C</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>59</td>
<td>60</td>
<td>45</td>
<td>46</td>
<td>26</td>
</tr>
<tr>
<td></td>
<td>60</td>
<td>56</td>
<td>46</td>
<td>39</td>
<td>24</td>
</tr>
<tr>
<td></td>
<td>56</td>
<td></td>
<td>39</td>
<td></td>
<td>25</td>
</tr>
</tbody>
</table>

Current reservoir volume

Reservoir volume assuming inflow is median forecast

Reservoir volume assuming inflow is min/max forecast
May has gone by.

May inflow was: 55 Mm^3

You can update your reservoir volume:
The volume on June 1st is:
May 1 volume + 55 Mm^3 - May release = ?

Did you overtop your reservoir?

□ NO, I still have my job.
□ YES, I got fired...

What about our volunteer?
May has gone by.

May inflow was: 55 Mm^3

Our volunteer’s May release was: 59 Mm^3

The volume on June 1st is therefore:

$413 \ Mm^3 + 55 \ Mm^3 - 59 \ Mm^3 = 409 \ Mm^3$

No overtop!

The volunteer still has a job!

Let’s go to the next forecast!
It is June 1st.

The reservoir is at 409 Mm^3
You are given the inflow forecasts on June 1st.

Please fill in your release schedule. Remember: $15 Mm^3 \leq \text{Release} \leq 60 Mm^3$

Reservoir should be close to 500 Mm^3 on August 1st.
If the volume exceeds 500 Mm^3, you are fired.
It is June 1st.

And our volunteer?

Let's see which release option our volunteer will choose.
June has gone by.

June inflow was: 120 Mm^3

You can update your reservoir volume:
The volume on July 1st is:
June 1 volume $+ 120 \ Mm^3$ - June release $= ?$

Did you overtop your reservoir?

☐ NO, I still have my job.
☐ YES, I got fired...

What about our volunteer?
June has gone by.

June inflow was: 120 Mm^3

Our volunteer’s June release was: 60 Mm^3

The volume on July 1st is therefore:

$$409 \ Mm^3 + 120 \ Mm^3 - 60 \ Mm^3 = 469 \ Mm^3$$

No overtop!

The volunteer still has a job!

Let’s go to the next forecast!
It is July 1st.

The reservoir is at 469 Mm^3

You are given the inflow forecasts on July 1st.

Please fill in your release schedule. Remember: $15 Mm^3 \leq \text{Release} \leq 60 Mm^3$

Reservoir should be close to 500 Mm^3 on August 1st.

If the volume exceeds 500 Mm^3, you are fired.
It is July 1st.

And our volunteer?

Let’s see which release option our volunteer will choose.
July has gone by.

July inflow was: $22 \, Mm^3$

You can update your reservoir volume:
The volume on August 1st is:
July 1 volume + $22 \, Mm^3$ - July release = ?

Did you overtop your reservoir?

☐ NO, I still have my job.
☐ YES, I got fired...

What about our volunteer?
July has gone by.

July inflow was: \(22 \, Mm^3\)

Our volunteer’s July release was: \(60 \, Mm^3\)

The volume on August 1st is therefore:

\[
469 \, Mm^3 + 22 \, Mm^3 - 60 \, Mm^3 = 431 \, Mm^3
\]

No overtop!

The volunteer still has a job!

NEXT
GAME OVER

August 1st has arrived.
If you did not overtop the reservoir, you still have a job and you are hired for the next season!

How did you like this experience as a decision-maker?
It is April 1st.

The reservoir is at 450 Mm^3
You are given the inflow forecasts on April 1st.

Please fill in your release schedule. Remember: $15 Mm^3 \leq \text{Release} \leq 60 Mm^3$

Reservoir should be close to 500 Mm^3 on August 1st.
If the volume exceeds 500 Mm^3, you are fired.
It is April 1st.

And our volunteer?

Let’s see which release option our volunteer will choose.
April has gone by.

April inflow was: \(18 \, Mm^3\)

You can update your reservoir volume:

The volume on May 1st is:

April 1 volume + \(18 \, Mm^3\) - April release = ?

Did you overtop your reservoir?

☐ NO, I still have my job.
☐ YES, I got fired...

What about our volunteer?
April has gone by.

April inflow was: 18 Mm^3

Our volunteer’s April release was: 17 Mm^3
The volume on May 1st is therefore:

$450 \, Mm^3 +18 \, Mm^3 -17 \, Mm^3 = 451 \, Mm^3$

No overtop!

The volunteer still has a job!

Let’s go to the next forecast!
It is May 1st.

The reservoir is at 451 Mm^3
You are given the inflow forecasts on May 1st.

Please fill in your release schedule. Remember: $15 \text{ Mm}^3 \leq \text{Release} \leq 60 \text{ Mm}^3$

Reservoir should be close to 500 Mm^3 on August 1st.
If the volume exceeds 500 Mm^3, you are fired.
It is May 1st.

And our volunteer?

Let’s see which release option our volunteer will choose.
May has gone by.

May inflow was: 55 Mm^3

You can update your reservoir volume:
The volume on June 1st is:
May 1 volume + 55 Mm^3 - May release = ?

Did you overtop your reservoir?

☐ NO, I still have my job.
☐ YES, I got fired...

What about our volunteer?
May has gone by.

May inflow was: \(55 \, Mm^3\)

Our volunteer’s May release was: \(59 \, Mm^3\)

The volume on June 1st is therefore:

\[
451 \, Mm^3 + 55 \, Mm^3 - 59 \, Mm^3 = 447 \, Mm^3
\]

No overtop!

The volunteer still has a job!

Let’s go to the next forecast!
It is June 1st.

The reservoir is at $447\ Mm^3$
You are given the inflow forecasts on June 1st.

Please fill in your release schedule. Remember: $15\ Mm^3 \leq \text{Release} \leq 60\ Mm^3$

Reservoir should be close to $500\ Mm^3$ on August 1st.
If the volume exceeds $500\ Mm^3$, you are fired.

NEXT
It is June 1st.

And our volunteer?

Let’s see which release option our volunteer will choose.
June has gone by.

June inflow was: $120 \, Mm^3$

You can update your reservoir volume:
The volume on July 1st is:
June 1 volume $+ \, 120 \, Mm^3 - \text{June release} = ?$

Did you overtop your reservoir?

☐ NO, I still have my job.
☐ YES, I got fired...

What about our volunteer?
June has gone by.

June inflow was: 120 Mm^3

Our volunteer’s June release was: 60 Mm^3

The volume on July 1st is therefore:

$$447 \ Mm^3 + 120 \ Mm^3 - 60 \ Mm^3 = 507 \ Mm^3$$

Overtop!

The volunteer got fired!

Can it be fixed?
It is July 1st.

The reservoir is at \(507 \ \text{Mm}^3\)

You are given the inflow forecasts on July 1st.

Please fill in your release schedule. Remember: \(15 \ \text{Mm}^3 \leq \text{Release} \leq 60 \ \text{Mm}^3\)

Reservoir should be close to \(500 \ \text{Mm}^3\) on August 1st.

If the volume exceeds \(500 \ \text{Mm}^3\), you are fired.
It is July 1st.

And our volunteer?

Let’s see which release option our volunteer will choose.
July has gone by.

July inflow was: 22 Mm^3

You can update your reservoir volume:

The volume on August 1st is:

July 1 volume + 22 Mm^3 - July release = ?

Did you overtop your reservoir?

☐ NO, I still have my job.
☐ YES, I got fired...

What about our volunteer?
July has gone by.

July inflow was: $22 \, Mm^3$

Our volunteer’s July release was: $60 \, Mm^3$

The volume on August 1st is therefore:

$$507 \, Mm^3 + 22 \, Mm^3 - 60 \, Mm^3 = 469 \, Mm^3$$

No overtop!

The volunteer got the job back!

NEXT
GAME OVER

August 1st has arrived.
If you did not overtop the reservoir, you still have a job and you are hired for the next season!

How did you like this experience as a decision-maker?
It is April 1st.

The reservoir is at \textit{450 \, Mm}^3

You are given the inflow forecasts on April 1st.

Please fill in your release schedule. Remember: \(15 \, Mm^3 \leq \text{Release} \leq 60 \, Mm^3\)

Reservoir should be close to \textit{500 \, Mm}^3 on August 1st.

If the volume exceeds \textit{500 \, Mm}^3, you are fired.
It is April 1st.

And our volunteer?

Let’s see which release option our volunteer will choose.
April has gone by.

April inflow was: 18 Mm^3

You can update your reservoir volume:

The volume on May 1st is:

April 1 volume $+ 18 \ Mm^3$ - April release $=$?

Did you overtop your reservoir?

☐ NO, I still have my job.
☐ YES, I got fired...

What about our volunteer?
April has gone by.

April inflow was: $18 \, Mm^3$

Our volunteer’s April release was: $37 \, Mm^3$

The volume on May 1st is therefore:

$450 \, Mm^3 + 18 \, Mm^3 - 37 \, Mm^3 = 431 \, Mm^3$

No overtop!

The volunteer still has a job!

Let’s go to the next forecast!
It is May 1st.

The reservoir is at 431 Mm^3
You are given the inflow forecasts on May 1st.

Please fill in your release schedule. Remember: $15 \text{ Mm}^3 \leq \text{Release} \leq 60 \text{ Mm}^3$

Reservoir should be close to 500 Mm^3 on August 1st.
If the volume exceeds 500 Mm^3, you are fired.
It is May 1st.

And our volunteer?

Let's see which release option our volunteer will choose.
May has gone by.

May inflow was: 55 Mm^3

You can update your reservoir volume:
The volume on June 1st is:
May 1 volume + 55 Mm^3 - May release = ?

Did you overtop your reservoir?

☐ NO, I still have my job.
☐ YES, I got fired...

What about our volunteer?
May has gone by.

May inflow was: 55 \(Mm^3 \)

Our volunteer’s May release was: 45 \(Mm^3 \)

The volume on June 1st is therefore:

\[
431 \ Mm^3 + 55 \ Mm^3 - 45 \ Mm^3 = 441 \ Mm^3
\]

No overtop!

The volunteer still has a job!

Let’s go to the next forecast!
It is June 1st.

The reservoir is at 441 $M m^3$
You are given the inflow forecasts on June 1st.

Please fill in your release schedule. Remember: $15 M m^3 \leq \text{Release} \leq 60 M m^3$

Reservoir should be close to 500 $M m^3$ on August 1st.
If the volume exceeds 500 $M m^3$, you are fired.
It is June 1st.

And our volunteer?

Let’s see which release option our volunteer will choose.
June has gone by.

June inflow was: 120 Mm^3

You can update your reservoir volume:
The volume on July 1st is:
June 1 volume + 120 Mm^3 - June release = ?

Did you overtop your reservoir?

☐ NO, I still have my job.
☐ YES, I got fired...

What about our volunteer?
June has gone by.

June inflow was: 120 Mm^3

Our volunteer’s June release was: 60 Mm^3

The volume on July 1st is therefore:

$$441\ Mm^3 + 120\ Mm^3 - 60\ Mm^3 = 501\ Mm^3$$

Overtop!

The volunteer got fired!

Can it be fixed?
It is July 1st.

The reservoir is at $501 \text{ } Mm^3$
You are given the inflow forecasts on July 1st.

Please fill in your release schedule. Remember: $15 \text{ } Mm^3 \leq \text{Release} \leq 60 \text{ } Mm^3$

Reservoir should be close to $500 \text{ } Mm^3$ on August 1st.
If the volume exceeds $500 \text{ } Mm^3$, you are fired.
It is July 1st.

And our volunteer?

Let’s see which release option our volunteer will choose.
July has gone by.

July inflow was: $22 \ Mm^3$

You can update your reservoir volume:
The volume on August 1st is:
July 1 volume $+ 22 \ Mm^3 - \text{July release} = ?$

Did you overtop your reservoir?

☐ NO, I still have my job.
☐ YES, I got fired...

What about our volunteer?
July has gone by.

July inflow was: 22 Mm^3

Our volunteer’s July release was: 60 Mm^3

The volume on August 1st is therefore:

\[501 \ Mm^3 + 22 \ Mm^3 - 60 \ Mm^3 = 463 \ Mm^3\]

No overtop!

The volunteer got the job back!

Next
GAME OVER

August 1st has arrived.
If you did not overtop the reservoir, you still have a job and you are hired for the next season!

How did you like this experience as a decision-maker?
It is April 1st.

The reservoir is at 450 Mm^3

You are given the inflow forecasts on April 1st.

Please fill in your release schedule. Remember: $15 Mm^3 \leq \text{Release} \leq 60 Mm^3$

Reservoir should be close to 500 Mm^3 on August 1st.

If the volume exceeds 500 Mm^3, you are fired.
It is April 1st.

And our volunteer?

Let’s see which release option our volunteer will choose.
April has gone by.

April inflow was: 18 Mm^3

You can update your reservoir volume:
The volume on May 1st is:
April 1 volume + 18 Mm^3 - April release = ?

Did you overtop your reservoir?

☐ NO, I still have my job.
☐ YES, I got fired...

What about our volunteer?
April has gone by.

April inflow was: $18 \ Mm^3$

Our volunteer’s April release was: $55 \ Mm^3$

The volume on May 1st is therefore:

$450 \ Mm^3 + 18 \ Mm^3 - 55 \ Mm^3 = 413 \ Mm^3$

No overtop!

The volunteer still has a job!

Let’s go to the next forecast!
It is May 1st.

The reservoir is at $413 \text{ } Mm^3$

You are given the inflow forecasts on May 1st.

Please fill in your release schedule. Remember: $15 \text{ } Mm^3 \leq \text{Release} \leq 60 \text{ } Mm^3$

Reservoir should be close to 500 Mm^3 on August 1st.

If the volume exceeds 500 Mm^3, you are fired.
It is May 1st.

And our volunteer?

Let’s see which release option our volunteer will choose.
May has gone by.

May inflow was: 55 Mm^3

You can update your reservoir volume:
The volume on June 1st is:
May 1 volume + 55 Mm^3 - May release = ?

Did you overtop your reservoir?

□ NO, I still have my job.
□ YES, I got fired...

What about our volunteer?
May has gone by.

May inflow was: 55 Mm^3

Our volunteer’s May release was: 45 Mm^3

The volume on June 1st is therefore:

$413 \ Mm^3 + 55 \ Mm^3 - 45 \ Mm^3 = 423 \ Mm^3$

No overtop!

The volunteer still has a job!

Let’s go to the next forecast!
It is June 1st.

The reservoir is at 423 Mm^3

You are given the inflow forecasts on June 1st.

Please fill in your release schedule. Remember: $15 \text{ Mm}^3 \leq \text{Release} \leq 60 \text{ Mm}^3$

Reservoir should be close to 500 Mm^3 on August 1st.

If the volume exceeds 500 Mm^3, you are fired.
Previous decisions: B B

It is June 1st.

And our volunteer?

Let’s see which release option our volunteer will choose.
June has gone by.

June inflow was: 120 Mm^3

You can update your reservoir volume:
The volume on July 1st is:
June 1 volume $+ 120 \ Mm^3 - \text{June release} = ?$

Did you overtop your reservoir?

☐ NO, I still have my job.
☐ YES, I got fired...

What about our volunteer?
June has gone by.

June inflow was: 120 Mm^3

Our volunteer’s June release was: 60 Mm^3

The volume on July 1st is therefore:

$423 Mm^3 + 120 Mm^3 - 60 Mm^3 = 483 Mm^3$

No overtop!

The volunteer still has a job!

Let’s go to the next forecast!
It is July 1st.

The reservoir is at 483 Mm^3

You are given the inflow forecasts on July 1st.

Please fill in your release schedule. Remember: $15 \text{ Mm}^3 \leq \text{Release} \leq 60 \text{ Mm}^3$

Reservoir should be close to 500 Mm^3 on August 1st.

If the volume exceeds 500 Mm^3, you are fired.

NEXT
It is July 1st.

And our volunteer?

Let’s see which release option our volunteer will choose.
July has gone by.

July inflow was: $22 \text{ } Mm^3$

You can update your reservoir volume:

The volume on August 1st is:

July 1 volume $+ 22 \text{ } Mm^3 - $ July release $= ?$

Did you overtop your reservoir?

□ NO, I still have my job.
□ YES, I got fired...

What about our volunteer?
July has gone by.

July inflow was: \(22 \ Mm^3 \)

Our volunteer’s July release was: \(60 \ Mm^3 \)

The volume on August 1st is therefore:

\[483 \ Mm^3 + 22 \ Mm^3 - 60 \ Mm^3 = 445 \ Mm^3 \]

No overtop!

The volunteer still has a job!

NEXT
GAME OVER

August 1st has arrived.
If you did not overtop the reservoir, you still have a job and you are hired for the next season!

How did you like this experience as a decision-maker?
It is April 1st.

The reservoir is at 450 Mm^3

You are given the inflow forecasts on April 1st.

Please fill in your release schedule. Remember: $15 \text{ Mm}^3 \leq \text{Release} \leq 60 \text{ Mm}^3$

Reservoir should be close to 500 Mm^3 on August 1st.

If the volume exceeds 500 Mm^3, you are fired.
It is April 1st.

And our volunteer?

Let’s see which release option our volunteer will choose.
April has gone by.

April inflow was: \(18 \, Mm^3\)

You can update your reservoir volume:
The volume on May 1st is:
April 1 volume + \(18 \, Mm^3\) - April release = ?

Did you overtop your reservoir?

☐ NO, I still have my job.
☐ YES, I got fired...

What about our volunteer?
April has gone by.

April inflow was: \(18 \text{ Mm}^3\)

Our volunteer’s April release was: \(17 \text{ Mm}^3\)

The volume on May 1st is therefore:
\[
450 \text{ Mm}^3 + 18 \text{ Mm}^3 - 17 \text{ Mm}^3 = 451 \text{ Mm}^3
\]

No overtop!

The volunteer still has a job!

Let’s go to the next forecast!
It is May 1st.

The reservoir is at $451 \text{ } Mm^3$
You are given the inflow forecasts on May 1st.

Please fill in your release schedule. Remember: $15 \text{ } Mm^3 \leq \text{ Release} \leq 60 \text{ } Mm^3$

Reservoir should be close to $500 \text{ } Mm^3$ on August 1st.
If the volume exceeds $500 \text{ } Mm^3$, you are fired.
It is May 1st.

And our volunteer?

Let’s see which release option our volunteer will choose.
May has gone by.

May inflow was: $55 \ M m^3$

You can update your reservoir volume:
The volume on June 1st is:
May 1 volume $+ 55 \ M m^3 - \text{May release} = ?$

Did you overtop your reservoir?

☐ NO, I still have my job.
☐ YES, I got fired...

What about our volunteer?
May has gone by.

May inflow was: 55 Mm^3

Our volunteer’s May release was: 45 Mm^3

The volume on June 1st is therefore:

$$451 \ Mm^3 + 55 \ Mm^3 - 45 \ Mm^3 = 461 \ Mm^3$$

No overtop!

The volunteer still has a job!

Let’s go to the next forecast!
It is June 1st.

The reservoir is at $461 \text{ } m^3$
You are given the inflow forecasts on June 1st.

Please fill in your release schedule. Remember: $15 \text{ } m^3 \leq \text{Release} \leq 60 \text{ } m^3$

Reservoir should be close to $500 \text{ } m^3$ on August 1st.
If the volume exceeds $500 \text{ } m^3$, you are fired.
It is June 1st.

And our volunteer?

Let's see which release option our volunteer will choose.
June has gone by.

June inflow was: $120 \ Mm^3$

You can update your reservoir volume:
The volume on July 1st is:
June 1 volume $+ 120 \ Mm^3$ - June release $= ?$

Did you overtop your reservoir?

☐ NO, I still have my job.
☐ YES, I got fired...

What about our volunteer?
June has gone by.

June inflow was: \(120 \ Mm^3\)

Our volunteer’s June release was: \(60 \ Mm^3\)

The volume on July 1st is therefore:
\[
461 \ Mm^3 + 120 \ Mm^3 - 60 \ Mm^3 = 521 \ Mm^3
\]

Overtop!

The volunteer got fired!

Can it be fixed?
It is July 1st.

The reservoir is at 521 Mm^3
You are given the inflow forecasts on July 1st.

Please fill in your release schedule. Remember: $15 \text{ Mm}^3 \leq \text{Release} \leq 60 \text{ Mm}^3$

Reservoir should be close to 500 Mm^3 on August 1st.
If the volume exceeds 500 Mm^3, you are fired.
It is July 1st.

And our volunteer?

Let’s see which release option our volunteer will choose.
July has gone by.

July inflow was: $22 \; Mm^3$

You can update your reservoir volume:
The volume on August 1st is:
July 1 volume $+ \; 22 \; Mm^3 \; - \; July \; release = ?$

Did you overtop your reservoir?

☐ NO, I still have my job.
☐ YES, I got fired...

What about our volunteer?
July has gone by.

July inflow was: $22 \ M m^3$

Our volunteer’s July release was: $60 \ M m^3$

The volume on August 1st is therefore:

$521 \ M m^3 + 22 \ M m^3 - 60 \ M m^3 = 483 \ M m^3$

No overtop!

The volunteer got the job back!

NEXT
GAME OVER

August 1st has arrived.

If you did not overtop the reservoir, you still have a job and you are hired for the next season!

How did you like this experience as a decision-maker?
It is April 1st.

The reservoir is at \(450 \, Mm^3\)

You are given the inflow forecasts on April 1st.

Please fill in your release schedule. Remember: \(15 \, Mm^3 \leq \text{Release} \leq 60 \, Mm^3\)

Reservoir should be close to \(500 \, Mm^3\) on August 1st.

If the volume exceeds \(500 \, Mm^3\), you are fired.
It is April 1st.

And our volunteer?

Let’s see which release option our volunteer will choose.
April has gone by.

April inflow was: $18 \, Mm^3$

You can update your reservoir volume:
The volume on May 1st is:
April 1 volume $+ 18 \, Mm^3 - \text{April release} = ?$

Did you overtop your reservoir?

☐ NO, I still have my job.
☐ YES, I got fired...

What about our volunteer?
April has gone by.

April inflow was: $18 \, Mm^3$

Our volunteer’s April release was: $37 \, Mm^3$

The volume on May 1st is therefore:

$450 \, Mm^3 + 18 \, Mm^3 - 37 \, Mm^3 = 431 \, Mm^3$

No overtop!

The volunteer still has a job!

Let’s go to the next forecast!
Previous decisions:

It is May 1st.

The reservoir is at \(431 \text{ Mm}^3\)

You are given the inflow forecasts on May 1st.

Please fill in your release schedule. Remember: \(15 \text{ Mm}^3 \leq \text{Release} \leq 60 \text{ Mm}^3\)

Reservoir should be close to \(500 \text{ Mm}^3\) on August 1st.

If the volume exceeds \(500 \text{ Mm}^3\), you are fired.
It is May 1st.

And our volunteer?

Let’s see which release option our volunteer will choose.

Option A

Option B

Option C

Current reservoir volume

Reservoir volume assuming inflow is median forecast

Reservoir volume assuming inflow is min/max forecast
May has gone by.

May inflow was: $55 \ Mm^3$

You can update your reservoir volume:
The volume on June 1st is:
May 1 volume $+ 55 \ Mm^3 - $ May release $= ?$

Did you overtop your reservoir?

☐ NO, I still have my job.
☐ YES, I got fired...

What about our volunteer?
May has gone by.

May inflow was: $55 \text{ } Mm^3$

Our volunteer’s May release was: $26 \text{ } Mm^3$

The volume on June 1st is therefore:

$$431 \text{ } Mm^3 + 55 \text{ } Mm^3 - 26 \text{ } Mm^3 = 460 \text{ } Mm^3$$

No overtop!

The volunteer still has a job!

Let’s go to the next forecast!
It is June 1st.

The reservoir is at 460 \(\text{Mm}^3 \)

You are given the inflow forecasts on June 1st.

Please fill in your release schedule. Remember: \(15 \text{ Mm}^3 \leq \text{Release} \leq 60 \text{ Mm}^3 \)

Reservoir should be close to 500 \(\text{Mm}^3 \) on August 1st.

If the volume exceeds 500 \(\text{Mm}^3 \), you are fired.
Previous decisions: A C

It is June 1st.

And our volunteer?

Let’s see which release option our volunteer will choose.

Option A
Option B
Option C
June has gone by.

June inflow was: $120 \ Mm^3$

You can update your reservoir volume:

The volume on July 1st is:

June 1 volume $+ \ 120 \ Mm^3 - \text{June release} = ?$

Did you overtop your reservoir?

☐ NO, I still have my job.
☐ YES, I got fired...

What about our volunteer?
June has gone by.

June inflow was: $120 \ Mm^3$

Our volunteer’s June release was: $60 \ Mm^3$

The volume on July 1st is therefore:

$$460 \ Mm^3 + 120 \ Mm^3 - 60 \ Mm^3 = 520 \ Mm^3$$

Overtop!

The volunteer got fired!

Can it be fixed?
It is July 1st.

The reservoir is at $520 \ M m^3$
You are given the inflow forecasts on July 1st.

Please fill in your release schedule. Remember: $15 \ M m^3 \leq \text{Release} \leq 60 \ M m^3$

Reservoir should be close to $500 \ M m^3$ on August 1st.
If the volume exceeds $500 \ M m^3$, you are fired.
It is July 1st.

And our volunteer?

Let’s see which release option our volunteer will choose.
July has gone by.

July inflow was: 22 Mm^3

You can update your reservoir volume:

The volume on August 1st is:

July volume + 22 Mm^3 - July release = ?

Did you overtop your reservoir?

☐ NO, I still have my job.
☐ YES, I got fired...

What about our volunteer?
July has gone by.

July inflow was: $22 \ Mm^3$

Our volunteer’s July release was: $60 \ Mm^3$

The volume on August 1st is therefore:

$$520 \ Mm^3 + 22 \ Mm^3 - 60 \ Mm^3 = 482 \ Mm^3$$

No overtop!

The volunteer got the job back!

NEXT
GAME OVER

August 1st has arrived.

If you did not overtop the reservoir, you still have a job and you are hired for the next season!

Observed inflows

Forecast on April 1

Our volunteer’s results

How did you like this experience as a decision-maker?
It is April 1st.

The reservoir is at 450 Mm^3

You are given the inflow forecasts on April 1st.

Please fill in your release schedule. Remember: $15 \text{ Mm}^3 \leq \text{Release} \leq 60 \text{ Mm}^3$

Reservoir should be close to 500 Mm^3 on August 1st.

If the volume exceeds 500 Mm^3, you are fired.
It is April 1st.

And our volunteer?

Let’s see which release option our volunteer will choose.
April has gone by.

April inflow was: $18 \ M m^3$

You can update your reservoir volume:
The volume on May 1st is:
April 1 volume + $18 \ M m^3$ - April release = ?

Did you overtop your reservoir?

☐ NO, I still have my job.
☐ YES, I got fired...

What about our volunteer?
April has gone by.

April inflow was: 18 Mm^3

Our volunteer’s April release was: 55 Mm^3

The volume on May 1st is therefore:

$450 \text{ Mm}^3 + 18 \text{ Mm}^3 - 55 \text{ Mm}^3 = 413 \text{ Mm}^3$

No overtop!

The volunteer still has a job!

Let’s go to the next forecast!
It is May 1st.

The reservoir is at $413 \, Mm^3$

You are given the inflow forecasts on May 1st.

Please fill in your release schedule. Remember: $15 \, Mm^3 \leq \text{Release} \leq 60 \, Mm^3$

Reservoir should be close to $500 \, Mm^3$ on August 1st.

If the volume exceeds $500 \, Mm^3$, you are fired.
It is May 1st.

And our volunteer?

Let’s see which release option our volunteer will choose.
May has gone by.

May inflow was: $55 \ Mm^3$

You can update your reservoir volume:
The volume on June 1st is:
May 1 volume + $55 \ Mm^3$ - May release = ?

Did you overtop your reservoir?

☐ NO, I still have my job.
☐ YES, I got fired...

What about our volunteer?
May has gone by.

May inflow was: \(55 \, Mm^3\)

Our volunteer’s May release was: \(26 \, Mm^3\)

The volume on June 1st is therefore:

\[
413 \, Mm^3 + 55 \, Mm^3 - 26 \, Mm^3 = 442 \, Mm^3
\]

No overtop!

The volunteer still has a job!

Let’s go to the next forecast!
It is June 1st.

The reservoir is at $442 \, Mm^3$

You are given the inflow forecasts on June 1st.

Please fill in your release schedule. Remember: $15 \, Mm^3 \leq \text{Release} \leq 60 \, Mm^3$

Reservoir should be close to $500 \, Mm^3$ on August 1st.

If the volume exceeds $500 \, Mm^3$, you are fired.
It is June 1st.

And our volunteer?

Let’s see which release option our volunteer will choose.
June has gone by.

June inflow was: $120 \ Mm^3$

You can update your reservoir volume:
The volume on July 1st is:
June 1 volume $+ 120 \ Mm^3$ - June release $=$?

Did you overtop your reservoir?

☐ NO, I still have my job.
☐ YES, I got fired...

What about our volunteer?
June has gone by.

June inflow was: $120 \; Mm^3$

Our volunteer’s June release was: $60 \; Mm^3$

The volume on July 1st is therefore:

$$442 \; Mm^3 + 120 \; Mm^3 - 60 \; Mm^3 = 502 \; Mm^3$$

Overtop!

The volunteer got fired!

Can it be fixed?
It is July 1st.

The reservoir is at $502 \, Mm^3$

You are given the inflow forecasts on July 1st.

Please fill in your release schedule. Remember: $15 \, Mm^3 \leq \text{Release} \leq 60 \, Mm^3$

Reservoir should be close to $500 \, Mm^3$ on August 1st.

If the volume exceeds $500 \, Mm^3$, you are fired.
It is July 1st.

And our volunteer?

Let’s see which release option our volunteer will choose.
July has gone by.

July inflow was: \(22 \, Mm^3\)

You can update your reservoir volume:
The volume on August 1st is:
July 1 volume + \(22 \, Mm^3\) - July release = ?

Did you overtop your reservoir?

☐ NO, I still have my job.
☐ YES, I got fired...

What about our volunteer?
July has gone by.

July inflow was: 22 Mm^3

Our volunteer’s July release was: 60 Mm^3

The volume on August 1st is therefore:

$502 \text{ Mm}^3 + 22 \text{ Mm}^3 - 60 \text{ Mm}^3 = 464 \text{ Mm}^3$

No overtop!

The volunteer got the job back!
GAME OVER

August 1st has arrived.
If you did not overtop the reservoir, you still have a job and you are hired for the next season!

How did you like this experience as a decision-maker?
It is April 1st.

The reservoir is at \(450 \, Mm^3\)

You are given the inflow forecasts on April 1st.

Please fill in your release schedule. Remember: \(15 \, Mm^3 \leq \text{Release} \leq 60 \, Mm^3\)

Reservoir should be close to \(500 \, Mm^3\) on August 1st.

If the volume exceeds \(500 \, Mm^3\), you are fired.
It is April 1st.

And our volunteer?

Let’s see which release option our volunteer will choose.
April has gone by.

April inflow was: 18 Mm^3

You can update your reservoir volume:
The volume on May 1st is:
April 1 volume + 18 Mm^3 - April release = ?

Did you overtop your reservoir?

☐ NO, I still have my job.
☐ YES, I got fired...

What about our volunteer?
April has gone by.

April inflow was: \(18 \, Mm^3\)

Our volunteer’s April release was: \(17 \, Mm^3\)

The volume on May 1st is therefore:

\[450 \, Mm^3 + 18 \, Mm^3 - 17 \, Mm^3 = 451 \, Mm^3\]

No overtop!

The volunteer still has a job!

Let’s go to the next forecast!
It is May 1st.

The reservoir is at $451 \, Mm^3$

You are given the inflow forecasts on May 1st.

Please fill in your release schedule. Remember: $15 \, Mm^3 \leq \text{Release} \leq 60 \, Mm^3$

Reservoir should be close to $500 \, Mm^3$ on August 1st.

If the volume exceeds $500 \, Mm^3$, you are fired.
It is May 1st.

And our volunteer?

Let’s see which release option our volunteer will choose.

Option A

Option B

Option C

Current reservoir volume

Reservoir volume assuming inflow is median forecast

Reservoir volume assuming inflow is min/max forecast
May has gone by.

May inflow was: 55 Mm^3

You can update your reservoir volume:
The volume on June 1st is:
May 1 volume + 55 Mm^3 - May release = ?

Did you overtop your reservoir?

☐ NO, I still have my job.
☐ YES, I got fired...

What about our volunteer?
May has gone by.

May inflow was: $55 \ Mm^3$

Our volunteer’s May release was: $26 \ Mm^3$

The volume on June 1st is therefore:

$$451 \ Mm^3 + 55 \ Mm^3 - 26 \ Mm^3 = 480 \ Mm^3$$

No overtop!

The volunteer still has a job!

Let’s go to the next forecast!
It is June 1st.

The reservoir is at 480 Mm^3
You are given the inflow forecasts on June 1st.

Please fill in your release schedule. Remember: $15 \text{ Mm}^3 \leq \text{Release} \leq 60 \text{ Mm}^3$

Reservoir should be close to 500 Mm^3 on August 1st.
If the volume exceeds 500 Mm^3, you are fired.
It is June 1st.

And our volunteer?

Let’s see which release option our volunteer will choose.
June has gone by.

June inflow was: 120 Mm^3

You can update your reservoir volume:
The volume on July 1st is:
June 1 volume + 120 Mm^3 - June release = ?

Did you overtop your reservoir?

☐ NO, I still have my job.
☐ YES, I got fired...

What about our volunteer?
June has gone by.

June inflow was: $120 \, Mm^3$

Our volunteer’s June release was: $60 \, Mm^3$

The volume on July 1st is therefore:

$$480 \, Mm^3 + 120 \, Mm^3 - 60 \, Mm^3 = 540 \, Mm^3$$

Overtop!

The volunteer got fired!

Can it be fixed?
It is July 1st.

The reservoir is at $540 \, Mm^3$
You are given the inflow forecasts on July 1st.

Please fill in your release schedule. Remember: $15 \, Mm^3 \leq \text{Release} \leq 60 \, Mm^3$

Reservoir should be close to $500 \, Mm^3$ on August 1st.
If the volume exceeds $500 \, Mm^3$, you are fired.
It is July 1st.

And our volunteer?

Let’s see which release option our volunteer will choose.

Previous decisions: C C B
July has gone by.

July inflow was: $22 \ Mm^3$

You can update your reservoir volume:

The volume on August 1st is:

July 1 volume $+ 22 \ Mm^3 - \text{July release} = ?$

Did you overtop your reservoir?

☐ NO, I still have my job.
☐ YES, I got fired...

What about our volunteer?
July has gone by.

July inflow was: 22 Mm^3

Our volunteer’s July release was: 60 Mm^3

The volume on August 1st is therefore:

$540 \text{ Mm}^3 + 22 \text{ Mm}^3 - 60 \text{ Mm}^3 = 502 \text{ Mm}^3$

Overtop!

The volunteer did not get the job back!
GAME OVER

August 1st has arrived.
If you did not overtop the reservoir, you still have a job and you are hired for the next season!

How did you like this experience as a decision-maker?
It is April 1st.

The reservoir is at $450 \ Mm^3$
You are given the inflow forecasts on April 1st.

Please fill in your release schedule. Remember: $15 \ Mm^3 \leq \text{Release} \leq \ 60 \ Mm^3$

Reservoir should be close to $500 \ Mm^3$ on August 1st.
If the volume exceeds $500 \ Mm^3$, you are fired.
It is April 1st.

And our volunteer?

Let’s see which release option our volunteer will choose.
April has gone by.

April inflow was: $18 \text{ } Mm^3$

You can update your reservoir volume:

The volume on May 1st is:

April 1 volume $+ 18 \text{ } Mm^3 - \text{ April release } = ?$

Did you overtop your reservoir?

□ NO, I still have my job.
□ YES, I got fired...

What about our volunteer?
April has gone by.

April inflow was: $18 \, Mm^3$

Our volunteer’s April release was: $37 \, Mm^3$

The volume on May 1st is therefore:

$$450 \, Mm^3 + 18 \, Mm^3 - 37 \, Mm^3 = 431 \, Mm^3$$

No overtop!

The volunteer still has a job!

Let’s go to the next forecast!
It is May 1st.

The reservoir is at 431 m^3
You are given the inflow forecasts on May 1st.

Please fill in your release schedule. Remember: $15 \text{ m}^3 \leq \text{Release} \leq 60 \text{ m}^3$

Reservoir should be close to 500 m^3 on August 1st.
If the volume exceeds 500 m^3, you are fired.
It is May 1st.

And our volunteer?

Let’s see which release option our volunteer will choose.
May has gone by.

May inflow was: 55 Mm^3

You can update your reservoir volume:
The volume on June 1st is:
May 1 volume $+ 55 \text{ Mm}^3 - \text{May release} = ?$

Did you overtop your reservoir?

- □ NO, I still have my job.
- □ YES, I got fired...

What about our volunteer?
May has gone by.

May inflow was: \(55 \text{ } Mm^3\)

Our volunteer’s May release was: \(59 \text{ } Mm^3\)

The volume on June 1st is therefore:

\[
431 \text{ } Mm^3 + 55 \text{ } Mm^3 - 59 \text{ } Mm^3 = 427 \text{ } Mm^3
\]

No overtop!

The volunteer still has a job!

Let’s go to the next forecast!
It is June 1st.

The reservoir is at $427 \, Mm^3$
You are given the inflow forecasts on June 1st.

Please fill in your release schedule. Remember: $15 \, Mm^3 \leq \text{Release} \leq 60 \, Mm^3$

Reservoir should be close to $500 \, Mm^3$ on August 1st.
If the volume exceeds $500 \, Mm^3$, you are fired.
It is June 1st.

And our volunteer?

Let's see which release option our volunteer will choose.
June has gone by.

June inflow was: 120 Mm^3

You can update your reservoir volume:
The volume on July 1st is:
June 1 volume $+ 120 \text{ Mm}^3 - $ June release $= ?$

Did you overtop your reservoir?

□ NO, I still have my job.
□ YES, I got fired...

What about our volunteer?
June has gone by.

June inflow was: 120 Mm^3

Our volunteer’s June release was: 45 Mm^3

The volume on July 1st is therefore:

$427 Mm^3 + 120 Mm^3 - 45 Mm^3 = 502 Mm^3$

Overtop!

The volunteer got fired!

Can it be fixed?
It is July 1st.

The reservoir is at 502 Mm^3

You are given the inflow forecasts on July 1st.

Please fill in your release schedule. Remember: $15 \text{ Mm}^3 \leq \text{Release} \leq 60 \text{ Mm}^3$

Reservoir should be close to 500 Mm^3 on August 1st.

If the volume exceeds 500 Mm^3, you are fired.
It is July 1st.

And our volunteer?

Let’s see which release option our volunteer will choose.

Option A

Option B

Option C

Forecast issued on the previous month
min (5%)
25%
50%
75%
max (95%)
July has gone by.

July inflow was: \(22 \, Mm^3\)

You can update your reservoir volume:
The volume on August 1st is:
July 1 volume + \(22 \, Mm^3\) - July release = ?

Did you overtop your reservoir?

- □ NO, I still have my job.
- □ YES, I got fired...

What about our volunteer?
July has gone by.

July inflow was: 22 Mm^3

Our volunteer’s July release was: 60 Mm^3

The volume on August 1st is therefore:

$502 \text{ Mm}^3 + 22 \text{ Mm}^3 - 60 \text{ Mm}^3 = 464 \text{ Mm}^3$

No overtop!

The volunteer got the job back!

NEXT
GAME OVER

August 1st has arrived.
If you did not overtop the reservoir, you still have a job and you are hired for the next season!

How did you like this experience as a decision-maker?
It is April 1st.

The reservoir is at 450 Mm^3
You are given the inflow forecasts on April 1st.

Please fill in your release schedule. Remember: $15 \text{ Mm}^3 \leq \text{Release} \leq 60 \text{ Mm}^3$

Reservoir should be close to 500 Mm^3 on August 1st.
If the volume exceeds 500 Mm^3, you are fired.
It is April 1st.
And our volunteer?
Let’s see which release option our volunteer will choose.
April has gone by.

April inflow was: $18 \ Mm^3$

You can update your reservoir volume:
The volume on May 1st is:
April 1 volume $+ 18 \ Mm^3$ - April release $= ?$

Did you overtop your reservoir?

□ NO, I still have my job.
□ YES, I got fired...

What about our volunteer?
April has gone by.

April inflow was: 18 Mm^3

Our volunteer’s April release was: 55 Mm^3

The volume on May 1st is therefore:

$$450 \text{ Mm}^3 + 18 \text{ Mm}^3 - 55 \text{ Mm}^3 = 413 \text{ Mm}^3$$

No overtop!

The volunteer still has a job!

Let’s go to the next forecast!
It is May 1st.

The reservoir is at $413\, Mm^3$

You are given the inflow forecasts on May 1st.

Please fill in your release schedule. Remember: $15\, Mm^3 \leq \text{Release} \leq 60\, Mm^3$

Reservoir should be close to $500\, Mm^3$ on August 1st.

If the volume exceeds $500\, Mm^3$, you are fired.
It is May 1st.

And our volunteer?

Let’s see which release option our volunteer will choose.
May has gone by.

May inflow was: $55\, Mm^3$

You can update your reservoir volume:
The volume on June 1st is:
May 1 volume + $55\, Mm^3$ - May release = ?

Did you overtop your reservoir?

☐ NO, I still have my job.
☐ YES, I got fired...

What about our volunteer?
May has gone by.

May inflow was: 55 Mm^3

Our volunteer’s May release was: 59 Mm^3

The volume on June 1st is therefore:

$$413 \ Mm^3 + 55 \ Mm^3 - 59 \ Mm^3 = 409 \ Mm^3$$

No overtop!

The volunteer still has a job!

Let’s go to the next forecast!
It is June 1st.

The reservoir is at 409 Mm^3
You are given the inflow forecasts on June 1st.

Please fill in your release schedule. Remember: $15 Mm^3 \leq \text{Release} \leq 60 Mm^3$

Reservoir should be close to 500 Mm^3 on August 1st.
If the volume exceeds 500 Mm^3, you are fired.
It is June 1st.

And our volunteer?

Let’s see which release option our volunteer will choose.
June has gone by.

June inflow was: 120 Mm^3

You can update your reservoir volume:
The volume on July 1st is:
June 1 volume $+ 120 \text{ Mm}^3 - \text{June release} = ?$

Did you overtop your reservoir?

☐ NO, I still have my job.
☐ YES, I got fired...

What about our volunteer?
June has gone by.

June inflow was: $120 \ Mm^3$

Our volunteer’s June release was: $45 \ Mm^3$

The volume on July 1st is therefore:

$409 \ Mm^3 + 120 \ Mm^3 - 45 \ Mm^3 = 484 \ Mm^3$

No overtop!

The volunteer still has a job!

Let’s go to the next forecast!
It is July 1st.

The reservoir is at $484 \text{\,} Mm^3$
You are given the inflow forecasts on July 1st.

Please fill in your release schedule. Remember: $15 \text{\,} Mm^3 \leq \text{Release} \leq 60 \text{\,} Mm^3$

Reservoir should be close to $500 \text{\,} Mm^3$ on August 1st.
If the volume exceeds $500 \text{\,} Mm^3$, you are fired.
It is July 1st.

And our volunteer?

Let’s see which release option our volunteer will choose.
July has gone by.

July inflow was: 22 Mm^3

You can update your reservoir volume:

The volume on August 1st is:

July 1 volume $+ 22 \text{ Mm}^3 - \text{July release} = ?$

Did you overtop your reservoir?

☐ NO, I still have my job.
☐ YES, I got fired...

What about our volunteer?
July has gone by.

July inflow was: 22 Mm^3

Our volunteer’s July release was: 60 Mm^3

The volume on August 1st is therefore:

$484 \text{ Mm}^3 + 22 \text{ Mm}^3 - 60 \text{ Mm}^3 = 446 \text{ Mm}^3$

No overtop!

The volunteer still has a job!
GAME OVER

August 1st has arrived.
If you did not overtop the reservoir, you still have a job and you are hired for the next season!

How did you like this experience as a decision-maker?
It is April 1st.

The reservoir is at 450 \(Mm^3 \)
You are given the inflow forecasts on April 1st.

Please fill in your release schedule. Remember: 15 \(Mm^3 \) \(\leq \) Release \(\leq \) 60 \(Mm^3 \)

Reservoir should be close to 500 \(Mm^3 \) on August 1st.
If the volume exceeds 500 \(Mm^3 \), you are fired.
It is April 1st.

And our volunteer?

Let’s see which release option our volunteer will choose.
April has gone by.

April inflow was: \(18 \, Mm^3\)

You can update your reservoir volume:

The volume on May 1st is:

April 1 volume + 18 \(Mm^3\) - April release = ?

Did you overtop your reservoir?

□ NO, I still have my job.
□ YES, I got fired...

What about our volunteer?
April has gone by.

April inflow was: $18 \ Mm^3$

Our volunteer’s April release was: $17 \ Mm^3$

The volume on May 1st is therefore:

$450 \ Mm^3 + 18 \ Mm^3 - 17 \ Mm^3 = 451 \ Mm^3$

No overtop!

The volunteer still has a job!

Let’s go to the next forecast!
It is May 1st.

The reservoir is at 451 Mm^3.

You are given the inflow forecasts on May 1st.

Please fill in your release schedule. Remember: $15 \text{ Mm}^3 \leq \text{Release} \leq 60 \text{ Mm}^3$

Reservoir should be close to 500 Mm^3 on August 1st.

If the volume exceeds 500 Mm^3, you are fired.
It is May 1st.

And our volunteer?

Let’s see which release option our volunteer will choose.
May has gone by.

May inflow was: $55 \ Mm^3$

You can update your reservoir volume:
The volume on June 1st is:
May 1 volume $+ 55 \ Mm^3$ - May release $=$?

Did you overtop your reservoir?

☐ NO, I still have my job.
☐ YES, I got fired...

What about our volunteer?
May has gone by.

May inflow was: $55\ Mm^3$

Our volunteer’s May release was: $59\ Mm^3$

The volume on June 1st is therefore:

$451\ Mm^3 + 55\ Mm^3 - 59\ Mm^3 = 447\ Mm^3$

No overtop!

The volunteer still has a job!

Let’s go to the next forecast!
It is June 1st.

The reservoir is at $447 \ Mm^3$.

You are given the inflow forecasts on June 1st.

Please fill in your release schedule. Remember: $15 \ Mm^3 \leq \text{Release} \leq 60 \ Mm^3$

Reservoir should be close to $500 \ Mm^3$ on August 1st.

If the volume exceeds $500 \ Mm^3$, you are fired.
It is June 1st.

And our volunteer? Let’s see which release option our volunteer will choose.
June has gone by.

June inflow was: 120 Mm^3

You can update your reservoir volume:
The volume on July 1st is:
June 1 volume + 120 Mm^3 - June release = ?

Did you overtop your reservoir?

☐ NO, I still have my job.
☐ YES, I got fired...

What about our volunteer?
June has gone by.

June inflow was: $120 \ Mm^3$

Our volunteer’s June release was: $45 \ Mm^3$

The volume on July 1st is therefore:

$447 \ Mm^3 + 120 \ Mm^3 - 45 \ Mm^3 = 522 \ Mm^3$

Overtop!

The volunteer got fired!

Can it be fixed?
It is July 1st.

The reservoir is at \(522 \text{ } Mm^3\)
You are given the inflow forecasts on July 1st.

Please fill in your release schedule. Remember: \(15 \text{ } Mm^3 \leq \text{Release} \leq 60 \text{ } Mm^3\)

Reservoir should be close to \(500 \text{ } Mm^3\) on August 1st.
If the volume exceeds \(500 \text{ } Mm^3\), you are fired.
It is July 1st.

And our volunteer?

Let’s see which release option our volunteer will choose.
July has gone by.

July inflow was: \(22 \text{ Mm}^3\)

You can update your reservoir volume:
The volume on August 1st is:
July 1 volume + \(22 \text{ Mm}^3\) - July release = ?

Did you overtop your reservoir?

□ NO, I still have my job.
□ YES, I got fired...

What about our volunteer?
July has gone by.

July inflow was: $22 \text{ } Mm^3$

Our volunteer’s July release was: $60 \text{ } Mm^3$

The volume on August 1st is therefore:

$522 \text{ } Mm^3 + 22 \text{ } Mm^3 - 60 \text{ } Mm^3 = 484 \text{ } Mm^3$

No overtop!

The volunteer got the job back!

NEXT
GAME OVER

August 1st has arrived.
If you did not overtop the reservoir, you still have a job and you are hired for the next season!

How did you like this experience as a decision-maker?
It is April 1st.

The reservoir is at $450 \ Mm^3$.
You are given the inflow forecasts on April 1st.

Please fill in your release schedule. Remember: $15 \ Mm^3 \leq \text{Release} \leq 60 \ Mm^3$

Reservoir should be close to $500 \ Mm^3$ on August 1st.
If the volume exceeds $500 \ Mm^3$, you are fired.
It is April 1st.

And our volunteer?

Let’s see which release option our volunteer will choose.
April has gone by.

April inflow was: $18 \ Mm^3$

You can update your reservoir volume:

The volume on May 1st is:

April 1 volume $+ 18 \ Mm^3$ - April release $= ?$

Did you overtop your reservoir?

☐ NO, I still have my job.
☐ YES, I got fired...

What about our volunteer?
April has gone by.

April inflow was: 18 Mm^3

Our volunteer’s April release was: 37 Mm^3

The volume on May 1st is therefore:

$450 \ Mm^3 + 18 \ Mm^3 - 37 \ Mm^3 = 431 \ Mm^3$

No overtop!

The volunteer still has a job!

Let’s go to the next forecast!
It is May 1st.

The reservoir is at $431 \text{ } Mm^3$
You are given the inflow forecasts on May 1st.

Please fill in your release schedule. Remember: $15 \text{ } Mm^3 \leq \text{Release} \leq 60 \text{ } Mm^3$

Reservoir should be close to $500 \text{ } Mm^3$ on August 1st.
If the volume exceeds $500 \text{ } Mm^3$, you are fired.
It is May 1st.

And our volunteer?

Let’s see which release option our volunteer will choose.
May has gone by.

May inflow was: \(55 \, Mm^3\)

You can update your reservoir volume:

The volume on June 1st is:

May 1 volume + 55 \(Mm^3\) - May release = ?

Did you overtop your reservoir?

- ☐ NO, I still have my job.
- ☐ YES, I got fired...

What about our volunteer?
May has gone by.

May inflow was: 55 \(Mm^3 \)

Our volunteer’s May release was: 45 \(Mm^3 \)

The volume on June 1st is therefore:

\[
431 \ Mm^3 + 55 \ Mm^3 - 45 \ Mm^3 = 441 \ Mm^3
\]

No overtop!

The volunteer still has a job!

Let’s go to the next forecast!
It is June 1st.

The reservoir is at $441 \, Mm^3$

You are given the inflow forecasts on June 1st.

Please fill in your release schedule. Remember: $15 \, Mm^3 \leq \text{Release} \leq 60 \, Mm^3$

Reservoir should be close to $500 \, Mm^3$ on August 1st.

If the volume exceeds $500 \, Mm^3$, you are fired.
It is June 1st.

And our volunteer?

Let’s see which release option our volunteer will choose.
June has gone by.

June inflow was: 120 Mm^3

You can update your reservoir volume:
The volume on July 1st is:
June 1 volume $+ 120 \text{ Mm}^3 - \text{June release} = ?$

Did you overtop your reservoir?

☐ NO, I still have my job.
☐ YES, I got fired...

What about our volunteer?
June has gone by.

June inflow was: 120 Mm^3

Our volunteer’s June release was: 45 Mm^3

The volume on July 1st is therefore:

$$441\ Mm^3 + 120\ Mm^3 - 45\ Mm^3 = 516\ Mm^3$$

Overtop!

The volunteer got fired!

Can it be fixed?
It is July 1st.

The reservoir is at 516 Mm^3

You are given the inflow forecasts on July 1st.

Please fill in your release schedule. Remember: $15 Mm^3 \leq \text{Release} \leq 60 Mm^3$

Reservoir should be close to 500 Mm^3 on August 1st.

If the volume exceeds 500 Mm^3, you are fired.
It is July 1st.

And our volunteer?

Let’s see which release option our volunteer will choose.
July has gone by.

July inflow was: $22 \ M m^3$

You can update your reservoir volume:
The volume on August 1st is:
July 1 volume $+ 22 \ M m^3 - \text{July release} = ?$

Did you overtop your reservoir?

□ NO, I still have my job.
□ YES, I got fired...

What about our volunteer?
July has gone by.

July inflow was: 22 \(Mm^3 \)

Our volunteer’s July release was: 60 \(Mm^3 \)

The volume on August 1st is therefore:

\[
516 \ Mm^3 + 22 \ Mm^3 - 60 \ Mm^3 = 478 \ Mm^3
\]

No overtop!

The volunteer got the job back!

NEXT
GAME OVER

August 1st has arrived.
If you did not overtop the reservoir, you still have a job and you are hired for the next season!

How did you like this experience as a decision-maker?
It is April 1st.

The reservoir is at 450 Mm^3
You are given the inflow forecasts on April 1st.

Please fill in your release schedule. Remember: $15 Mm^3 \leq \text{Release} \leq 60 Mm^3$

Reservoir should be close to 500 Mm^3 on August 1st.
If the volume exceeds 500 Mm^3, you are fired.

NEXT
It is April 1st.

And our volunteer?

Let’s see which release option our volunteer will choose.
April has gone by.

April inflow was: $18 \, Mm^3$

You can update your reservoir volume:
The volume on May 1st is:
April 1 volume $+ 18 \, Mm^3 - \text{April release} = ?$

Did you overtop your reservoir?

☐ NO, I still have my job.
☐ YES, I got fired...

What about our volunteer?
April has gone by.

April inflow was: 18 Mm^3

Our volunteer’s April release was: 55 Mm^3

The volume on May 1st is therefore:
\[450 \text{ Mm}^3 + 18 \text{ Mm}^3 - 55 \text{ Mm}^3 = 413 \text{ Mm}^3\]

No overtop!

The volunteer still has a job!

Let’s go to the next forecast!
It is May 1st.

The reservoir is at 413 Mm^3.

You are given the inflow forecasts on May 1st.

Please fill in your release schedule. Remember: $15 Mm^3 \leq \text{Release} \leq 60 Mm^3$

Reservoir should be close to 500 Mm^3 on August 1st.

If the volume exceeds 500 Mm^3, you are fired.
It is May 1st.

And our volunteer?

Let’s see which release option our volunteer will choose.
May has gone by.

May inflow was: \(55 \, Mm^3\)

You can update your reservoir volume:

The volume on June 1st is:

May 1 volume + \(55 \, Mm^3\) - May release = ?

Did you overtop your reservoir?

- \(\square\) NO, I still have my job.
- \(\square\) YES, I got fired...

What about our volunteer?
May has gone by.

May inflow was: 55 Mm^3

Our volunteer’s May release was: 45 Mm^3

The volume on June 1st is therefore:

$413 \text{ Mm}^3 + 55 \text{ Mm}^3 - 45 \text{ Mm}^3 = 423 \text{ Mm}^3$

No overtop!

The volunteer still has a job!

Let’s go to the next forecast!
It is June 1st.

The reservoir is at $423 \, Mm^3$

You are given the inflow forecasts on June 1st.

Please fill in your release schedule. Remember: $15 \, Mm^3 \leq \text{Release} \leq 60 \, Mm^3$

Reservoir should be close to $500 \, Mm^3$ on August 1st.

If the volume exceeds $500 \, Mm^3$, you are fired.
It is June 1st.

And our volunteer?

Let’s see which release option our volunteer will choose.
June has gone by.

June inflow was: 120 Mm^3

You can update your reservoir volume:
The volume on July 1st is:
June 1 volume + 120 Mm^3 - June release = ?

Did you overtop your reservoir?

☐ NO, I still have my job.
☐ YES, I got fired...

What about our volunteer?
June has gone by.

June inflow was: \(120 \text{ \(Mm^3 \)} \)

Our volunteer’s June release was: \(45 \text{ \(Mm^3 \)} \)

The volume on July 1st is therefore:

\[
423 \text{ \(Mm^3 \)} + 120 \text{ \(Mm^3 \)} - 45 \text{ \(Mm^3 \)} = 498 \text{ \(Mm^3 \)}
\]

No overtop!

The volunteer still has a job!

Let’s go to the next forecast!
It is July 1st.

The reservoir is at 498 Mm^3

You are given the inflow forecasts on July 1st.

Please fill in your release schedule. Remember: $15 \text{ Mm}^3 \leq \text{Release} \leq 60 \text{ Mm}^3$

Reservoir should be close to 500 Mm^3 on August 1st.

If the volume exceeds 500 Mm^3, you are fired.
It is July 1st.

And our volunteer?

Let’s see which release option our volunteer will choose.

Previous decisions: B B C

![Graph showing forecast inflow volume](image)

- Option A
- Option B
- Option C

- Current reservoir volume
- Reservoir volume assuming inflow is median forecast
- Reservoir volume assuming inflow is min/max forecast

Forecast issued on the previous month

- max (95%)
- 75%
- 50%
- 25%
- min (5%)
July has gone by.

July inflow was: $22 \, Mm^3$

You can update your reservoir volume:

The volume on August 1st is:

July 1 volume $+ 22 \, Mm^3 - \text{July release} = ?$

Did you overtop your reservoir?

☐ NO, I still have my job.
☐ YES, I got fired...

What about our volunteer?
July has gone by.

July inflow was: 22 Mm^3

Our volunteer’s July release was: 60 Mm^3

The volume on August 1st is therefore:

$$498 \text{ Mm}^3 + 22 \text{ Mm}^3 - 60 \text{ Mm}^3 = 460 \text{ Mm}^3$$

No overtop!

The volunteer still has a job!

NEXT
GAME OVER

August 1st has arrived.

If you did not overtop the reservoir, you still have a job and you are hired for the next season!

How did you like this experience as a decision-maker?
It is April 1st.

The reservoir is at $450 \text{ } Mm^3$
You are given the inflow forecasts on April 1st.

Please fill in your release schedule. Remember: $15 \text{ } Mm^3 \leq \text{Release} \leq 60 \text{ } Mm^3$

Reservoir should be close to $500 \text{ } Mm^3$ on August 1st.
If the volume exceeds $500 \text{ } Mm^3$, you are fired.
It is April 1st.

And our volunteer?

Let’s see which release option our volunteer will choose.
April has gone by.

April inflow was: \(18 \text{ Mm}^3\)

You can update your reservoir volume:
The volume on May 1st is:
April 1 volume + \(18 \text{ Mm}^3\) - April release = ?

Did you overtop your reservoir?

☐ NO, I still have my job.
☐ YES, I got fired...

What about our volunteer?
April has gone by.

April inflow was: \(18 \text{ Mm^3}\)

Our volunteer’s April release was: \(17 \text{ Mm^3}\)

The volume on May 1st is therefore:

\[
450 \text{ Mm^3} + 18 \text{ Mm^3} - 17 \text{ Mm^3} = 451 \text{ Mm^3}
\]

No overtop!

The volunteer still has a job!

Let’s go to the next forecast!
It is May 1st.

The reservoir is at \(451 \text{ Mm}^3\)

You are given the inflow forecasts on May 1st.

Please fill in your release schedule. Remember: \(15 \text{ Mm}^3 \leq \text{Release} \leq 60 \text{ Mm}^3\)

Reservoir should be close to 500 \(\text{ Mm}^3\) on August 1st.

If the volume exceeds 500 \(\text{ Mm}^3\), you are fired.
It is May 1st.

And our volunteer?

Let’s see which release option our volunteer will choose.
May has gone by.

May inflow was: $55 \, Mm^3$

You can update your reservoir volume:
The volume on June 1st is:
May 1 volume $+ 55 \, Mm^3 -$ May release $= ?$

Did you overtop your reservoir?

☐ NO, I still have my job.
☐ YES, I got fired...

What about our volunteer?
May has gone by.

May inflow was: $55 \ Mm^3$

Our volunteer’s May release was: $45 \ Mm^3$

The volume on June 1st is therefore:

$451 \ Mm^3 + 55 \ Mm^3 - 45 \ Mm^3 = 461 \ Mm^3$

No overtop!

The volunteer still has a job!

Let’s go to the next forecast!
It is June 1st.

The reservoir is at 461 Mm^3
You are given the inflow forecasts on June 1st.

Please fill in your release schedule. Remember: $15 \text{ Mm}^3 \leq \text{Release} \leq 60 \text{ Mm}^3$

Reservoir should be close to 500 Mm^3 on August 1st.
If the volume exceeds 500 Mm^3, you are fired.
It is June 1st.

And our volunteer?

Let’s see which release option our volunteer will choose.
June has gone by.

June inflow was: 120 Mm^3

You can update your reservoir volume:
The volume on July 1st is:
June 1 volume $+ 120 \text{ Mm}^3 -$ June release $= \ ?$

Did you overtop your reservoir?

☐ NO, I still have my job.
☐ YES, I got fired...

What about our volunteer?
June has gone by.

June inflow was: $120 \ Mm^3$

Our volunteer’s June release was: $45 \ Mm^3$

The volume on July 1st is therefore:

$461 \ Mm^3 + 120 \ Mm^3 - 45 \ Mm^3 = 536 \ Mm^3$

Overtop!

The volunteer got fired!

Can it be fixed?
It is July 1st.

The reservoir is at \(536 \; Mm^3\)
You are given the inflow forecasts on July 1st.

Please fill in your release schedule. Remember: \(15 \; Mm^3 \leq \text{Release} \leq 60 \; Mm^3\)

Reservoir should be close to 500 \(Mm^3\) on August 1st.
If the volume exceeds 500 \(Mm^3\), you are fired.
It is July 1st.

And our volunteer?

Let’s see which release option our volunteer will choose.
July has gone by.

July inflow was: 22 Mm^3

You can update your reservoir volume:
The volume on August 1st is:
July 1 volume $+$ 22 Mm^3 $-$ July release $=$?

Did you overtop your reservoir?

□ NO, I still have my job.
□ YES, I got fired...

What about our volunteer?
July has gone by.

July inflow was: $22 \ Mm^3$

Our volunteer’s July release was: $60 \ Mm^3$

The volume on August 1st is therefore:

$536 \ Mm^3 + 22 \ Mm^3 - 60 \ Mm^3 = 498 \ Mm^3$

No overtop!

The volunteer got the job back!
GAME OVER

August 1st has arrived.

If you did not overtop the reservoir, you still have a job and you are hired for the next season!

How did you like this experience as a decision-maker?
It is April 1st.

The reservoir is at $450\ Mm^3$
You are given the inflow forecasts on April 1st.

Please fill in your release schedule. Remember: $15\ Mm^3 \leq \text{Release} \leq 60\ Mm^3$

Reservoir should be close to $500\ Mm^3$ on August 1st.
If the volume exceeds $500\ Mm^3$, you are fired.
It is April 1st.

And our volunteer?

Let’s see which release option our volunteer will choose.
April has gone by.

April inflow was: 18 Mm^3

You can update your reservoir volume:
The volume on May 1st is:
April 1 volume $+ 18 \ Mm^3 -$ April release $= ?$

Did you overtop your reservoir?

□ NO, I still have my job.
□ YES, I got fired...

What about our volunteer?
April has gone by.

April inflow was: $18 \ Mm^3$

Our volunteer’s April release was: $37 \ Mm^3$

The volume on May 1st is therefore:

$$450 \ Mm^3 + 18 \ Mm^3 - 37 \ Mm^3 = 431 \ Mm^3$$

No overtop!

The volunteer still has a job!

Let’s go to the next forecast!
It is May 1st.

The reservoir is at $431 \text{ } Mm^3$

You are given the inflow forecasts on May 1st.

Please fill in your release schedule. Remember: $15 \text{ } Mm^3 \leq \text{Release} \leq 60 \text{ } Mm^3$

Reservoir should be close to $500 \text{ } Mm^3$ on August 1st.

If the volume exceeds $500 \text{ } Mm^3$, you are fired.
It is May 1st.

And our volunteer?

Let’s see which release option our volunteer will choose.
May has gone by.

May inflow was: $55\ Mm^3$

You can update your reservoir volume:
The volume on June 1st is:
May 1 volume + $55\ Mm^3$ - May release = ?

Did you overtop your reservoir?

☐ NO, I still have my job.
☐ YES, I got fired...

What about our volunteer?
May has gone by.

May inflow was: $55 \, Mm^3$

Our volunteer’s May release was: $26 \, Mm^3$

The volume on June 1st is therefore:

$$431 \, Mm^3 + 55 \, Mm^3 - 26 \, Mm^3 = 460 \, Mm^3$$

No overtop!

The volunteer still has a job!

Let’s go to the next forecast!
It is June 1st.

The reservoir is at 460 Mm^3
You are given the inflow forecasts on June 1st.

Please fill in your release schedule. Remember: $15 \text{ Mm}^3 \leq \text{Release} \leq 60 \text{ Mm}^3$

Reservoir should be close to 500 Mm^3 on August 1st.
If the volume exceeds 500 Mm^3, you are fired.
It is June 1st.

And our volunteer?

Let’s see which release option our volunteer will choose.
June has gone by.

June inflow was: 120 Mm^3

You can update your reservoir volume:
The volume on July 1st is:
June 1 volume $+ 120 \text{ Mm}^3 - \text{June release} = ?$

Did you overtop your reservoir?

☐ NO, I still have my job.
☐ YES, I got fired...

What about our volunteer?
June has gone by.

June inflow was: $120 \; Mm^3$

Our volunteer’s June release was: $45 \; Mm^3$

The volume on July 1st is therefore:

$$460 \; Mm^3 + 120 \; Mm^3 - 45 \; Mm^3 = 535 \; Mm^3$$

Overtop!

The volunteer got fired!

Can it be fixed?
It is July 1st.

The reservoir is at $535\ \text{Mm}^3$

You are given the inflow forecasts on July 1st.

Please fill in your release schedule. Remember: $15\ \text{Mm}^3 \leq \text{Release} \leq 60\ \text{Mm}^3$

Reservoir should be close to $500\ \text{Mm}^3$ on August 1st.

If the volume exceeds $500\ \text{Mm}^3$, you are fired.
It is July 1st.

And our volunteer?

Let’s see which release option our volunteer will choose.

<table>
<thead>
<tr>
<th>Option A</th>
<th>Option B</th>
<th>Option C</th>
</tr>
</thead>
<tbody>
<tr>
<td>Release</td>
<td>J</td>
<td>J</td>
</tr>
<tr>
<td>60</td>
<td>25</td>
<td>40</td>
</tr>
<tr>
<td>Reservoir volume</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Current reservoir volume</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Reservoir volume assuming inflow is median forecast</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Reservoir volume assuming inflow is min/max forecast</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
July has gone by.

July inflow was: $22 \, Mm^3$

You can update your reservoir volume:

The volume on August 1st is:

July 1 volume + $22 \, Mm^3$ - July release = ?

Did you overtop your reservoir?

□ NO, I still have my job.
□ YES, I got fired...

What about our volunteer?
July has gone by.

July inflow was: $22 \ Mm^3$

Our volunteer’s July release was: $60 \ Mm^3$

The volume on August 1st is therefore:

$535 \ Mm^3 + 22 \ Mm^3 - 60 \ Mm^3 = 497 \ Mm^3$

No overtop!

The volunteer got the job back!
GAME OVER

August 1st has arrived.
If you did not overtop the reservoir, you still have a job and you are hired for the next season!

How did you like this experience as a decision-maker?
It is April 1st.

The reservoir is at $450 \text{ } Mm^3$
You are given the inflow forecasts on April 1st.

Please fill in your release schedule. Remember: $15 \text{ } Mm^3 \leq \text{Release} \leq 60 \text{ } Mm^3$

Reservoir should be close to $500 \text{ } Mm^3$ on August 1st.
If the volume exceeds $500 \text{ } Mm^3$, you are fired.
It is April 1st.

And our volunteer?

Let’s see which release option our volunteer will choose.

Option A

<table>
<thead>
<tr>
<th>Release</th>
<th>37</th>
<th>38</th>
<th>45</th>
<th>35</th>
</tr>
</thead>
<tbody>
<tr>
<td>Reservoir volume</td>
<td>450</td>
<td>500</td>
<td>550</td>
<td>570</td>
</tr>
</tbody>
</table>

Option B

<table>
<thead>
<tr>
<th>Release</th>
<th>55</th>
<th>58</th>
<th>60</th>
<th>57</th>
</tr>
</thead>
<tbody>
<tr>
<td>Reservoir volume</td>
<td>420</td>
<td>470</td>
<td>520</td>
<td>540</td>
</tr>
</tbody>
</table>

Option C

<table>
<thead>
<tr>
<th>Release</th>
<th>17</th>
<th>23</th>
<th>29</th>
<th>25</th>
</tr>
</thead>
<tbody>
<tr>
<td>Reservoir volume</td>
<td>380</td>
<td>430</td>
<td>480</td>
<td>500</td>
</tr>
</tbody>
</table>

- **Current reservoir volume**
- **Reservoir volume assuming inflow is median forecast**
- **Reservoir volume assuming inflow is min/max forecast**
April has gone by.

April inflow was: $18 \ Mm^3$

You can update your reservoir volume:
The volume on May 1st is:
April 1 volume $+ 18 \ Mm^3 - \text{April release} = ?$

Did you overtop your reservoir?

□ NO, I still have my job.
□ YES, I got fired...

What about our volunteer?
April has gone by.

April inflow was: $18 \, Mm^3$

Our volunteer’s April release was: $55 \, Mm^3$

The volume on May 1st is therefore:

$$450 \, Mm^3 + 18 \, Mm^3 - 55 \, Mm^3 = 413 \, Mm^3$$

No overtop!

The volunteer still has a job!

Let’s go to the next forecast!
It is May 1st.

The reservoir is at 413 Mm^3
You are given the inflow forecasts on May 1st.

Please fill in your release schedule. Remember: $15 \text{ Mm}^3 \leq \text{Release} \leq 60 \text{ Mm}^3$

Reservoir should be close to 500 Mm^3 on August 1st.
If the volume exceeds 500 Mm^3, you are fired.
It is May 1st.

And our volunteer?

Let’s see which release option our volunteer will choose.
May has gone by.

May inflow was: \(55 \, Mm^3\)

You can update your reservoir volume:

The volume on June 1st is:

May 1 volume \(+ 55 \, Mm^3\) \(-\) May release = ?

Did you overtop your reservoir?

☐ NO, I still have my job.
☐ YES, I got fired...

What about our volunteer?
May has gone by.

May inflow was: \(55 \text{ } Mm^3\)

Our volunteer’s May release was: \(26 \text{ } Mm^3\)

The volume on June 1st is therefore:
\[413 \text{ } Mm^3 + 55 \text{ } Mm^3 - 26 \text{ } Mm^3 = 442 \text{ } Mm^3\]

No overtop!

The volunteer still has a job!

Let’s go to the next forecast!
It is June 1st.

The reservoir is at $442 \text{ } Mm^3$

You are given the inflow forecasts on June 1st.

Please fill in your release schedule. Remember: $15 \text{ } Mm^3 \leq \text{Release} \leq 60 \text{ } Mm^3$

Reservoir should be close to $500 \text{ } Mm^3$ on August 1st.

If the volume exceeds $500 \text{ } Mm^3$, you are fired.
It is June 1st.

And our volunteer?

Let’s see which release option our volunteer will choose.
June has gone by.

June inflow was: \(120 \text{ Mm}^3\)

You can update your reservoir volume:
The volume on July 1st is:
June 1 volume + 120 \(\text{ Mm}^3\) - June release = ?

Did you overtop your reservoir?

□ NO, I still have my job.
□ YES, I got fired...

What about our volunteer?
June has gone by.

June inflow was: \(120 \, Mm^3\)

Our volunteer’s June release was: \(45 \, Mm^3\)

The volume on July 1st is therefore:

\[442 \, Mm^3 + 120 \, Mm^3 - 45 \, Mm^3 = 517 \, Mm^3\]

Overtop!

The volunteer got fired!

Can it be fixed?
It is July 1st.

The reservoir is at 517 Mm^3

You are given the inflow forecasts on July 1st.

Please fill in your release schedule. Remember: $15 Mm^3 \leq \text{Release} \leq 60 Mm^3$

Reservoir should be close to 500 Mm^3 on August 1st.
If the volume exceeds 500 Mm^3, you are fired.
It is July 1st.

And our volunteer?

Let’s see which release option our volunteer will choose.
July has gone by.

July inflow was: \(22 \, Mm^3\)

You can update your reservoir volume:

The volume on August 1st is:

July 1 volume + 22 \(Mm^3\) - July release = ?

Did you overtop your reservoir?

□ NO, I still have my job.
□ YES, I got fired...

What about our volunteer?
July has gone by.

July inflow was: \(22 \text{ } Mm^3\)

Our volunteer’s July release was: \(60 \text{ } Mm^3\)

The volume on August 1st is therefore:

\[
517 \text{ } Mm^3 + 22 \text{ } Mm^3 - 60 \text{ } Mm^3 = 479 \text{ } Mm^3
\]

No overtop!

The volunteer got the job back!

NEXT
GAME OVER

August 1st has arrived.
If you did not overtop the reservoir, you still have a job and you are hired for the next season!

How did you like this experience as a decision-maker?
It is April 1st.

The reservoir is at 450 Mm^3
You are given the inflow forecasts on April 1st.

Please fill in your release schedule. Remember: $15 \text{ } Mm^3 \leq \text{Release} \leq 60 \text{ } Mm^3$

Reservoir should be close to 500 Mm^3 on August 1st.
If the volume exceeds 500 Mm^3, you are fired.
It is April 1st.

And our volunteer?

Let’s see which release option our volunteer will choose.
April has gone by.

April inflow was: $18 \, Mm^3$

You can update your reservoir volume:
The volume on May 1st is:
April 1 volume $+ 18 \, Mm^3 - $ April release $=$?

Did you overtop your reservoir?

□ NO, I still have my job.
□ YES, I got fired...

What about our volunteer?
April has gone by.

April inflow was: 18 Mm^3

Our volunteer’s April release was: 17 Mm^3

The volume on May 1st is therefore:

$450 \ Mm^3 + 18 \ Mm^3 - 17 \ Mm^3 = 451 \ Mm^3$

No overtop!

The volunteer still has a job!

Let’s go to the next forecast!
It is May 1st.

The reservoir is at 451 Mm^3
You are given the inflow forecasts on May 1st.

Please fill in your release schedule. Remember: $15 \ Mm^3 \leq \text{Release} \leq 60 \ Mm^3$

Reservoir should be close to 500 Mm^3 on August 1st.
If the volume exceeds 500 Mm^3, you are fired.
It is May 1st.

And our volunteer?

Let's see which release option our volunteer will choose.

Option A

<table>
<thead>
<tr>
<th>Release</th>
<th>Reservoir volume</th>
</tr>
</thead>
<tbody>
<tr>
<td>M</td>
<td>59</td>
</tr>
<tr>
<td>J</td>
<td>60</td>
</tr>
<tr>
<td>J</td>
<td>56</td>
</tr>
</tbody>
</table>

Option B

<table>
<thead>
<tr>
<th>Release</th>
<th>Reservoir volume</th>
</tr>
</thead>
<tbody>
<tr>
<td>M</td>
<td>45</td>
</tr>
<tr>
<td>J</td>
<td>46</td>
</tr>
<tr>
<td>J</td>
<td>39</td>
</tr>
</tbody>
</table>

Option C

<table>
<thead>
<tr>
<th>Release</th>
<th>Reservoir volume</th>
</tr>
</thead>
<tbody>
<tr>
<td>M</td>
<td>26</td>
</tr>
<tr>
<td>J</td>
<td>24</td>
</tr>
<tr>
<td>J</td>
<td>25</td>
</tr>
</tbody>
</table>

- **Current reservoir volume**
- **Reservoir volume assuming inflow is median forecast**
- **Reservoir volume assuming inflow is min/max forecast**
May has gone by.

May inflow was: 55 Mm^3

You can update your reservoir volume:
The volume on June 1st is:
May 1 volume + 55 Mm^3 - May release = ?

Did you overtop your reservoir?

□ NO, I still have my job.
□ YES, I got fired...

What about our volunteer?
May has gone by.

May inflow was: 55 Mm^3

Our volunteer’s May release was: 26 Mm^3

The volume on June 1st is therefore:

$$451 \text{ Mm}^3 + 55 \text{ Mm}^3 - 26 \text{ Mm}^3 = 480 \text{ Mm}^3$$

No overtop!

The volunteer still has a job!

Let’s go to the next forecast!
It is June 1st.

The reservoir is at $480 \, Mm^3$

You are given the inflow forecasts on June 1st.

Please fill in your release schedule. Remember: $15 \, Mm^3 \leq \text{Release} \leq 60 \, Mm^3$

Reservoir should be close to $500 \, Mm^3$ on August 1st.

If the volume exceeds $500 \, Mm^3$, you are fired.
It is June 1st.

And our volunteer?

Let’s see which release option our volunteer will choose.
June has gone by.

June inflow was: 120 Mm^3

You can update your reservoir volume:

The volume on July 1st is:

June 1 volume + 120 Mm^3 - June release = ?

Did you overtop your reservoir?

☐ NO, I still have my job.
☐ YES, I got fired...

What about our volunteer?
June has gone by.

June inflow was: \(120 \, Mm^3\)

Our volunteer’s June release was: \(45 \, Mm^3\)

The volume on July 1st is therefore:

\[480 \, Mm^3 + 120 \, Mm^3 - 45 \, Mm^3 = 555 \, Mm^3\]

Overtop!

The volunteer got fired!

Can it be fixed?
It is July 1st.

The reservoir is at $555 \text{ } Mm^3$
You are given the inflow forecasts on July 1st.

Please fill in your release schedule. Remember: $15 \text{ } Mm^3 \leq \text{Release} \leq 60 \text{ } Mm^3$

Reservoir should be close to $500 \text{ } Mm^3$ on August 1st.
If the volume exceeds $500 \text{ } Mm^3$, you are fired.
It is July 1st.

And our volunteer?

Let’s see which release option our volunteer will choose.
July has gone by.

July inflow was: \(22 \, Mm^3\)

You can update your reservoir volume:

The volume on August 1st is:

\[\text{July 1 volume} + 22 \, Mm^3 - \text{July release} = ?\]

Did you overtop your reservoir?

- [] NO, I still have my job.
- [] YES, I got fired...

What about our volunteer?
July has gone by.

July inflow was: $22 \, Mm^3$

Our volunteer’s July release was: $60 \, Mm^3$

The volume on August 1st is therefore:

$555 \, Mm^3 + 22 \, Mm^3 - 60 \, Mm^3 = 517 \, Mm^3$

Overtop!

The volunteer did not get the job back!

NEXT
GAME OVER

August 1st has arrived.
If you did not overtop the reservoir, you still have a job and you are hired for the next season!

How did you like this experience as a decision-maker?
It is April 1st.

The reservoir is at 450 Mm^3
You are given the inflow forecasts on April 1st.

Please fill in your release schedule. Remember: $15 Mm^3 \leq \text{Release} \leq 60 Mm^3$

Reservoir should be close to 500 Mm^3 on August 1st.
If the volume exceeds 500 Mm^3, you are fired.
It is April 1st.

And our volunteer?

Let’s see which release option our volunteer will choose.
April has gone by.

April inflow was: $18\ Mm^3$

You can update your reservoir volume:
The volume on May 1st is:
April 1 volume + $18\ Mm^3$ - April release = ?

Did you overtop your reservoir?

☐ NO, I still have my job.
☐ YES, I got fired...

What about our volunteer?
April has gone by.

April inflow was: $18 \ Mm^3$

Our volunteer’s April release was: $37 \ Mm^3$

The volume on May 1st is therefore:

$$450 \ Mm^3 + 18 \ Mm^3 - 37 \ Mm^3 = 431 \ Mm^3$$

No overtop!

The volunteer still has a job!

Let’s go to the next forecast!
Previous decisions:

It is May 1st.

The reservoir is at \(431 \, Mm^3 \)
You are given the inflow forecasts on May 1st.

Please fill in your release schedule. Remember: \(15 \, Mm^3 \leq \text{Release} \leq 60 \, Mm^3 \)

Reservoir should be close to \(500 \, Mm^3 \) on August 1st.
If the volume exceeds \(500 \, Mm^3 \), you are fired.
It is May 1st.

And our volunteer?

Let’s see which release option our volunteer will choose.
May has gone by.

May inflow was: $55 \, Mm^3$

You can update your reservoir volume:
The volume on June 1st is:
May 1 volume $+ 55 \, Mm^3$ - May release $= ?$

Did you overtop your reservoir?

☐ NO, I still have my job.
☐ YES, I got fired...

What about our volunteer?
May has gone by.

May inflow was: 55 Mm^3

Our volunteer’s May release was: 59 Mm^3

The volume on June 1st is therefore:

$431\; Mm^3 + 55\; Mm^3 - 59\; Mm^3 = 427\; Mm^3$

No overtop!

The volunteer still has a job!

Let’s go to the next forecast!
It is June 1st.

The reservoir is at $427\ Mm^3$

You are given the inflow forecasts on June 1st.

Please fill in your release schedule. Remember: $15\ Mm^3 \leq \text{Release} \leq 60\ Mm^3$

Reservoir should be close to $500\ Mm^3$ on August 1st.

If the volume exceeds $500\ Mm^3$, you are fired.
It is June 1st.

And our volunteer?

Let’s see which release option our volunteer will choose.
June has gone by.

June inflow was: $120 \ Mm^3$

You can update your reservoir volume:
The volume on July 1st is:
June 1 volume + $120 \ Mm^3$ - June release = ?

Did you overtop your reservoir?

□ NO, I still have my job.
□ YES, I got fired...

What about our volunteer?
June has gone by.

June inflow was: 120 Mm^3

Our volunteer’s June release was: 28 Mm^3

The volume on July 1st is therefore:

$$427 \ Mm^3 +120 \ Mm^3 -28 \ Mm^3 = 519 \ Mm^3$$

Overtop!

The volunteer got fired!

Can it be fixed?
It is July 1st.

The reservoir is at \(519 \text{ Mm}^3\)

You are given the inflow forecasts on July 1st.

Please fill in your release schedule. Remember: \(15 \text{ Mm}^3 \leq \text{Release} \leq 60 \text{ Mm}^3\)

Reservoir should be close to \(500 \text{ Mm}^3\) on August 1st.
If the volume exceeds \(500 \text{ Mm}^3\), you are fired.
It is July 1st.

And our volunteer?

Let’s see which release option our volunteer will choose.
July has gone by.

July inflow was: \(22 \, Mm^3\)

You can update your reservoir volume:

The volume on August 1st is:

July 1 volume + \(22 \, Mm^3\) - July release = ?

Did you overtop your reservoir?

□ NO, I still have my job.
□ YES, I got fired...

What about our volunteer?
July has gone by.

July inflow was: $22 \, Mm^3$

Our volunteer’s July release was: $25 \, Mm^3$

The volume on August 1st is therefore:

$519 \, Mm^3 + 22 \, Mm^3 - 25 \, Mm^3 = 516 \, Mm^3$

Overtop!

The volunteer did not get the job back!
GAME OVER

August 1st has arrived.
If you did not overtop the reservoir, you still have a job and you are hired for the next season!

How did you like this experience as a decision-maker?
It is April 1st.

The reservoir is at \(450 \ Mm^3\)
You are given the inflow forecasts on April 1st.

Please fill in your release schedule. Remember: \(15 \ Mm^3 \leq \text{Release} \leq 60 \ Mm^3\)

Reservoir should be close to \(500 \ Mm^3\) on August 1st.
If the volume exceeds \(500 \ Mm^3\), you are fired.
It is April 1st.

And our volunteer?

Let’s see which release option our volunteer will choose.
April has gone by.

April inflow was: 18 Mm^3

You can update your reservoir volume:
The volume on May 1st is:
April 1 volume $+ 18 \text{ Mm}^3 - \text{April release} = ?$

Did you overtop your reservoir?

☐ NO, I still have my job.
☐ YES, I got fired...

What about our volunteer?
April has gone by.

April inflow was: $18 \ Mm^3$

Our volunteer’s April release was: $55 \ Mm^3$

The volume on May 1st is therefore:

$450 \ Mm^3 + 18 \ Mm^3 - 55 \ Mm^3 = 413 \ Mm^3$

No overtop!

The volunteer still has a job!

Let’s go to the next forecast!
It is May 1st.

The reservoir is at $413 \text{ } Mm^3$
You are given the inflow forecasts on May 1st.

Please fill in your release schedule. Remember: $15 \text{ } Mm^3 \leq \text{Release} \leq 60 \text{ } Mm^3$

Reservoir should be close to $500 \text{ } Mm^3$ on August 1st.
If the volume exceeds $500 \text{ } Mm^3$, you are fired.
It is May 1st.

And our volunteer?

Let’s see which release option our volunteer will choose.
May has gone by.

May inflow was: \(55 \, Mm^3 \)

You can update your reservoir volume:
The volume on June 1st is:
May 1 volume + \(55 \, Mm^3 \) - May release = ?

Did you overtop your reservoir?

☐ NO, I still have my job.
☐ YES, I got fired...

What about our volunteer?
May has gone by.

May inflow was: $55 \text{ } Mm^3$

Our volunteer’s May release was: $59 \text{ } Mm^3$

The volume on June 1st is therefore:

$413 \text{ } Mm^3 + 55 \text{ } Mm^3 - 59 \text{ } Mm^3 = 409 \text{ } Mm^3$

No overtop!

The volunteer still has a job!

Let’s go to the next forecast!
It is June 1st.

The reservoir is at 409 Mm^3
You are given the inflow forecasts on June 1st.

Please fill in your release schedule. Remember: $15 Mm^3 \leq \text{Release} \leq 60 Mm^3$

Reservoir should be close to 500 Mm^3 on August 1st.
If the volume exceeds 500 Mm^3, you are fired.
It is June 1st.

And our volunteer?

Let’s see which release option our volunteer will choose.
June has gone by.

June inflow was: 120 Mm^3

You can update your reservoir volume:
The volume on July 1st is:
June 1 volume + 120 Mm^3 - June release = ?

Did you overtop your reservoir?

☐ NO, I still have my job.
☐ YES, I got fired...

What about our volunteer?
June has gone by.

June inflow was: 120 Mm^3

Our volunteer’s June release was: 28 Mm^3

The volume on July 1st is therefore:

$409 \text{ Mm}^3 + 120 \text{ Mm}^3 - 28 \text{ Mm}^3 = 501 \text{ Mm}^3$

Overtop!

The volunteer got fired!

Can it be fixed?
It is July 1st.

The reservoir is at 501 Mm^3

You are given the inflow forecasts on July 1st.

Please fill in your release schedule. Remember: $15 \text{ Mm}^3 \leq \text{Release} \leq 60 \text{ Mm}^3$

Reservoir should be close to 500 Mm^3 on August 1st.

If the volume exceeds 500 Mm^3, you are fired.
It is July 1st.

And our volunteer?

Let’s see which release option our volunteer will choose.
July has gone by.

July inflow was: \(22 \ Mm^3\)

You can update your reservoir volume:

The volume on August 1st is:

July 1 volume + \(22 \ Mm^3\) - July release = ?

Did you overtop your reservoir?

☐ NO, I still have my job.
☐ YES, I got fired...

What about our volunteer?
July has gone by.

July inflow was: 22 Mm^3

Our volunteer’s July release was: 25 Mm^3

The volume on August 1st is therefore:

$501 \text{ Mm}^3 + 22 \text{ Mm}^3 - 25 \text{ Mm}^3 = 498 \text{ Mm}^3$

No overtop!

The volunteer got the job back!
GAME OVER

August 1st has arrived.
If you did not overtop the reservoir, you still have a job and you are hired for the next season!

How did you like this experience as a decision-maker?
It is April 1st.

The reservoir is at 450 Mm^3

You are given the inflow forecasts on April 1st.

Please fill in your release schedule. Remember: $15 \text{ Mm}^3 \leq \text{Release} \leq 60 \text{ Mm}^3$

Reservoir should be close to 500 Mm^3 on August 1st.

If the volume exceeds 500 Mm^3, you are fired.
It is April 1st.

And our volunteer?

Let’s see which release option our volunteer will choose.
April has gone by.

April inflow was: \(18 \text{ Mm}^3\)

You can update your reservoir volume:

The volume on May 1st is:

April 1 volume + 18 \(\text{ Mm}^3\) - April release = ?

Did you overtop your reservoir?

□ NO, I still have my job.
□ YES, I got fired...

What about our volunteer?
April has gone by.

April inflow was: 18 Mm^3

Our volunteer’s April release was: 17 Mm^3

The volume on May 1st is therefore:

$450 \ Mm^3 + 18 \ Mm^3 - 17 \ Mm^3 = 451 \ Mm^3$

No overtop!

The volunteer still has a job!

Let’s go to the next forecast!
It is May 1st.

The reservoir is at 451 \(Mm^3 \)

You are given the inflow forecasts on May 1st.

Please fill in your release schedule. Remember: 15 \(Mm^3 \) \(\leq \) Release \(\leq \) 60 \(Mm^3 \)

Reservoir should be close to 500 \(Mm^3 \) on August 1st.

If the volume exceeds 500 \(Mm^3 \), you are fired.
It is May 1st.

And our volunteer?

Let’s see which release option our volunteer will choose.
May has gone by.

May inflow was: \(55 \, Mm^3\)

You can update your reservoir volume:
The volume on June 1st is:
May 1 volume + 55 \(Mm^3\) - May release = ?

Did you overtop your reservoir?

□ NO, I still have my job.
□ YES, I got fired...

What about our volunteer?
May has gone by.

May inflow was: $55 \, Mm^3$

Our volunteer’s May release was: $59 \, Mm^3$

The volume on June 1st is therefore:

$$451 \, Mm^3 + 55 \, Mm^3 - 59 \, Mm^3 = 447 \, Mm^3$$

No overtop!

The volunteer still has a job!

Let’s go to the next forecast!
It is June 1st.

The reservoir is at 447 Mm^3

You are given the inflow forecasts on June 1st.

Please fill in your release schedule. Remember: $15 \text{ Mm}^3 \leq \text{Release} \leq 60 \text{ Mm}^3$

Reservoir should be close to 500 Mm^3 on August 1st.

If the volume exceeds 500 Mm^3, you are fired.
It is June 1st.

And our volunteer?

Let’s see which release option our volunteer will choose.
June has gone by.

June inflow was: 120 Mm^3

You can update your reservoir volume:
The volume on July 1st is:
June 1 volume + 120 Mm^3 - June release = ?

Did you overtop your reservoir?

☐ NO, I still have my job.
☐ YES, I got fired...

What about our volunteer?
June has gone by.

June inflow was: 120 Mm^3

Our volunteer’s June release was: 28 Mm^3

The volume on July 1st is therefore:

$447 \text{ Mm}^3 + 120 \text{ Mm}^3 - 28 \text{ Mm}^3 = 539 \text{ Mm}^3$

Overtop!

The volunteer got fired!

Can it be fixed?
It is July 1st.

The reservoir is at 539 Mm^3

You are given the inflow forecasts on July 1st.

Please fill in your release schedule. Remember: $15 \, Mm^3 \leq \text{Release} \leq 60 \, Mm^3$

Reservoir should be close to 500 Mm^3 on August 1st.

If the volume exceeds 500 Mm^3, you are fired.
It is July 1st.

And our volunteer?

Let’s see which release option our volunteer will choose.
July has gone by.

July inflow was: 22 Mm^3

You can update your reservoir volume:
The volume on August 1st is:
July 1 volume + 22 Mm^3 - July release = ?

Did you overtop your reservoir?

□ NO, I still have my job.
□ YES, I got fired...

What about our volunteer?
July has gone by.

July inflow was: 22 Mm^3

Our volunteer’s July release was: 25 Mm^3

The volume on August 1st is therefore:

\[539 \, Mm^3 + 22 \, Mm^3 - 25 \, Mm^3 = 536 \, Mm^3 \]

Overtop!

The volunteer did not get the job back!
GAME OVER

August 1st has arrived.
If you did not overtop the reservoir, you still have a job and you are hired for the next season!

How did you like this experience as a decision-maker?
It is April 1st.

The reservoir is at 450 Mm^3
You are given the inflow forecasts on April 1st.

Please fill in your release schedule. Remember: $15 Mm^3 \leq \text{Release} \leq 60 Mm^3$

Reservoir should be close to 500 Mm^3 on August 1st.
If the volume exceeds 500 Mm^3, you are fired.
It is April 1st.

And our volunteer?

Let’s see which release option our volunteer will choose.
April has gone by.

April inflow was: \(18 \, Mm^3 \)

You can update your reservoir volume:
The volume on May 1st is:
April 1 volume + \(18 \, Mm^3 \) - April release = ?

Did you overtop your reservoir?

☐ NO, I still have my job.
☐ YES, I got fired...

What about our volunteer?
April has gone by.

April inflow was: $18 \, Mm^3$

Our volunteer’s April release was: $37 \, Mm^3$

The volume on May 1st is therefore:

$450 \, Mm^3 + 18 \, Mm^3 - 37 \, Mm^3 = 431 \, Mm^3$

No overtop!

The volunteer still has a job!

Let’s go to the next forecast!
It is May 1st.

The reservoir is at 431 Mm^3

You are given the inflow forecasts on May 1st.

Please fill in your release schedule. Remember: $15 \text{ Mm}^3 \leq \text{Release} \leq 60 \text{ Mm}^3$

Reservoir should be close to 500 Mm^3 on August 1st.

If the volume exceeds 500 Mm^3, you are fired.
It is May 1st.

And our volunteer?

Let’s see which release option our volunteer will choose.
May has gone by.

May inflow was: 55 Mm^3

You can update your reservoir volume:
The volume on June 1st is:
May 1 volume + 55 Mm^3 - May release = ?

Did you overtop your reservoir?

☐ NO, I still have my job.
☐ YES, I got fired...

What about our volunteer?
May has gone by.

May inflow was: $55 \, Mm^3$

Our volunteer’s May release was: $45 \, Mm^3$

The volume on June 1st is therefore:

$431 \, Mm^3 + 55 \, Mm^3 - 45 \, Mm^3 = 441 \, Mm^3$

No overtop!

The volunteer still has a job!

Let’s go to the next forecast!
It is June 1st.

The reservoir is at $441\, Mm^3$
You are given the inflow forecasts on June 1st.

Please fill in your release schedule. Remember: $15\, Mm^3 \leq \text{Release} \leq 60\, Mm^3$

Reservoir should be close to $500\, Mm^3$ on August 1st.
If the volume exceeds $500\, Mm^3$, you are fired.
Previous decisions: A B

It is June 1st.

And our volunteer?

Let’s see which release option our volunteer will choose.
June has gone by.

June inflow was: $120 \, Mm^3$

You can update your reservoir volume:
The volume on July 1st is:
June 1 volume + $120 \, Mm^3$ - June release = ?

Did you overtop your reservoir?

☐ NO, I still have my job.
☐ YES, I got fired...

What about our volunteer?
June has gone by.

June inflow was: $120 \, Mm^3$

Our volunteer’s June release was: $28 \, Mm^3$

The volume on July 1st is therefore:

$441 \, Mm^3 + 120 \, Mm^3 - 28 \, Mm^3 = 533 \, Mm^3$

Overtop!

The volunteer got fired!

Can it be fixed?
It is July 1st.

The reservoir is at $533 \text{ } Mm^3$

You are given the inflow forecasts on July 1st.

Please fill in your release schedule. Remember: $15 \text{ } Mm^3 \leq \text{Release} \leq 60 \text{ } Mm^3$

Reservoir should be close to $500 \text{ } Mm^3$ on August 1st.

If the volume exceeds $500 \text{ } Mm^3$, you are fired.
It is July 1st.

And our volunteer?

Let’s see which release option our volunteer will choose.

Option A Option B Option C

Reservoir volume

Current reservoir volume

Reservoir volume assuming inflow is median forecast

Reservoir volume assuming inflow is min/max forecast
July has gone by.

July inflow was: \(22 \, Mm^3\)

You can update your reservoir volume:
The volume on August 1st is:
July 1 volume + \(22 \, Mm^3\) - July release = ?

Did you overtop your reservoir?

☐ NO, I still have my job.
☐ YES, I got fired...

What about our volunteer?
July has gone by.

July inflow was: 22 Mm^3

Our volunteer’s July release was: 25 Mm^3

The volume on August 1st is therefore:

$$533 \ Mm^3 + 22 \ Mm^3 - 25 \ Mm^3 = 530 \ Mm^3$$

Overtop!

The volunteer did not get the job back!
GAME OVER

August 1st has arrived.
If you did not overtop the reservoir, you still have a job and you are hired for the next season!

How did you like this experience as a decision-maker?
It is April 1st.

The reservoir is at 450 Mm^3
You are given the inflow forecasts on April 1st.

Please fill in your release schedule. Remember: $15 \text{ Mm}^3 \leq \text{Release} \leq 60 \text{ Mm}^3$

Reservoir should be close to 500 Mm^3 on August 1st.
If the volume exceeds 500 Mm^3, you are fired.
It is April 1st.

And our volunteer?

Let’s see which release option our volunteer will choose.
April has gone by.

April inflow was: $18 \, Mm^3$

You can update your reservoir volume:
The volume on May 1st is:
April 1 volume + $18 \, Mm^3$ - April release = ?

Did you overtop your reservoir?

☐ NO, I still have my job.
☐ YES, I got fired...

What about our volunteer?
April has gone by.

April inflow was: \(18 \, Mm^3\)

Our volunteer’s April release was: \(55 \, Mm^3\)

The volume on May 1st is therefore:

\[
450 \, Mm^3 + 18 \, Mm^3 - 55 \, Mm^3 = 413 \, Mm^3
\]

No overtop!

The volunteer still has a job!

Let’s go to the next forecast!
It is May 1st.

The reservoir is at $413 \, Mm^3$
You are given the inflow forecasts on May 1st.

Please fill in your release schedule. Remember: $15 \, Mm^3 \leq Release \leq 60 \, Mm^3$

Reservoir should be close to $500 \, Mm^3$ on August 1st.
If the volume exceeds $500 \, Mm^3$, you are fired.
It is May 1st.

And our volunteer?

Let’s see which release option our volunteer will choose.
May has gone by.

May inflow was: 55 Mm^3

You can update your reservoir volume:
The volume on June 1st is:
May 1 volume + 55 Mm^3 - May release = ?

Did you overtop your reservoir?

☐ NO, I still have my job.
☐ YES, I got fired...

What about our volunteer?
May has gone by.

May inflow was: \(55 \text{ Mm}^3\)

Our volunteer’s May release was: \(45 \text{ Mm}^3\)

The volume on June 1st is therefore:

\[413 \text{ Mm}^3 + 55 \text{ Mm}^3 - 45 \text{ Mm}^3 = 423 \text{ Mm}^3\]

No overtop!

The volunteer still has a job!

Let’s go to the next forecast!
It is June 1st.

The reservoir is at $423 \ Mm^3$
You are given the inflow forecasts on June 1st.

Please fill in your release schedule. Remember: $15 \ Mm^3 \leq \text{Release} \leq 60 \ Mm^3$

Reservoir should be close to $500 \ Mm^3$ on August 1st.
If the volume exceeds $500 \ Mm^3$, you are fired.
Previous decisions: B B

It is June 1st.

And our volunteer?

Let’s see which release option our volunteer will choose.
June has gone by.

June inflow was: 120 Mm^3

You can update your reservoir volume:
The volume on July 1st is:
June 1 volume + 120 Mm^3 - June release = ?

Did you overtop your reservoir?

☐ NO, I still have my job.
☐ YES, I got fired...

What about our volunteer?
June has gone by.

June inflow was: 120 Mm^3

Our volunteer’s June release was: 28 Mm^3

The volume on July 1st is therefore:

$$423\ Mm^3 + 120\ Mm^3 - 28\ Mm^3 = 515\ Mm^3$$

Overtop!

The volunteer got fired!

Can it be fixed?
It is July 1st.

The reservoir is at 515 Mm^3
You are given the inflow forecasts on July 1st.

Please fill in your release schedule. Remember: $15 Mm^3 \leq \text{Release} \leq 60 Mm^3$

Reservoir should be close to 500 Mm^3 on August 1st. If the volume exceeds 500 Mm^3, you are fired.

NEXT
It is July 1st.

And our volunteer?

Let's see which release option our volunteer will choose.

Previous decisions: B B A

Forecast inflow volume

<table>
<thead>
<tr>
<th>Forecast issued on the previous month</th>
<th>min (5%)</th>
<th>25%</th>
<th>50%</th>
<th>75%</th>
<th>max (95%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>M</td>
<td>5</td>
<td>18</td>
<td>55</td>
<td>120</td>
<td>19</td>
</tr>
<tr>
<td>A</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>M</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>J</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>J</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Current reservoir volume

Reservoir volume assuming inflow is median forecast

Reservoir volume assuming inflow is min/max forecast

Option A

Release: 60

Reservoir volume:

- Current: [current data]
- Median: [median data]
- Min/Max: [min/max data]

Option B

Release: 25

Reservoir volume:

- Current: [current data]
- Median: [median data]
- Min/Max: [min/max data]

Option C

Release: 40

Reservoir volume:

- Current: [current data]
- Median: [median data]
- Min/Max: [min/max data]
July has gone by.

July inflow was: $22 \, Mm^3$

You can update your reservoir volume:

The volume on August 1st is:

July 1 volume $+ 22 \, Mm^3 - \text{July release} = ?$

Did you overtop your reservoir?

□ NO, I still have my job.
□ YES, I got fired...

What about our volunteer?
July has gone by.

July inflow was: $22 \ Mm^3$

Our volunteer’s July release was: $25 \ Mm^3$

The volume on August 1st is therefore:

$$515 \ Mm^3 + 22 \ Mm^3 - 25 \ Mm^3 = 512 \ Mm^3$$

Overtop!

The volunteer did not get the job back!
GAME OVER

August 1st has arrived.
If you did not overtop the reservoir, you still have a job and you are hired for the next season!

How did you like this experience as a decision-maker?
It is April 1st.

The reservoir is at 450 Mm^3

You are given the inflow forecasts on April 1st.

Please fill in your release schedule. Remember: $15 \text{ Mm}^3 \leq \text{Release} \leq 60 \text{ Mm}^3$

Reservoir should be close to 500 Mm^3 on August 1st.

If the volume exceeds 500 Mm^3, you are fired.
It is April 1st.

And our volunteer?

Let’s see which release option our volunteer will choose.
April has gone by.

April inflow was: $18 \ M m^3$

You can update your reservoir volume:

The volume on May 1st is:

April 1 volume + $18 \ M m^3$ - April release = ?

Did you overtop your reservoir?

□ NO, I still have my job.
□ YES, I got fired...

What about our volunteer?
April has gone by.

April inflow was: $18 \ Mm^3$

Our volunteer’s April release was: $17 \ Mm^3$

The volume on May 1st is therefore:

$450 \ Mm^3 + 18 \ Mm^3 - 17 \ Mm^3 = 451 \ Mm^3$

No overtop!

The volunteer still has a job!

Let’s go to the next forecast!
It is May 1st.

The reservoir is at $451\ Mm^3$

You are given the inflow forecasts on May 1st.

Please fill in your release schedule. Remember: $15\ Mm^3 \leq \text{Release} \leq 60\ Mm^3$

Reservoir should be close to $500\ Mm^3$ on August 1st.

If the volume exceeds $500\ Mm^3$, you are fired.
It is May 1st.

And our volunteer?

Let’s see which release option our volunteer will choose.
May has gone by.

May inflow was: 55 Mm^3

You can update your reservoir volume:
The volume on June 1st is:
May 1 volume $+ 55 \text{ Mm}^3$ - May release $=$?

Did you overtop your reservoir?

□ NO, I still have my job.
□ YES, I got fired...

What about our volunteer?
May has gone by.

May inflow was: $55 \, Mm^3$

Our volunteer’s May release was: $45 \, Mm^3$

The volume on June 1st is therefore:

$451 \, Mm^3 + 55 \, Mm^3 - 45 \, Mm^3 = 461 \, Mm^3$

No overtop!

The volunteer still has a job!

Let’s go to the next forecast!
It is June 1st.

The reservoir is at 461 Mm^3

You are given the inflow forecasts on June 1st.

Please fill in your release schedule. Remember: $15 \text{ Mm}^3 \leq \text{Release} \leq 60 \text{ Mm}^3$

Reservoir should be close to 500 Mm^3 on August 1st.

If the volume exceeds 500 Mm^3, you are fired.
It is June 1st.

And our volunteer?

Let's see which release option our volunteer will choose.
June has gone by.

June inflow was: \(120 \, Mm^3\)

You can update your reservoir volume:
The volume on July 1st is:
June 1 volume + \(120 \, Mm^3\) - June release = ?

Did you overtop your reservoir?

☐ NO, I still have my job.
☐ YES, I got fired...

What about our volunteer?
June has gone by.

June inflow was: $120\ Mm^3$

Our volunteer’s June release was: $28\ Mm^3$

The volume on July 1st is therefore:

$461\ Mm^3 + 120\ Mm^3 - 28\ Mm^3 = 553\ Mm^3$

Overtop!

The volunteer got fired!

Can it be fixed?
It is July 1st.

The reservoir is at $553 \, Mm^3$
You are given the inflow forecasts on July 1st.

Please fill in your release schedule. Remember: $15 \, Mm^3 \leq \text{Release} \leq 60 \, Mm^3$

Reservoir should be close to $500 \, Mm^3$ on August 1st.
If the volume exceeds $500 \, Mm^3$, you are fired.
It is July 1st.

And our volunteer?

Let’s see which release option our volunteer will choose.
July has gone by.

July inflow was: \(22 \text{ } Mm^3\)

You can update your reservoir volume:

The volume on August 1st is:

July 1 volume + \(22 \text{ } Mm^3\) - July release = ?

Did you overtop your reservoir?

□ NO, I still have my job.
□ YES, I got fired...

What about our volunteer?
July has gone by.

July inflow was: $22 \ Mm^3$

Our volunteer’s July release was: $25 \ Mm^3$

The volume on August 1st is therefore:

$553 \ Mm^3 + 22 \ Mm^3 - 25 \ Mm^3 = 550 \ Mm^3$

Overtop!

The volunteer did not get the job back!
GAME OVER

August 1st has arrived.
If you did not overtop the reservoir, you still have a job and you are hired for the next season!

How did you like this experience as a decision-maker?
It is April 1st.

The reservoir is at \(450 \text{ } Mm^3\)
You are given the inflow forecasts on April 1st.

Please fill in your release schedule. Remember: \(15 \text{ } Mm^3 \leq \text{Release} \leq 60 \text{ } Mm^3\)

Reservoir should be close to \(500 \text{ } Mm^3\) on August 1st.
If the volume exceeds \(500 \text{ } Mm^3\), you are fired.
It is April 1st.

And our volunteer?

Let’s see which release option our volunteer will choose.
April has gone by.

April inflow was: 18 Mm^3

You can update your reservoir volume:
The volume on May 1st is:
April 1 volume + 18 Mm^3 - April release = ?

Did you overtop your reservoir?

□ NO, I still have my job.
□ YES, I got fired...

What about our volunteer?
April has gone by.

April inflow was: 18 Mm^3

Our volunteer’s April release was: 37 Mm^3

The volume on May 1st is therefore:

$450 \text{ Mm}^3 + 18 \text{ Mm}^3 - 37 \text{ Mm}^3 = 431 \text{ Mm}^3$

No overtop!

The volunteer still has a job!

Let’s go to the next forecast!
It is May 1st.

The reservoir is at 431 Mm^3
You are given the inflow forecasts on May 1st.

Please fill in your release schedule. Remember: $15 \text{ Mm}^3 \leq \text{Release} \leq 60 \text{ Mm}^3$

Forecast issued on the previous month

Reservoir should be close to 500 Mm^3 on August 1st.
If the volume exceeds 500 Mm^3, you are fired.
It is May 1st.

And our volunteer?

Let’s see which release option our volunteer will choose.
May has gone by.

May inflow was: $55 \, Mm^3$

You can update your reservoir volume:
The volume on June 1st is:
May 1 volume $+ 55 \, Mm^3$ - May release $= ?$

Did you overtop your reservoir?

□ NO, I still have my job.
□ YES, I got fired...

What about our volunteer?
May has gone by.

May inflow was: \(55 \ Mm^3\)

Our volunteer’s May release was: \(26 \ Mm^3\)

The volume on June 1st is therefore:

\[431 \ Mm^3 + 55 \ Mm^3 - 26 \ Mm^3 = 460 \ Mm^3\]

No overtop!

The volunteer still has a job!

Let’s go to the next forecast!
It is June 1st.

The reservoir is at 460 Mm^3
You are given the inflow forecasts on June 1st.

Please fill in your release schedule. Remember: $15 Mm^3 \leq \text{Release} \leq 60 Mm^3$

Reservoir should be close to 500 Mm^3 on August 1st.
If the volume exceeds 500 Mm^3, you are fired.
It is June 1st.

And our volunteer?

Let’s see which release option our volunteer will choose.
June has gone by.

June inflow was: $120 \text{ } Mm^3$

You can update your reservoir volume:
The volume on July 1st is:

June 1 volume $+ 120 \text{ } Mm^3 - \text{June release} = ?$

Did you overtop your reservoir?

☐ NO, I still have my job.
☒ YES, I got fired...

What about our volunteer?
June has gone by.

June inflow was: $120 \ Mm^3$

Our volunteer’s June release was: $28 \ Mm^3$

The volume on July 1st is therefore:

$460 \ Mm^3 + 120 \ Mm^3 - 28 \ Mm^3 = 552 \ Mm^3$

Overtop!

The volunteer got fired!

Can it be fixed?
It is July 1st.

The reservoir is at 552 \(Mm^3 \)

You are given the inflow forecasts on July 1st.

Please fill in your release schedule. Remember: 15 \(Mm^3 \) \(\leq \) Release \(\leq \) 60 \(Mm^3 \)

Reservoir should be close to 500 \(Mm^3 \) on August 1st.

If the volume exceeds 500 \(Mm^3 \), you are fired.
It is July 1st.

And our volunteer?

Let's see which release option our volunteer will choose.
July has gone by.

July inflow was: $22 \ Mm^3$

You can update your reservoir volume:
The volume on August 1st is:
July 1 volume + $22 \ Mm^3$ - July release = ?

Did you overtop your reservoir?

☐ NO, I still have my job.
☐ YES, I got fired...

What about our volunteer?
July has gone by.

July inflow was: 22 Mm^3

Our volunteer’s July release was: 25 Mm^3

The volume on August 1st is therefore:

$552 \text{ Mm}^3 + 22 \text{ Mm}^3 - 25 \text{ Mm}^3 = 549 \text{ Mm}^3$

Overtop!

The volunteer did not get the job back!
GAME OVER

August 1st has arrived.
If you did not overtop the reservoir, you still have a job and you are hired for the next season!

How did you like this experience as a decision-maker?
It is April 1st.

The reservoir is at 450 Mm^3
You are given the inflow forecasts on April 1st.

Please fill in your release schedule. Remember: $15 Mm^3 \leq \text{Release} \leq 60 Mm^3$

Reservoir should be close to 500 Mm^3 on August 1st.
If the volume exceeds 500 Mm^3, you are fired.
It is April 1st.

And our volunteer?

Let’s see which release option our volunteer will choose.
April has gone by.

April inflow was: $18 \ Mm^3$

You can update your reservoir volume:
The volume on May 1st is:
April 1 volume $+ 18 \ Mm^3$ - April release $= ?$

Did you overtop your reservoir?

☐ NO, I still have my job.
☐ YES, I got fired...

What about our volunteer?
April has gone by.

April inflow was: 18 Mm^3

Our volunteer’s April release was: 55 Mm^3

The volume on May 1st is therefore:

$450 \ Mm^3 + 18 \ Mm^3 - 55 \ Mm^3 = 413 \ Mm^3$

No overtop!

The volunteer still has a job!

Let’s go to the next forecast!
It is May 1st.

The reservoir is at \(413\ Mm^3\)

You are given the inflow forecasts on May 1st.

Please fill in your release schedule. Remember: \(15\ Mm^3 \leq \text{Release} \leq 60\ Mm^3\)

Reservoir should be close to \(500\ Mm^3\) on August 1st.

If the volume exceeds \(500\ Mm^3\), you are fired.
It is May 1st.

And our volunteer?

Let’s see which release option our volunteer will choose.
May has gone by.

May inflow was: 55 Mm^3

You can update your reservoir volume:

The volume on June 1st is:

May 1 volume + 55 \text{ Mm}^3 - \text{May release} = ?

Did you overtop your reservoir?

□ NO, I still have my job.
□ YES, I got fired...

What about our volunteer?
May has gone by.

May inflow was: 55 Mm^3

Our volunteer’s May release was: 26 Mm^3

The volume on June 1st is therefore:

$$413 \ Mm^3 +55 \ Mm^3 -26 \ Mm^3 = 442 \ Mm^3$$

No overtop!

The volunteer still has a job!

Let’s go to the next forecast!
It is June 1st.

The reservoir is at 442 Mm^3

You are given the inflow forecasts on June 1st.

Please fill in your release schedule. Remember: $15\text{ Mm}^3 \leq \text{Release} \leq 60\text{ Mm}^3$

Reservoir should be close to 500 Mm^3 on August 1st.

If the volume exceeds 500 Mm^3, you are fired.
It is June 1st.

And our volunteer?

Let’s see which release option our volunteer will choose.
June has gone by.

June inflow was: 120 Mm^3

You can update your reservoir volume:
The volume on July 1st is:
June 1 volume $+ 120 \ Mm^3$ - June release $=$?

Did you overtop your reservoir?

☐ NO, I still have my job.
☐ YES, I got fired...

What about our volunteer?
June has gone by.

June inflow was: \(120 \ Mm^3\)

Our volunteer’s June release was: \(28 \ Mm^3\)

The volume on July 1st is therefore:
\[442 \ Mm^3 + 120 \ Mm^3 - 28 \ Mm^3 = 534 \ Mm^3\]

Overtop!

The volunteer got fired!

Can it be fixed?
It is July 1st.

The reservoir is at 534 Mm^3
You are given the inflow forecasts on July 1st.

Please fill in your release schedule. Remember: $15 Mm^3 \leq \text{Release} \leq 60 Mm^3$

Reservoir should be close to 500 Mm^3 on August 1st.
If the volume exceeds 500 Mm^3, you are fired.
It is July 1st.

And our volunteer?

Let’s see which release option our volunteer will choose.
July has gone by.

July inflow was: 22 $M m^3$

You can update your reservoir volume:
The volume on August 1st is:
July 1 volume + 22 $M m^3$ - July release = ?

Did you overtop your reservoir?

☐ NO, I still have my job.
☐ YES, I got fired...

What about our volunteer?
July has gone by.

July inflow was: $22 \, Mm^3$

Our volunteer’s July release was: $25 \, Mm^3$

The volume on August 1st is therefore:

$$534 \, Mm^3 + 22 \, Mm^3 - 25 \, Mm^3 = 531 \, Mm^3$$

Overtop!

The volunteer did not get the job back!
GAME OVER

August 1st has arrived.
If you did not overtop the reservoir, you still have a job and you are hired for the next season!

How did you like this experience as a decision-maker?
It is April 1st.

The reservoir is at 450 Mm^3.
You are given the inflow forecasts on April 1st.

Please fill in your release schedule. Remember: $15 Mm^3 \leq \text{Release} \leq 60 Mm^3$

Reservoir should be close to 500 Mm^3 on August 1st.
If the volume exceeds 500 Mm^3, you are fired.
It is April 1st.

And our volunteer?

Let’s see which release option our volunteer will choose.
April has gone by.

April inflow was: 18 Mm^3

You can update your reservoir volume:
The volume on May 1st is:
April 1 volume + 18 Mm^3 - April release = ?

Did you overtop your reservoir?

☐ NO, I still have my job.
☐ YES, I got fired...

What about our volunteer?
April has gone by.

April inflow was: $18 \, Mm^3$

Our volunteer’s April release was: $17 \, Mm^3$

The volume on May 1st is therefore:

$$450 \, Mm^3 + 18 \, Mm^3 - 17 \, Mm^3 = 451 \, Mm^3$$

No overtop!

The volunteer still has a job!

Let’s go to the next forecast!
It is May 1st.

The reservoir is at 451 Mm^3

You are given the inflow forecasts on May 1st.

Please fill in your release schedule. Remember: $15 \text{ Mm}^3 \leq \text{Release} \leq 60 \text{ Mm}^3$

Reservoir should be close to 500 Mm^3 on August 1st.
If the volume exceeds 500 Mm^3, you are fired.
It is May 1st.

And our volunteer?

Let’s see which release option our volunteer will choose.
May has gone by.

May inflow was: $55 \text{ } Mm^3$

You can update your reservoir volume:
The volume on June 1st is:
May 1 volume + $55 \text{ } Mm^3$ - May release = ?

Did you overtop your reservoir?

☐ NO, I still have my job.
☐ YES, I got fired...

What about our volunteer?
May has gone by.

May inflow was: $55 \ M m^3$

Our volunteer’s May release was: $26 \ M m^3$

The volume on June 1st is therefore:

$451 \ M m^3 + 55 \ M m^3 - 26 \ M m^3 = 480 \ M m^3$

No overtop!

The volunteer still has a job!

Let’s go to the next forecast!
It is June 1st.

The reservoir is at $480\ Mm^3$
You are given the inflow forecasts on June 1st.

Please fill in your release schedule. Remember: $15\ Mm^3 \leq \text{Release} \leq 60\ Mm^3$

Reservoir should be close to $500\ Mm^3$ on August 1st.
If the volume exceeds $500\ Mm^3$, you are fired.
It is June 1st.

And our volunteer?

Let’s see which release option our volunteer will choose.
June has gone by.

June inflow was: 120 Mm^3

You can update your reservoir volume:
The volume on July 1st is:
June 1 volume + 120 Mm^3 - June release = ?

Did you overtop your reservoir?

□ NO, I still have my job.
□ YES, I got fired...

What about our volunteer?
June has gone by.

June inflow was: $120 \ Mm^3$

Our volunteer’s June release was: $28 \ Mm^3$

The volume on July 1st is therefore:

$480 \ Mm^3 + 120 \ Mm^3 - 28 \ Mm^3 = 572 \ Mm^3$

Overtop!

The volunteer got fired!

Can it be fixed?
It is July 1st.

The reservoir is at 572 Mm^3

You are given the inflow forecasts on July 1st.

Please fill in your release schedule. Remember: $15 Mm^3 \leq \text{Release} \leq 60 Mm^3$

Reservoir should be close to 500 Mm^3 on August 1st.

If the volume exceeds 500 Mm^3, you are fired.
It is July 1st.

And our volunteer?

Let’s see which release option our volunteer will choose.
July has gone by.

July inflow was: 22 Mm^3

You can update your reservoir volume:
The volume on August 1st is:
July 1 volume + 22 Mm^3 - July release = ?

Did you overtop your reservoir?

☐ NO, I still have my job.
☐ YES, I got fired...

What about our volunteer?
July has gone by.

July inflow was: 22 Mm^3

Our volunteer’s July release was: 25 Mm^3

The volume on August 1st is therefore:

$572 \text{ Mm}^3 + 22 \text{ Mm}^3 - 25 \text{ Mm}^3 = 569 \text{ Mm}^3$

Overtop!

The volunteer did not get the job back!
GAME OVER

August 1st has arrived.
If you did not overtop the reservoir, you still have a job and you are hired for the next season!

How did you like this experience as a decision-maker?
It is April 1st.

The reservoir is at 450 Mm^3
You are given the inflow forecasts on April 1st.

Please fill in your release schedule. Remember: $15 Mm^3 \leq \text{Release} \leq 60 Mm^3$

![Forecast graph]

Reservoir should be close to 500 Mm^3 on August 1st.
If the volume exceeds 500 Mm^3, you are fired.
It is April 1st.

And our volunteer?

Let’s see which release option our volunteer will choose.
April has gone by.

April inflow was: $18 \ M m^3$

You can update your reservoir volume:
The volume on May 1st is:
April 1 volume + $18 \ M m^3$ - April release = ?

Did you overtop your reservoir?

□ NO, I still have my job.
□ YES, I got fired...

What about our volunteer?
April has gone by.

April inflow was: 18 Mm^3

Our volunteer’s April release was: 37 Mm^3

The volume on May 1st is therefore:

\[
450 \ Mm^3 + 18 \ Mm^3 - 37 \ Mm^3 = 431 \ Mm^3
\]

No overtop!

The volunteer still has a job!

Let’s go to the next forecast!
It is May 1st.

The reservoir is at 431 Mm^3

You are given the inflow forecasts on May 1st.

Please fill in your release schedule. Remember: $15 Mm^3 \leq \text{Release} \leq 60 Mm^3$

Reservoir should be close to 500 Mm^3 on August 1st.
If the volume exceeds 500 Mm^3, you are fired.
It is May 1st.

And our volunteer?

Let’s see which release option our volunteer will choose.
May has gone by.

May inflow was: $55 \, Mm^3$

You can update your reservoir volume:
The volume on June 1st is:
May 1 volume $+ 55 \, Mm^3 - \text{May release} = ?$

Did you overtop your reservoir?

☐ NO, I still have my job.
☐ YES, I got fired...

What about our volunteer?
May has gone by.

May inflow was: 55 Mm^3

Our volunteer’s May release was: 59 Mm^3

The volume on June 1st is therefore:

$431 \text{ Mm}^3 + 55 \text{ Mm}^3 - 59 \text{ Mm}^3 = 427 \text{ Mm}^3$

No overtop!

The volunteer still has a job!

Let’s go to the next forecast!
It is June 1st.

The reservoir is at $427\ Mm^3$

You are given the inflow forecasts on June 1st.

Please fill in your release schedule. Remember: $15\ Mm^3 \leq \text{Release} \leq 60\ Mm^3$

Reservoir should be close to $500\ Mm^3$ on August 1st.

If the volume exceeds $500\ Mm^3$, you are fired.
It is June 1st.

And our volunteer?

Let’s see which release option our volunteer will choose.
June has gone by.

June inflow was: $120 \, Mm^3$

You can update your reservoir volume:
The volume on July 1st is:
June 1 volume $+ 120 \, Mm^3 - \text{June release} = ?$

Did you overtop your reservoir?

□ NO, I still have my job.
□ YES, I got fired...

What about our volunteer?
June has gone by.

June inflow was: 120 Mm^3

Our volunteer’s June release was: 60 Mm^3

The volume on July 1st is therefore:

$427 \ Mm^3 + 120 \ Mm^3 - 60 \ Mm^3 = 487 \ Mm^3$

No overtop!

The volunteer still has a job!

Let’s go to the next forecast!
It is July 1st.

The reservoir is at $487 \, Mm^3$

You are given the inflow forecasts on July 1st.

Please fill in your release schedule. Remember: $15 \, Mm^3 \leq \text{Release} \leq 60 \, Mm^3$

Reservoir should be close to $500 \, Mm^3$ on August 1st.
If the volume exceeds $500 \, Mm^3$, you are fired.
It is July 1st.

And our volunteer?

Let’s see which release option our volunteer will choose.
July has gone by.

July inflow was: 22 $M m^3$

You can update your reservoir volume:
The volume on August 1st is:
July 1 volume + 22 $M m^3$ - July release = ?

Did you overtop your reservoir?

☐ NO, I still have my job.
☐ YES, I got fired...

What about our volunteer?
July has gone by.

July inflow was: 22 Mm^3

Our volunteer’s July release was: 25 Mm^3

The volume on August 1st is therefore:

$487 \text{ Mm}^3 + 22 \text{ Mm}^3 - 25 \text{ Mm}^3 = 484 \text{ Mm}^3$

No overtop!

The volunteer still has a job!
GAME OVER

August 1st has arrived.
If you did not overtop the reservoir, you still have a job and you are hired for the next season!

How did you like this experience as a decision-maker?
It is April 1st.

The reservoir is at 450 Mm^3

You are given the inflow forecasts on April 1st.

Please fill in your release schedule. Remember: $15 \text{ Mm}^3 \leq \text{Release} \leq 60 \text{ Mm}^3$

Reservoir should be close to 500 Mm^3 on August 1st.

If the volume exceeds 500 Mm^3, you are fired.
It is April 1st.

And our volunteer?

Let’s see which release option our volunteer will choose.
April has gone by.

April inflow was: $18 \text{ $Mm}^3$

You can update your reservoir volume:
The volume on May 1st is:
April 1 volume $+ 18 \text{ $Mm}^3 - \text{April release} = ?$

Did you overtop your reservoir?

☐ NO, I still have my job.
☐ YES, I got fired...

What about our volunteer?
April has gone by.

April inflow was: $18 \, Mm^3$

Our volunteer’s April release was: $55 \, Mm^3$

The volume on May 1st is therefore:

$$450 \, Mm^3 + 18 \, Mm^3 - 55 \, Mm^3 = 413 \, Mm^3$$

No overtop!

The volunteer still has a job!

Let’s go to the next forecast!
It is May 1st.

The reservoir is at 413 $M m^3$.

You are given the inflow forecasts on May 1st.

Please fill in your release schedule. Remember: $15 M m^3 \leq \text{Release} \leq 60 M m^3$

Reservoir should be close to 500 $M m^3$ on August 1st.

If the volume exceeds 500 $M m^3$, you are fired.
It is May 1st.

And our volunteer?

Let’s see which release option our volunteer will choose.
May has gone by.

May inflow was: \(55 \ Mm^3 \)

You can update your reservoir volume:
The volume on June 1st is:
May 1 volume + \(55 \ Mm^3 \) - May release = ?

Did you overtop your reservoir?

□ NO, I still have my job.
□ YES, I got fired...

What about our volunteer?
May has gone by.

May inflow was: $55\ Mm^3$

Our volunteer’s May release was: $59\ Mm^3$

The volume on June 1st is therefore:

$$413\ Mm^3 + 55\ Mm^3 - 59\ Mm^3 = 409\ Mm^3$$

No overtop!

The volunteer still has a job!

Let’s go to the next forecast!
It is June 1st.

The reservoir is at \(409 \text{ } Mm^3\)

You are given the inflow forecasts on June 1st.

Please fill in your release schedule. Remember: \(15 \text{ } Mm^3 \leq \text{Release} \leq 60 \text{ } Mm^3\)

Reservoir should be close to \(500 \text{ } Mm^3\) on August 1st.

If the volume exceeds \(500 \text{ } Mm^3\), you are fired.
It is June 1st.

And our volunteer?

Let’s see which release option our volunteer will choose.
June has gone by.

June inflow was: $120 \, Mm^3$

You can update your reservoir volume:
The volume on July 1st is:
June 1 volume $+ 120 \, Mm^3 -$ June release $=$?

Did you overtop your reservoir?

☐ NO, I still have my job.
☐ YES, I got fired...

What about our volunteer?
June has gone by.

June inflow was: $120 \ Mm^3$

Our volunteer’s June release was: $60 \ Mm^3$

The volume on July 1st is therefore:

$409 \ Mm^3 + 120 \ Mm^3 - 60 \ Mm^3 = 469 \ Mm^3$

No overtop!

The volunteer still has a job!

Let’s go to the next forecast!
It is July 1st.

The reservoir is at 469 Mm^3

You are given the inflow forecasts on July 1st.

Please fill in your release schedule. Remember: $15 \, Mm^3 \leq \text{Release} \leq 60 \, Mm^3$

Reservoir should be close to 500 Mm^3 on August 1st.

If the volume exceeds 500 Mm^3, you are fired.
It is July 1st.

And our volunteer?

Let's see which release option our volunteer will choose.
July has gone by.

July inflow was: $22 \, Mm^3$

You can update your reservoir volume:

The volume on August 1st is:

July 1 volume $+ \, 22 \, Mm^3 \, - \, \text{July release} = ?$

Did you overtop your reservoir?

☐ NO, I still have my job.
☐ YES, I got fired...

What about our volunteer?
July has gone by.

July inflow was: 22 Mm^3

Our volunteer’s July release was: 25 Mm^3

The volume on August 1st is therefore:

$469 \text{ } Mm^3 + 22 \text{ } Mm^3 - 25 \text{ } Mm^3 = 466 \text{ } Mm^3$

No overtop!

The volunteer still has a job!

NEXT
GAME OVER

August 1st has arrived.
If you did not overtop the reservoir, you still have a job and you are hired for the next season!

How did you like this experience as a decision-maker?
It is April 1st.

The reservoir is at $450 \: Mm^3$.

You are given the inflow forecasts on April 1st.

Please fill in your release schedule. Remember: $15 \: Mm^3 \leq \text{Release} \leq 60 \: Mm^3$.

Reservoir should be close to $500 \: Mm^3$ on August 1st.

If the volume exceeds $500 \: Mm^3$, you are fired.
It is April 1st.

And our volunteer?

Let’s see which release option our volunteer will choose.

<table>
<thead>
<tr>
<th></th>
<th>Option A</th>
<th>Option B</th>
<th>Option C</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Release</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>37</td>
<td>55</td>
<td>17</td>
</tr>
<tr>
<td></td>
<td>38</td>
<td>58</td>
<td>23</td>
</tr>
<tr>
<td></td>
<td>45</td>
<td>60</td>
<td>29</td>
</tr>
<tr>
<td></td>
<td>35</td>
<td>57</td>
<td>25</td>
</tr>
</tbody>
</table>

- **Current reservoir volume**
- **Reservoir volume assuming inflow is median forecast**
- **Reservoir volume assuming inflow is min/max forecast**
April has gone by.

April inflow was: \(18 \text{ Mm}^3\)

You can update your reservoir volume:

The volume on May 1st is:

April 1 volume + \(18 \text{ Mm}^3\) - April release = ?

Did you overtop your reservoir?

□ NO, I still have my job.
□ YES, I got fired...

What about our volunteer?
April has gone by.

April inflow was: \(18 \text{ Mm}^3 \)

Our volunteer’s April release was: \(17 \text{ Mm}^3 \)

The volume on May 1st is therefore:
\[
450 \text{ Mm}^3 + 18 \text{ Mm}^3 - 17 \text{ Mm}^3 = 451 \text{ Mm}^3
\]

No overtop!

The volunteer still has a job!

Let’s go to the next forecast!
It is May 1st.

The reservoir is at 451 Mm^3
You are given the inflow forecasts on May 1st.

Please fill in your release schedule. Remember: $15 \text{ Mm}^3 \leq \text{Release} \leq 60 \text{ Mm}^3$

Reservoir should be close to 500 Mm^3 on August 1st.
If the volume exceeds 500 Mm^3, you are fired.
It is May 1st.

And our volunteer?

Let’s see which release option our volunteer will choose.
May has gone by.

May inflow was: $55 \, Mm^3$

You can update your reservoir volume:
The volume on June 1st is:
May 1 volume $+ 55 \, Mm^3 -$ May release $= ?$

Did you overtop your reservoir?

□ NO, I still have my job.
□ YES, I got fired...

What about our volunteer?
May has gone by.

May inflow was: \(55 \ Mm^3 \)

Our volunteer’s May release was: \(59 \ Mm^3 \)

The volume on June 1st is therefore:

\[
451 \ Mm^3 + 55 \ Mm^3 - 59 \ Mm^3 = 447 \ Mm^3
\]

No overtop!

The volunteer still has a job!

Let’s go to the next forecast!
It is June 1st.

The reservoir is at 447 Mm^3

You are given the inflow forecasts on June 1st.

Please fill in your release schedule. Remember: $15 Mm^3 \leq \text{Release} \leq 60 Mm^3$

Reservoir should be close to 500 Mm^3 on August 1st.

If the volume exceeds 500 Mm^3, you are fired.
It is June 1st.

And our volunteer?

Let’s see which release option our volunteer will choose.
June has gone by.

June inflow was: \(120 \, Mm^3\)

You can update your reservoir volume:
The volume on July 1st is:
June 1 volume + \(120 \, Mm^3\) - June release = ?

Did you overtop your reservoir?

☐ NO, I still have my job.
☐ YES, I got fired...

What about our volunteer?
June has gone by.

June inflow was: $120 \, Mm^3$

Our volunteer’s June release was: $60 \, Mm^3$

The volume on July 1st is therefore:

$447 \, Mm^3 + 120 \, Mm^3 - 60 \, Mm^3 = 507 \, Mm^3$

Overtop!

The volunteer got fired!

Can it be fixed?
It is July 1st.

The reservoir is at 507 Mm^3
You are given the inflow forecasts on July 1st.

Please fill in your release schedule. Remember: $15 Mm^3 \leq \text{Release} \leq 60 Mm^3$

Reservoir should be close to 500 Mm^3 on August 1st.
If the volume exceeds 500 Mm^3, you are fired.
It is July 1st.

And our volunteer?

Let’s see which release option our volunteer will choose.
July has gone by.

July inflow was: 22 \(Mm^3 \)

You can update your reservoir volume:

The volume on August 1st is:

July 1 volume + 22 \(Mm^3 \) - July release = ?

Did you overtop your reservoir?

☐ NO, I still have my job.
☐ YES, I got fired...

What about our volunteer?
July has gone by.

July inflow was: 22 Mm^3

Our volunteer’s July release was: 25 Mm^3

The volume on August 1st is therefore:

$507 \text{ Mm}^3 + 22 \text{ Mm}^3 - 25 \text{ Mm}^3 = 504 \text{ Mm}^3$

Overtop!

The volunteer did not get the job back!
GAME OVER

August 1st has arrived.
If you did not overtop the reservoir, you still have a job and you are hired for the next season!

How did you like this experience as a decision-maker?
It is April 1st.

The reservoir is at 450 Mm^3

You are given the inflow forecasts on April 1st.

Please fill in your release schedule. Remember: $15 Mm^3 \leq \text{Release} \leq 60 Mm^3$

Reservoir should be close to 500 Mm^3 on August 1st.

If the volume exceeds 500 Mm^3, you are fired.
It is April 1st.

And our volunteer?

Let’s see which release option our volunteer will choose.
April has gone by.

April inflow was: $18 \ Mm^3$

You can update your reservoir volume:

The volume on May 1st is:

April 1 volume $+ 18 \ Mm^3 - \text{April release} = ?$

Did you overtop your reservoir?

- [] NO, I still have my job.
- [] YES, I got fired...

What about our volunteer?
April has gone by.

April inflow was: $18 \ Mm^3$

Our volunteer’s April release was: $37 \ Mm^3$

The volume on May 1st is therefore:

$450 \ Mm^3 + 18 \ Mm^3 - 37 \ Mm^3 = 431 \ Mm^3$

No overtop!

The volunteer still has a job!

Let’s go to the next forecast!
It is May 1st.

The reservoir is at 431 \(Mm^3 \)
You are given the inflow forecasts on May 1st.

Please fill in your release schedule. Remember: \(15 Mm^3 \leq \text{Release} \leq 60 Mm^3 \)

Reservoir should be close to 500 \(Mm^3 \) on August 1st.
If the volume exceeds 500 \(Mm^3 \), you are fired.
It is May 1st.

And our volunteer?

Let’s see which release option our volunteer will choose.
May has gone by.

May inflow was: $55 \, Mm^3$

You can update your reservoir volume:
The volume on June 1st is:
May 1 volume $+ 55 \, Mm^3 - \text{May release} = ?$

Did you overtop your reservoir?

☐ NO, I still have my job.
☐ YES, I got fired...

What about our volunteer?
May has gone by.

May inflow was: 55 Mm^3

Our volunteer’s May release was: 45 Mm^3

The volume on June 1st is therefore:

$431 \ Mm^3 + 55 \ Mm^3 - 45 \ Mm^3 = 441 \ Mm^3$

No overtop!

The volunteer still has a job!

Let’s go to the next forecast!
It is June 1st.

The reservoir is at 441 Mm^3

You are given the inflow forecasts on June 1st.

Please fill in your release schedule. Remember: $15 \ Mm^3 \leq \text{Release} \leq 60 \ Mm^3$

Reservoir should be close to 500 Mm^3 on August 1st.

If the volume exceeds 500 Mm^3, you are fired.
It is June 1st.

And our volunteer?

Let’s see which release option our volunteer will choose.
June has gone by.

June inflow was: 120 Mm^3

You can update your reservoir volume:

The volume on July 1st is:

June 1 volume + 120 Mm^3 - June release = ?

Did you overtop your reservoir?

☐ NO, I still have my job.
☐ YES, I got fired...

What about our volunteer?
June has gone by.

June inflow was: \(120 \ Mm^3\)

Our volunteer’s June release was: \(60 \ Mm^3\)

The volume on July 1st is therefore:

\[441 \ Mm^3 + 120 \ Mm^3 - 60 \ Mm^3 = 501 \ Mm^3\]

Overtop!

The volunteer got fired!

Can it be fixed?
It is July 1st.

The reservoir is at 501 Mm^3
You are given the inflow forecasts on July 1st.

Please fill in your release schedule. Remember: $15 \text{ Mm}^3 \leq \text{Release} \leq 60 \text{ Mm}^3$

Reservoir should be close to 500 Mm^3 on August 1st.
If the volume exceeds 500 Mm^3, you are fired.
It is July 1st.

And our volunteer?

Let’s see which release option our volunteer will choose.
July has gone by.

July inflow was: \(22 \text{ Mm}^3\)

You can update your reservoir volume:
The volume on August 1st is:
July 1 volume + \(22 \text{ Mm}^3\) - July release = ?

Did you overtop your reservoir?

☐ NO, I still have my job.
☐ YES, I got fired...

What about our volunteer?
July has gone by.

July inflow was: \(22 \text{ Mm}^3\)

Our volunteer’s July release was: \(25 \text{ Mm}^3\)

The volume on August 1st is therefore:

\[501 \text{ Mm}^3 + 22 \text{ Mm}^3 - 25 \text{ Mm}^3 = 498 \text{ Mm}^3\]

No overtop!

The volunteer got the job back!

NEXT
GAME OVER

August 1st has arrived.
If you did not overtop the reservoir, you still have a job and you are hired for the next season!

How did you like this experience as a decision-maker?
It is April 1st.

The reservoir is at $450\ Mm^3$
You are given the inflow forecasts on April 1st.

Please fill in your release schedule. Remember: $15\ Mm^3 \leq \text{Release} \leq 60\ Mm^3$

Reservoir should be close to $500\ Mm^3$ on August 1st.
If the volume exceeds $500\ Mm^3$, you are fired.
It is April 1st.

And our volunteer?

Let’s see which release option our volunteer will choose.
April has gone by.

April inflow was: $18 \ Mm^3$

You can update your reservoir volume:
The volume on May 1st is:
April 1 volume + $18 \ Mm^3$ - April release = ?

Did you overtop your reservoir?

☐ NO, I still have my job.
☐ YES, I got fired...

What about our volunteer?
April has gone by.

April inflow was: 18 Mm^3

Our volunteer’s April release was: 55 Mm^3

The volume on May 1st is therefore:

$$450 \text{ Mm}^3 + 18 \text{ Mm}^3 - 55 \text{ Mm}^3 = 413 \text{ Mm}^3$$

No overtop!

The volunteer still has a job!

Let’s go to the next forecast!
It is May 1st.

The reservoir is at 413 Mm^3
You are given the inflow forecasts on May 1st.

Please fill in your release schedule. Remember: $15 Mm^3 \leq \text{Release} \leq 60 Mm^3$

Reservoir should be close to 500 Mm^3 on August 1st.
If the volume exceeds 500 Mm^3, you are fired.
It is May 1st.

And our volunteer?

Let’s see which release option our volunteer will choose.
May has gone by.

May inflow was: 55 Mm^3

You can update your reservoir volume:

The volume on June 1st is:

May 1 volume + 55 Mm^3 - May release = ?

Did you overtop your reservoir?

☐ NO, I still have my job.
☐ YES, I got fired...

What about our volunteer?
May has gone by.

May inflow was: 55 Mm^3

Our volunteer’s May release was: 45 Mm^3

The volume on June 1st is therefore:

$413 Mm^3 + 55 Mm^3 - 45 Mm^3 = 423 Mm^3$

No overtop!

The volunteer still has a job!

Let’s go to the next forecast!
It is June 1st.

The reservoir is at 423 Mm^3

You are given the inflow forecasts on June 1st.

Please fill in your release schedule. Remember: $15 \text{ Mm}^3 \leq \text{Release} \leq 60 \text{ Mm}^3$

Reservoir should be close to 500 Mm^3 on August 1st.

If the volume exceeds 500 Mm^3, you are fired.
It is June 1st.

And our volunteer?

Let’s see which release option our volunteer will choose.

Option A

<table>
<thead>
<tr>
<th>Release</th>
<th>Reservoir volume</th>
</tr>
</thead>
<tbody>
<tr>
<td>J</td>
<td>28</td>
</tr>
<tr>
<td>J</td>
<td>30</td>
</tr>
</tbody>
</table>

Option B

<table>
<thead>
<tr>
<th>Release</th>
<th>Reservoir volume</th>
</tr>
</thead>
<tbody>
<tr>
<td>J</td>
<td>60</td>
</tr>
<tr>
<td>J</td>
<td>50</td>
</tr>
</tbody>
</table>

Option C

<table>
<thead>
<tr>
<th>Release</th>
<th>Reservoir volume</th>
</tr>
</thead>
<tbody>
<tr>
<td>J</td>
<td>45</td>
</tr>
<tr>
<td>J</td>
<td>35</td>
</tr>
</tbody>
</table>

Current reservoir volume

Reservoir volume assuming inflow is median forecast

Reservoir volume assuming inflow is min/max forecast
June has gone by.

June inflow was: \(120 \, M m^3\)

You can update your reservoir volume:

The volume on July 1st is:

\[\text{June 1 volume} + 120 \, M m^3 - \text{June release} = ?\]

Did you overtop your reservoir?

☐ NO, I still have my job.
☐ YES, I got fired...

What about our volunteer?
June has gone by.

June inflow was: $120 \ Mm^3$

Our volunteer’s June release was: $60 \ Mm^3$

The volume on July 1st is therefore:

$423 \ Mm^3 + 120 \ Mm^3 - 60 \ Mm^3 = 483 \ Mm^3$

No overtop!

The volunteer still has a job!

Let’s go to the next forecast!
It is July 1st.

The reservoir is at 483 Mm^3

You are given the inflow forecasts on July 1st.

Please fill in your release schedule. Remember: $15 \text{ Mm}^3 \leq \text{Release} \leq 60 \text{ Mm}^3$

Reservoir should be close to 500 Mm^3 on August 1st.

If the volume exceeds 500 Mm^3, you are fired.
It is July 1st.

And our volunteer?

Let’s see which release option our volunteer will choose.
July has gone by.

July inflow was: 22 Mm^3

You can update your reservoir volume:
The volume on August 1st is:
July 1 volume $+ 22 \text{ Mm}^3 - \text{July release} = ?$

Did you overtop your reservoir?

☐ NO, I still have my job.
☐ YES, I got fired...

What about our volunteer?
July has gone by.

July inflow was: $22 \ Mm^3$

Our volunteer’s July release was: $25 \ Mm^3$

The volume on August 1st is therefore:

$483 \ Mm^3 + 22 \ Mm^3 - 25 \ Mm^3 = 480 \ Mm^3$

No overtop!

The volunteer still has a job!

NEXT
GAME OVER

August 1st has arrived.
If you did not overtop the reservoir, you still have a job and you are hired for the next season!

How did you like this experience as a decision-maker?
It is April 1st.

The reservoir is at $450 \ Mm^3$
You are given the inflow forecasts on April 1st.

Please fill in your release schedule. Remember: $15 \ Mm^3 \leq Release \leq 60 \ Mm^3$

Reservoir should be close to $500 \ Mm^3$ on August 1st.
If the volume exceeds $500 \ Mm^3$, you are fired.
It is April 1st.

And our volunteer?

Let’s see which release option our volunteer will choose.

Option A

<table>
<thead>
<tr>
<th>Release</th>
<th>Reservoir volume</th>
<th>Current reservoir volume</th>
<th>Reservoir volume assuming inflow is median forecast</th>
<th>Reservoir volume assuming inflow is min/max forecast</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>37</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>M</td>
<td>38</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>J</td>
<td>45</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>J</td>
<td>35</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Option B

<table>
<thead>
<tr>
<th>Release</th>
<th>Reservoir volume</th>
<th>Current reservoir volume</th>
<th>Reservoir volume assuming inflow is median forecast</th>
<th>Reservoir volume assuming inflow is min/max forecast</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>55</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>M</td>
<td>58</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>J</td>
<td>60</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>J</td>
<td>57</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Option C

<table>
<thead>
<tr>
<th>Release</th>
<th>Reservoir volume</th>
<th>Current reservoir volume</th>
<th>Reservoir volume assuming inflow is median forecast</th>
<th>Reservoir volume assuming inflow is min/max forecast</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>17</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>M</td>
<td>23</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>J</td>
<td>29</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>J</td>
<td>25</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
April has gone by.

April inflow was: 18 Mm^3

You can update your reservoir volume:

The volume on May 1st is:

April 1 volume $+ 18 \text{ Mm}^3 - \text{April release} = ?$

Did you overtop your reservoir?

☐ NO, I still have my job.
☐ YES, I got fired...

What about our volunteer?
April has gone by.

April inflow was: $18 \text{ } Mm^3$

Our volunteer’s April release was: $17 \text{ } Mm^3$

The volume on May 1st is therefore:

$450 \text{ } Mm^3 + 18 \text{ } Mm^3 - 17 \text{ } Mm^3 = 451 \text{ } Mm^3$

No overtop!

The volunteer still has a job!

Let’s go to the next forecast!
It is May 1st.

The reservoir is at 451 Mm^3

You are given the inflow forecasts on May 1st.

Please fill in your release schedule. Remember: $15 \, Mm^3 \leq \text{Release} \leq 60 \, Mm^3$

Reservoir should be close to 500 Mm^3 on August 1st.

If the volume exceeds 500 Mm^3, you are fired.
Previous decisions: C

It is May 1st.

And our volunteer?

Let’s see which release option our volunteer will choose.
May has gone by.

May inflow was: 55 Mm^3

You can update your reservoir volume:
The volume on June 1st is:
May 1 volume + 55 Mm^3 - May release = ?

Did you overtop your reservoir?

- NO, I still have my job.
- YES, I got fired...

What about our volunteer?
May has gone by.

May inflow was: 55 Mm^3

Our volunteer’s May release was: 45 Mm^3

The volume on June 1st is therefore:

$451 \text{ Mm}^3 + 55 \text{ Mm}^3 - 45 \text{ Mm}^3 = 461 \text{ Mm}^3$

No overtop!

The volunteer still has a job!

Let’s go to the next forecast!
It is June 1st.

The reservoir is at 461 Mm^3
You are given the inflow forecasts on June 1st.

Please fill in your release schedule. Remember: $15 \text{ Mm}^3 \leq \text{Release} \leq 60 \text{ Mm}^3$

Reservoir should be close to 500 Mm^3 on August 1st.
If the volume exceeds 500 Mm^3, you are fired.
It is June 1st.

And our volunteer?

Let’s see which release option our volunteer will choose.
June has gone by.

June inflow was: \(120 \text Mm}^3\)

You can update your reservoir volume:
The volume on July 1st is:
June 1 volume + \(120 \text Mm}^3\) - June release = ?

Did you overtop your reservoir?

☐ NO, I still have my job.
☐ YES, I got fired...

What about our volunteer?
June has gone by.

June inflow was: \(120 \text{ \(Mm^3\)}\)

Our volunteer’s June release was: \(60 \text{ \(Mm^3\)}\)

The volume on July 1st is therefore:

\[461 \text{ \(Mm^3\)} + 120 \text{ \(Mm^3\)} - 60 \text{ \(Mm^3\)} = 521 \text{ \(Mm^3\)}\]

Overtop!

The volunteer got fired!

Can it be fixed?
It is July 1st.

The reservoir is at 521 Mm^3

You are given the inflow forecasts on July 1st.

Please fill in your release schedule. Remember: $15 \, Mm^3 \leq \text{Release} \leq 60 \, Mm^3$

Reservoir should be close to 500 Mm^3 on August 1st.
If the volume exceeds 500 Mm^3, you are fired.
It is July 1st.

And our volunteer?

Let’s see which release option our volunteer will choose.
July has gone by.

July inflow was: $22 \ Mm^3$

You can update your reservoir volume:
The volume on August 1st is:
July 1 volume + $22 \ Mm^3$ - July release = ?

Did you overtop your reservoir?

☐ NO, I still have my job.
☐ YES, I got fired...

What about our volunteer?
July has gone by.

July inflow was: 22 Mm^3

Our volunteer’s July release was: 25 Mm^3

The volume on August 1st is therefore:

$521 \text{ } Mm^3 + 22 \text{ } Mm^3 - 25 \text{ } Mm^3 = 518 \text{ } Mm^3$

Overtop!

The volunteer did not get the job back!

NEXT
GAME OVER

August 1st has arrived.
If you did not overtop the reservoir, you still have a job and you are hired for the next season!

How did you like this experience as a decision-maker?
It is April 1st.

The reservoir is at \(450 \ Mm^3 \)

You are given the inflow forecasts on April 1st.

Please fill in your release schedule. Remember: \(15 \ Mm^3 \leq \text{Release} \leq 60 \ Mm^3 \)

Reservoir should be close to \(500 \ Mm^3 \) on August 1st.

If the volume exceeds \(500 \ Mm^3 \), you are fired.
It is April 1st.

And our volunteer?

Let’s see which release option our volunteer will choose.
April has gone by.

April inflow was: 18 Mm^3

You can update your reservoir volume:

The volume on May 1st is:

April 1 volume $+$ 18 Mm^3 - April release $=$?

Did you overtop your reservoir?

☐ NO, I still have my job.
☐ YES, I got fired...

What about our volunteer?
April has gone by.

April inflow was: 18 Mm^3

Our volunteer’s April release was: 37 Mm^3

The volume on May 1st is therefore:

$450 \, Mm^3 + 18 \, Mm^3 - 37 \, Mm^3 = 431 \, Mm^3$

No overtop!

The volunteer still has a job!

Let’s go to the next forecast!
It is May 1st.

The reservoir is at 431 \(Mm^3 \)

You are given the inflow forecasts on May 1st.

Please fill in your release schedule. Remember: \(15 \ Mm^3 \leq Release \leq 60 \ Mm^3 \)

Reservoir should be close to 500 \(Mm^3 \) on August 1st.

If the volume exceeds 500 \(Mm^3 \), you are fired.
It is May 1st.

And our volunteer?

Let’s see which release option our volunteer will choose.
May has gone by.

May inflow was: \(55 \, Mm^3\)

You can update your reservoir volume:

The volume on June 1st is:

May 1 volume + 55 \(Mm^3\) - May release = ?

Did you overtop your reservoir?

☐ NO, I still have my job.
☐ YES, I got fired...

What about our volunteer?
May has gone by.

May inflow was: $55 \, Mm^3$

Our volunteer’s May release was: $26 \, Mm^3$

The volume on June 1st is therefore:

$431 \, Mm^3 + 55 \, Mm^3 - 26 \, Mm^3 = 460 \, Mm^3$

No overtop!

The volunteer still has a job!

Let’s go to the next forecast!
It is June 1st.

The reservoir is at $460 \text{ } Mm^3$

You are given the inflow forecasts on June 1st.

Please fill in your release schedule. Remember: $15 \text{ } Mm^3 \leq \text{ Release} \leq 60 \text{ } Mm^3$

Reservoir should be close to $500 \text{ } Mm^3$ on August 1st.

If the volume exceeds $500 \text{ } Mm^3$, you are fired.
Previous decisions: A C

It is June 1st.

And our volunteer?

Let’s see which release option our volunteer will choose.
June has gone by.

June inflow was: 120 Mm^3

You can update your reservoir volume:
The volume on July 1st is:
June 1 volume + $120 \text{ Mm}^3 - \text{June release} = ?$

Did you overtop your reservoir?

☐ NO, I still have my job.
☐ YES, I got fired...

What about our volunteer?
June has gone by.

June inflow was: \(120 \, Mm^3\)

Our volunteer’s June release was: \(60 \, Mm^3\)

The volume on July 1st is therefore:

\[
460 \, Mm^3 + 120 \, Mm^3 - 60 \, Mm^3 = 520 \, Mm^3
\]

Overtop!

The volunteer got fired!

Can it be fixed?
It is July 1st.

The reservoir is at 520 Mm^3
You are given the inflow forecasts on July 1st.

Please fill in your release schedule. Remember: $15 \text{ Mm}^3 \leq \text{Release} \leq 60 \text{ Mm}^3$

Reservoir should be close to 500 Mm^3 on August 1st.
If the volume exceeds 500 Mm^3, you are fired.
It is July 1st.

And our volunteer?

Let's see which release option our volunteer will choose.
July has gone by.

July inflow was: 22 Mm3

You can update your reservoir volume:
The volume on August 1st is:
July 1 volume + 22 Mm3 - July release = ?

Did you overtop your reservoir?

☐ NO, I still have my job.
☐ YES, I got fired...

What about our volunteer?
July has gone by.

July inflow was: \(22 \, Mm^3\)

Our volunteer’s July release was: \(25 \, Mm^3\)

The volume on August 1st is therefore:
\[
520 \, Mm^3 + 22 \, Mm^3 - 25 \, Mm^3 = 517 \, Mm^3
\]

Overtop!

The volunteer did not get the job back!

NEXT
GAME OVER

August 1st has arrived.
If you did not overtop the reservoir, you still have a job and you are hired for the next season!

How did you like this experience as a decision-maker?
It is April 1st.

The reservoir is at 450 Mm^3

You are given the inflow forecasts on April 1st.

Please fill in your release schedule. Remember: 15 $Mm^3 \leq \text{Release} \leq 60 \ Mm^3$

Reservoir should be close to 500 Mm^3 on August 1st.

If the volume exceeds 500 Mm^3, you are fired.
It is April 1st.

And our volunteer?

Let’s see which release option our volunteer will choose.
April has gone by.

April inflow was: $18 \ Mm^3$

You can update your reservoir volume:

The volume on May 1st is:

April 1 volume $+ 18 \ Mm^3 - April\ release = ?$

Did you overtop your reservoir?

□ NO, I still have my job.
□ YES, I got fired...

What about our volunteer?
April has gone by.

April inflow was: $18 \, Mm^3$

Our volunteer’s April release was: $55 \, Mm^3$

The volume on May 1st is therefore:

$$450 \, Mm^3 + 18 \, Mm^3 - 55 \, Mm^3 = 413 \, Mm^3$$

No overtop!

The volunteer still has a job!

Let’s go to the next forecast!
It is May 1st.

The reservoir is at $413\ Mm^3$
You are given the inflow forecasts on May 1st.

Please fill in your release schedule. Remember: $15\ Mm^3 \leq \text{Release} \leq 60\ Mm^3$

Reservoir should be close to $500\ Mm^3$ on August 1st.
If the volume exceeds $500\ Mm^3$, you are fired.
It is May 1st.

And our volunteer?

Let’s see which release option our volunteer will choose.

Option A

Option B

Option C

Current reservoir volume
Reservoir volume assuming inflow is median forecast
Reservoir volume assuming inflow is min/max forecast
May has gone by.

May inflow was: 55 Mm^3

You can update your reservoir volume:
The volume on June 1st is:
May 1 volume + 55 Mm^3 - May release = ?

Did you overtop your reservoir?

☐ NO, I still have my job.
☐ YES, I got fired...

What about our volunteer?
May has gone by.

May inflow was: \(55 \, Mm^3\)

Our volunteer’s May release was: \(26 \, Mm^3\)

The volume on June 1st is therefore:

\[413 \, Mm^3 + 55 \, Mm^3 - 26 \, Mm^3 = 442 \, Mm^3\]

No overtop!

The volunteer still has a job!

Let’s go to the next forecast!
It is June 1st.

The reservoir is at 442 Mm^3.
You are given the inflow forecasts on June 1st.

Please fill in your release schedule. Remember: $15 Mm^3 \leq \text{Release} \leq 60 Mm^3$

Reservoir should be close to 500 Mm^3 on August 1st.
If the volume exceeds 500 Mm^3, you are fired.
Previous decisions: B C

It is June 1st.

And our volunteer?

Let's see which release option our volunteer will choose.
June has gone by.

June inflow was: \(120 \text{ Mm}^3\)

You can update your reservoir volume:

The volume on July 1st is:

\[
\text{June 1 volume } + 120 \text{ Mm}^3 - \text{June release} = ?
\]

Did you overtop your reservoir?

☐ NO, I still have my job.
☐ YES, I got fired...

What about our volunteer?
June has gone by.

June inflow was: 120 Mm^3

Our volunteer’s June release was: 60 Mm^3

The volume on July 1st is therefore:

$$442 \ Mm^3 + 120 \ Mm^3 - 60 \ Mm^3 = 502 \ Mm^3$$

Overtop!

The volunteer got fired!

Can it be fixed?
Previous decisions: B C B

It is July 1st.

The reservoir is at $502 \text{ } Mm^3$
You are given the inflow forecasts on July 1st.

Please fill in your release schedule. Remember: $15 \text{ } Mm^3 \leq \text{Release} \leq 60 \text{ } Mm^3$

Reservoir should be close to $500 \text{ } Mm^3$ on August 1st.
If the volume exceeds $500 \text{ } Mm^3$, you are fired.
It is July 1st.

And our volunteer?

Let’s see which release option our volunteer will choose.
July has gone by.

July inflow was: 22 Mm^3

You can update your reservoir volume:

The volume on August 1st is:

July 1 volume $+ 22 \text{ Mm}^3 - \text{July release} = ?$

Did you overtop your reservoir?

☐ NO, I still have my job.
☐ YES, I got fired...

What about our volunteer?
July has gone by.

July inflow was: $22 \ Mm^3$

Our volunteer’s July release was: $25 \ Mm^3$

The volume on August 1st is therefore:

$$502 \ Mm^3 + 22 \ Mm^3 - 25 \ Mm^3 = 499 \ Mm^3$$

No overtop!

The volunteer got the job back!
GAME OVER

August 1st has arrived.
If you did not overtop the reservoir, you still have a job and you are hired for the next season!

How did you like this experience as a decision-maker?
It is April 1st.

The reservoir is at 450 $M m^3$
You are given the inflow forecasts on April 1st.

Please fill in your release schedule. Remember: $15 M m^3 \leq \text{Release} \leq 60 M m^3$

Reservoir should be close to 500 $M m^3$ on August 1st.
If the volume exceeds 500 $M m^3$, you are fired.
It is April 1st.

And our volunteer?

Let’s see which release option our volunteer will choose.
April has gone by.

April inflow was: \(18 \, Mm^3\)

You can update your reservoir volume:
The volume on May 1st is:
April 1 volume \(+ \, 18 \, Mm^3\) \(-\) April release \(= ?\)

Did you overtop your reservoir?

□ NO, I still have my job.
□ YES, I got fired...

What about our volunteer?
April has gone by.

April inflow was: $18\ Mm^3$

Our volunteer’s April release was: $17\ Mm^3$

The volume on May 1st is therefore:

$450\ Mm^3 + 18\ Mm^3 - 17\ Mm^3 = 451\ Mm^3$

No overtop!

The volunteer still has a job!

Let’s go to the next forecast!
It is May 1st.

The reservoir is at 451 Mm^3
You are given the inflow forecasts on May 1st.

Please fill in your release schedule. Remember: $15 Mm^3 \leq \text{Release} \leq 60 Mm^3$

Reservoir should be close to 500 Mm^3 on August 1st.
If the volume exceeds 500 Mm^3, you are fired.
Previous decisions: C

It is May 1st.

And our volunteer?

Let’s see which release option our volunteer will choose.
May has gone by.

May inflow was: \(55 \text{ } Mm^3\)

You can update your reservoir volume:
The volume on June 1st is:
May 1 volume + 55 \(Mm^3\) - May release = ?

Did you overtop your reservoir?

□ NO, I still have my job.
□ YES, I got fired...

What about our volunteer?
May has gone by.

May inflow was: \(55 \text{ } Mm^3\)

Our volunteer’s May release was: \(26 \text{ } Mm^3\)
The volume on June 1st is therefore:
\[
451 \text{ } Mm^3 + 55 \text{ } Mm^3 - 26 \text{ } Mm^3 = 480 \text{ } Mm^3
\]

No overtop!

The volunteer still has a job!

Let’s go to the next forecast!
It is June 1st.

The reservoir is at 480 \(Mm^3 \)

You are given the inflow forecasts on June 1st.

Please fill in your release schedule. Remember: \(15 Mm^3 \leq \text{Release} \leq 60 Mm^3 \)

Reservoir should be close to 500 \(Mm^3 \) on August 1st.

If the volume exceeds 500 \(Mm^3 \), you are fired.
It is June 1st.

And our volunteer?

Let’s see which release option our volunteer will choose.
June has gone by.

June inflow was: 120 Mm^3

You can update your reservoir volume:
The volume on July 1st is:
June 1 volume $+ 120 \text{ Mm}^3 - \text{June release} = \, ?$

Did you overtop your reservoir?

☐ NO, I still have my job.
☐ YES, I got fired...

What about our volunteer?
June has gone by.

June inflow was: $120 \, Mm^3$

Our volunteer’s June release was: $60 \, Mm^3$

The volume on July 1st is therefore:

$$480 \, Mm^3 + 120 \, Mm^3 - 60 \, Mm^3 = 540 \, Mm^3$$

Overtop!

The volunteer got fired!

Can it be fixed?
It is July 1st.

The reservoir is at 540 Mm^3

You are given the inflow forecasts on July 1st.

Please fill in your release schedule. Remember: $15 Mm^3 \leq \text{Release} \leq 60 Mm^3$

Reservoir should be close to 500 Mm^3 on August 1st.

If the volume exceeds 500 Mm^3, you are fired.
It is July 1st.

And our volunteer?

Let’s see which release option our volunteer will choose.
July has gone by.

July inflow was: 22 Mm³

You can update your reservoir volume:
The volume on August 1st is:
July 1 volume + 22 Mm³ - July release = ?

Did you overtop your reservoir?

☐ NO, I still have my job.
☐ YES, I got fired...

What about our volunteer?
July has gone by.

July inflow was: \(22 \ Mm^3\)

Our volunteer’s July release was: \(25 \ Mm^3\)

The volume on August 1st is therefore:

\[
540 \ Mm^3 + 22 \ Mm^3 - 25 \ Mm^3 = 537 \ Mm^3
\]

Overtop!

The volunteer did not get the job back!
GAME OVER

August 1st has arrived.
If you did not overtop the reservoir, you still have a job and you are hired for the next season!

How did you like this experience as a decision-maker?
It is April 1st.

The reservoir is at 450 Mm^3
You are given the inflow forecasts on April 1st.

Please fill in your release schedule. Remember: $15 Mm^3 \leq \text{Release} \leq 60 Mm^3$

Reservoir should be close to 500 Mm^3 on August 1st.

If the volume exceeds 500 Mm^3, you are fired.
It is April 1st.

And our volunteer?

Let’s see which release option our volunteer will choose.
April has gone by.

April inflow was: 18 Mm^3

You can update your reservoir volume:
The volume on May 1st is:
April 1 volume $+ 18 \text{ Mm}^3 - \text{April release} = ?$

Did you overtop your reservoir?

☐ NO, I still have my job.
☐ YES, I got fired...

What about our volunteer?
April has gone by.

April inflow was: 18 Mm^3

Our volunteer’s April release was: 37 Mm^3

The volume on May 1st is therefore:

$$450 \, Mm^3 + 18 \, Mm^3 - 37 \, Mm^3 = 431 \, Mm^3$$

No overtop!

The volunteer still has a job!

Let’s go to the next forecast!
It is May 1st.

The reservoir is at 431 Mm^3

You are given the inflow forecasts on May 1st.

Please fill in your release schedule. Remember: $15 \text{ Mm}^3 \leq \text{Release} \leq 60 \text{ Mm}^3$

Reservoir should be close to 500 Mm^3 on August 1st.

If the volume exceeds 500 Mm^3, you are fired.
It is May 1st.

And our volunteer?

Let’s see which release option our volunteer will choose.
May has gone by.

May inflow was: \(55 \text{ Mm}^3\)

You can update your reservoir volume:
The volume on June 1st is:
May 1 volume + 55 \(\text{Mm}^3\) - May release = ?

Did you overtop your reservoir?

- □ NO, I still have my job.
- □ YES, I got fired...

What about our volunteer?
May has gone by.

May inflow was: \(55 \ Mm^3\)

Our volunteer’s May release was: \(59 \ Mm^3\)

The volume on June 1st is therefore:

\[
431 \ Mm^3 +55 \ Mm^3 -59 \ Mm^3 = 427 \ Mm^3
\]

No overtop!

The volunteer still has a job!

Let’s go to the next forecast!
It is June 1st.

The reservoir is at 427 Mm^3

You are given the inflow forecasts on June 1st.

Please fill in your release schedule. Remember: $15 \text{ Mm}^3 \leq \text{Release} \leq 60 \text{ Mm}^3$

Reservoir should be close to 500 Mm^3 on August 1st.

If the volume exceeds 500 Mm^3, you are fired.
It is June 1st.

And our volunteer?

Let’s see which release option our volunteer will choose.
June has gone by.

June inflow was: $120 \ Mm^3$

You can update your reservoir volume:
The volume on July 1st is:
June 1 volume $+ 120 \ Mm^3 -$ June release $= ?$

Did you overtop your reservoir?

☐ NO, I still have my job.
☐ YES, I got fired...

What about our volunteer?
June has gone by.

June inflow was: 120 Mm^3

Our volunteer’s June release was: 45 Mm^3

The volume on July 1st is therefore:

$$427 \ Mm^3 + 120 \ Mm^3 - 45 \ Mm^3 = 502 \ Mm^3$$

Overtop!

The volunteer got fired!

Can it be fixed?
It is July 1st.

The reservoir is at 502 Mm^3.

You are given the inflow forecasts on July 1st.

Please fill in your release schedule. Remember: $15 \text{ Mm}^3 \leq \text{Release} \leq 60 \text{ Mm}^3$

Reservoir should be close to 500 Mm^3 on August 1st.

If the volume exceeds 500 Mm^3, you are fired.
It is July 1st.

And our volunteer?

Let’s see which release option our volunteer will choose.
July has gone by.

July inflow was: 22 Mm^3

You can update your reservoir volume:
The volume on August 1st is:
July 1 volume $+ 22 \text{ Mm}^3 - \text{July release} = ?$

Did you overtop your reservoir?

☐ NO, I still have my job.
☐ YES, I got fired...

What about our volunteer?
July has gone by.

July inflow was: $22 \, Mm^3$

Our volunteer’s July release was: $25 \, Mm^3$

The volume on August 1st is therefore:

$502 \, Mm^3 + 22 \, Mm^3 - 25 \, Mm^3 = 499 \, Mm^3$

No overtop!

The volunteer got the job back!

NEXT
GAME OVER

August 1st has arrived.

If you did not overtop the reservoir, you still have a job and you are hired for the next season!

Observed inflows

Forecast on April 1

How did you like this experience as a decision-maker?
It is April 1st.

The reservoir is at 450 Mm^3.
You are given the inflow forecasts on April 1st.

Please fill in your release schedule. Remember: $15 Mm^3 \leq \text{Release} \leq 60 Mm^3$

Reservoir should be close to 500 Mm^3 on August 1st.
If the volume exceeds 500 Mm^3, you are fired.
It is April 1st.

And our volunteer?

Let’s see which release option our volunteer will choose.
April has gone by.

April inflow was: $18 \, Mm^3$

You can update your reservoir volume:
The volume on May 1st is:
April 1 volume $+ 18 \, Mm^3 -$ April release $=$?

Did you overtop your reservoir?

☐ NO, I still have my job.
☐ YES, I got fired...

What about our volunteer?
April has gone by.

April inflow was: 18 \(Mm^3 \)

Our volunteer’s April release was: 55 \(Mm^3 \)

The volume on May 1st is therefore:

\[
450 \ Mm^3 + 18 \ Mm^3 - 55 \ Mm^3 = 413 \ Mm^3
\]

No overtop!

The volunteer still has a job!

Let’s go to the next forecast!
It is May 1st.

The reservoir is at 413 Mm^3.

You are given the inflow forecasts on May 1st.

Please fill in your release schedule. Remember: $15 \text{ Mm}^3 \leq \text{Release} \leq 60 \text{ Mm}^3$

Reservoir should be close to 500 Mm^3 on August 1st.

If the volume exceeds 500 Mm^3, you are fired.
It is May 1st.

And our volunteer?

Let’s see which release option our volunteer will choose.

Option A

Option B

Option C

Current reservoir volume
Reservoir volume assuming inflow is median forecast
Reservoir volume assuming inflow is min/max forecast
May has gone by.

May inflow was: $55 \, Mm^3$

You can update your reservoir volume:
The volume on June 1st is:
May 1 volume $+ \, 55 \, Mm^3 - \text{May release} = ?$

Did you overtop your reservoir?

☐ NO, I still have my job.
☐ YES, I got fired...

What about our volunteer?
May has gone by.

May inflow was: $55 \text{ \textit{Mm}}^3$

Our volunteer’s May release was: $59 \text{ \textit{Mm}}^3$

The volume on June 1st is therefore:

$413 \text{ \textit{Mm}}^3 + 55 \text{ \textit{Mm}}^3 - 59 \text{ \textit{Mm}}^3 = 409 \text{ \textit{Mm}}^3$

No overtop!

The volunteer still has a job!

Let’s go to the next forecast!
It is June 1st.

The reservoir is at 409 $M m^3$

You are given the inflow forecasts on June 1st.

Please fill in your release schedule. Remember: $15 M m^3 \leq \text{Release} \leq 60 M m^3$

Reservoir should be close to 500 $M m^3$ on August 1st.

If the volume exceeds 500 $M m^3$, you are fired.
It is June 1st.

And our volunteer?

Let’s see which release option our volunteer will choose.
June has gone by.

June inflow was: \(120 \, Mm^3 \)

You can update your reservoir volume:

The volume on July 1st is:
June 1 volume + \(120 \, Mm^3 \) - June release = ?

Did you overtop your reservoir?

- [] NO, I still have my job.
- [] YES, I got fired...

What about our volunteer?
June has gone by.

June inflow was: 120 Mm^3

Our volunteer’s June release was: 45 Mm^3

The volume on July 1st is therefore:

$409 Mm^3 + 120 Mm^3 - 45 Mm^3 = 484 Mm^3$

No overtop!

The volunteer still has a job!

Let’s go to the next forecast!
It is July 1st.

The reservoir is at 484 Mm^3

You are given the inflow forecasts on July 1st.

Please fill in your release schedule. Remember: $15 \text{ Mm}^3 \leq \text{Release} \leq 60 \text{ Mm}^3$

Reservoir should be close to 500 Mm^3 on August 1st.

If the volume exceeds 500 Mm^3, you are fired.
It is July 1st.

And our volunteer?

Let’s see which release option our volunteer will choose.

Option A Option B Option C

Release 60 25 40

Reservoir volume

• Current reservoir volume
--- Reservoir volume assuming inflow is median forecast
--- Reservoir volume assuming inflow is min/max forecast
July has gone by.

July inflow was: \(22 \, Mm^3\)

You can update your reservoir volume:
The volume on August 1st is:
July 1 volume + \(22 \, Mm^3\) - July release = ?

Did you overtop your reservoir?

- [] NO, I still have my job.
- [] YES, I got fired...

What about our volunteer?
July has gone by.

July inflow was: \(22 \ Mm^3\)

Our volunteer’s July release was: \(25 \ Mm^3\)

The volume on August 1st is therefore:

\[
484 \ Mm^3 + 22 \ Mm^3 - 25 \ Mm^3 = 481 \ Mm^3
\]

No overtop!

The volunteer still has a job!
GAME OVER

August 1st has arrived.
If you did not overtop the reservoir, you still have a job and you are hired for the next season!

How did you like this experience as a decision-maker?
It is April 1st.

The reservoir is at 450 Mm^3

You are given the inflow forecasts on April 1st.

Please fill in your release schedule. Remember: $15 Mm^3 \leq \text{Release} \leq 60 Mm^3$

Reservoir should be close to 500 Mm^3 on August 1st.

If the volume exceeds 500 Mm^3, you are fired.
It is April 1st.

And our volunteer?

Let’s see which release option our volunteer will choose.
April has gone by.

April inflow was: \(18 \ Mm^3\)

You can update your reservoir volume:
The volume on May 1st is:
April 1 volume + \(18 \ Mm^3\) - April release = ?

Did you overtop your reservoir?

☐ NO, I still have my job.
☐ YES, I got fired...

What about our volunteer?
April has gone by.

April inflow was: $18 \ Mm^3$

Our volunteer’s April release was: $17 \ Mm^3$

The volume on May 1st is therefore:

$450 \ Mm^3 + 18 \ Mm^3 - 17 \ Mm^3 = 451 \ Mm^3$

No overtop!

The volunteer still has a job!

Let’s go to the next forecast!
It is May 1st.

The reservoir is at $451 \ \text{Mm}^3$

You are given the inflow forecasts on May 1st.

Please fill in your release schedule. Remember: $15 \ \text{Mm}^3 \leq \text{Release} \leq 60 \ \text{Mm}^3$

Reservoir should be close to $500 \ \text{Mm}^3$ on August 1st.

If the volume exceeds $500 \ \text{Mm}^3$, you are fired.
It is May 1st.

And our volunteer?

Let’s see which release option our volunteer will choose.
May has gone by.

May inflow was: 55 Mm^3

You can update your reservoir volume:
The volume on June 1st is:
May 1 volume $+ 55 \text{ Mm}^3 - \text{May release} = ?$

Did you overtop your reservoir?

☐ NO, I still have my job.
☐ YES, I got fired...

What about our volunteer?
May has gone by.

May inflow was: 55 Mm^3

Our volunteer’s May release was: 59 Mm^3

The volume on June 1st is therefore:

$451 \text{ Mm}^3 + 55 \text{ Mm}^3 - 59 \text{ Mm}^3 = 447 \text{ Mm}^3$

No overtop!

The volunteer still has a job!

Let’s go to the next forecast!
It is June 1st.

The reservoir is at 447 \(Mm^3 \)

You are given the inflow forecasts on June 1st.

Please fill in your release schedule. Remember: 15 \(Mm^3 \) \(\leq \) Release \(\leq \) 60 \(Mm^3 \)

Reservoir should be close to 500 \(Mm^3 \) on August 1st.

If the volume exceeds 500 \(Mm^3 \), you are fired.
It is June 1st.

And our volunteer?

Let’s see which release option our volunteer will choose.
June has gone by.

June inflow was: 120 Mm^3

You can update your reservoir volume:
The volume on July 1st is:
June 1 volume + 120 Mm^3 - June release = ?

Did you overtop your reservoir?

☐ NO, I still have my job.
☐ YES, I got fired...

What about our volunteer?
June has gone by.

June inflow was: 120 Mm^3

Our volunteer’s June release was: 45 Mm^3

The volume on July 1st is therefore:

$447 Mm^3 + 120 Mm^3 - 45 Mm^3 = 522 Mm^3$

Overtop!

The volunteer got fired!

Can it be fixed?
It is July 1st.

The reservoir is at $522 \text{ } Mm^3$
You are given the inflow forecasts on July 1st.

Please fill in your release schedule. Remember: $15 \text{ } Mm^3 \leq \text{ Release} \leq 60 \text{ } Mm^3$

Reservoir should be close to $500 \text{ } Mm^3$ on August 1st.
If the volume exceeds $500 \text{ } Mm^3$, you are fired.
It is July 1st.

And our volunteer?

Let’s see which release option our volunteer will choose.
July has gone by.

July inflow was: $22\ Mm^3$

You can update your reservoir volume:
The volume on August 1st is:
July 1 volume $+ 22\ Mm^3 - July\ release = ?$

Did you overtop your reservoir?

☐ NO, I still have my job.
☐ YES, I got fired...

What about our volunteer?
July has gone by.

July inflow was: \(22 \text{ Mm}^3\)

Our volunteer’s July release was: \(25 \text{ Mm}^3\)

The volume on August 1st is therefore:

\[
522 \text{ Mm}^3 + 22 \text{ Mm}^3 - 25 \text{ Mm}^3 = 519 \text{ Mm}^3
\]

Overtop!

The volunteer did not get the job back!

NEXT
GAME OVER

August 1st has arrived.
If you did not overtop the reservoir, you still have a job and you are hired for the next season!

How did you like this experience as a decision-maker?
It is April 1st.

The reservoir is at 450 Mm^3

You are given the inflow forecasts on April 1st.

Please fill in your release schedule. Remember: $15 Mm^3 \leq \text{Release} \leq 60 Mm^3$

Reservoir should be close to 500 Mm^3 on August 1st.

If the volume exceeds 500 Mm^3, you are fired.
It is April 1st.

And our volunteer?

Let's see which release option our volunteer will choose.
April has gone by.

April inflow was: 18 Mm^3

You can update your reservoir volume:
The volume on May 1st is:
April 1 volume + 18 Mm^3 - April release = ?

Did you overtop your reservoir?

☐ NO, I still have my job.
☐ YES, I got fired...

What about our volunteer?
April has gone by.

April inflow was: $18\ Mm^3$

Our volunteer’s April release was: $37\ Mm^3$

The volume on May 1st is therefore:

$450\ Mm^3 + 18\ Mm^3 - 37\ Mm^3 = 431\ Mm^3$

No overtop!

The volunteer still has a job!

Let’s go to the next forecast!
It is May 1st.

The reservoir is at $431\ Mm^3$

You are given the inflow forecasts on May 1st.

Please fill in your release schedule. Remember: $15\ Mm^3 \leq \text{Release} \leq 60\ Mm^3$

Reservoir should be close to $500\ Mm^3$ on August 1st.

If the volume exceeds $500\ Mm^3$, you are fired.
It is May 1st.

And our volunteer?

Let’s see which release option our volunteer will choose.

Previous decisions: A

<table>
<thead>
<tr>
<th>Forecast issued on the previous month</th>
<th>min (5%)</th>
<th>25%</th>
<th>50%</th>
<th>75%</th>
<th>max (95%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>M</td>
<td>5</td>
<td>18</td>
<td>36</td>
<td>56</td>
<td>65</td>
</tr>
<tr>
<td>A</td>
<td>18</td>
<td>22</td>
<td>36</td>
<td>56</td>
<td>65</td>
</tr>
<tr>
<td>M</td>
<td>18</td>
<td>35</td>
<td>92</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

It is May 1st.

And our volunteer?

Let’s see which release option our volunteer will choose.

<table>
<thead>
<tr>
<th>Option A</th>
<th>Release</th>
<th>59</th>
<th>60</th>
<th>56</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Reservoir volume</td>
<td>300</td>
<td>500</td>
<td>700</td>
</tr>
<tr>
<td></td>
<td>Current reservoir volume</td>
<td>560</td>
<td>560</td>
<td>560</td>
</tr>
<tr>
<td></td>
<td>Reservoir volume assuming inflow is median forecast</td>
<td>500</td>
<td>500</td>
<td>500</td>
</tr>
<tr>
<td></td>
<td>Reservoir volume assuming inflow is min/max forecast</td>
<td>500</td>
<td>500</td>
<td>500</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Option B</th>
<th>Release</th>
<th>45</th>
<th>46</th>
<th>39</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Reservoir volume</td>
<td>300</td>
<td>500</td>
<td>700</td>
</tr>
<tr>
<td></td>
<td>Current reservoir volume</td>
<td>560</td>
<td>560</td>
<td>560</td>
</tr>
<tr>
<td></td>
<td>Reservoir volume assuming inflow is median forecast</td>
<td>500</td>
<td>500</td>
<td>500</td>
</tr>
<tr>
<td></td>
<td>Reservoir volume assuming inflow is min/max forecast</td>
<td>500</td>
<td>500</td>
<td>500</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Option C</th>
<th>Release</th>
<th>26</th>
<th>24</th>
<th>25</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Reservoir volume</td>
<td>300</td>
<td>500</td>
<td>700</td>
</tr>
<tr>
<td></td>
<td>Current reservoir volume</td>
<td>560</td>
<td>560</td>
<td>560</td>
</tr>
<tr>
<td></td>
<td>Reservoir volume assuming inflow is median forecast</td>
<td>500</td>
<td>500</td>
<td>500</td>
</tr>
<tr>
<td></td>
<td>Reservoir volume assuming inflow is min/max forecast</td>
<td>500</td>
<td>500</td>
<td>500</td>
</tr>
</tbody>
</table>
May has gone by.

May inflow was: $55 \, Mm^3$

You can update your reservoir volume:
The volume on June 1st is:
May 1 volume + $55 \, Mm^3$ - May release = ?

Did you overtop your reservoir?

☐ NO, I still have my job.
☐ YES, I got fired...

What about our volunteer?
May has gone by.

May inflow was: \(55 \, Mm^3 \)

Our volunteer’s May release was: \(45 \, Mm^3 \)

The volume on June 1st is therefore:

\[
431 \, Mm^3 + 55 \, Mm^3 - 45 \, Mm^3 = 441 \, Mm^3
\]

No overtop!

The volunteer still has a job!

Let’s go to the next forecast!
It is June 1st.

The reservoir is at $441 \, Mm^3$

You are given the inflow forecasts on June 1st.

Please fill in your release schedule. Remember: $15 \, Mm^3 \leq \text{Release} \leq 60 \, Mm^3$

Reservoir should be close to $500 \, Mm^3$ on August 1st.

If the volume exceeds $500 \, Mm^3$, you are fired.
It is June 1st.

And our volunteer?

Let’s see which release option our volunteer will choose.
June has gone by.

June inflow was: $120 \text{ } Mm^3$

You can update your reservoir volume:
The volume on July 1st is:
June 1 volume + $120 \text{ } Mm^3$ - June release = ?

Did you overtop your reservoir?

□ NO, I still have my job.
□ YES, I got fired...

What about our volunteer?
June has gone by.

June inflow was: $120 \, Mm^3$

Our volunteer’s June release was: $45 \, Mm^3$

The volume on July 1st is therefore:

$441 \, Mm^3 + 120 \, Mm^3 - 45 \, Mm^3 = 516 \, Mm^3$

Overtop!

The volunteer got fired!

Can it be fixed?
It is July 1st.

The reservoir is at 516 Mm^3

You are given the inflow forecasts on July 1st.

Please fill in your release schedule. Remember: $15 \text{ Mm}^3 \leq \text{Release} \leq 60 \text{ Mm}^3$

Reservoir should be close to 500 Mm^3 on August 1st.

If the volume exceeds 500 Mm^3, you are fired.
It is July 1st.

And our volunteer?

Let’s see which release option our volunteer will choose.
July has gone by.

July inflow was: \(22 \, Mm^3\)

You can update your reservoir volume:
The volume on August 1st is:
July 1 volume + \(22 \, Mm^3\) - July release = ?

Did you overtop your reservoir?

☐ NO, I still have my job.
☐ YES, I got fired...

What about our volunteer?
July has gone by.

July inflow was: $22 \ Mm^3$

Our volunteer’s July release was: $25 \ Mm^3$

The volume on August 1st is therefore:

$516 \ Mm^3 + 22 \ Mm^3 - 25 \ Mm^3 = 513 \ Mm^3$

Overtop!

The volunteer did not get the job back!

NEXT
GAME OVER

August 1st has arrived.
If you did not overtop the reservoir, you still have a job and you are hired for the next season!

How did you like this experience as a decision-maker?
It is April 1st.

The reservoir is at 450 \(Mm^3 \)

You are given the inflow forecasts on April 1st.

Please fill in your release schedule. Remember: \(15 \ Mm^3 \leq \text{Release} \leq 60 \ Mm^3 \)

Reservoir should be close to 500 \(Mm^3 \) on August 1st.

If the volume exceeds 500 \(Mm^3 \), you are fired.
It is April 1st.

And our volunteer?

Let’s see which release option our volunteer will choose.
April has gone by.

April inflow was: 18 Mm^3

You can update your reservoir volume:
The volume on May 1st is:
April 1 volume $+ 18 \text{ Mm}^3 - \text{April release} = ?$

Did you overtop your reservoir?

☐ NO, I still have my job.
☐ YES, I got fired...

What about our volunteer?
April has gone by.

April inflow was: \(18 \text{ Mm}^3\)

Our volunteer’s April release was: \(55 \text{ Mm}^3\)

The volume on May 1st is therefore:

\[
450 \text{ Mm}^3 + 18 \text{ Mm}^3 - 55 \text{ Mm}^3 = 413 \text{ Mm}^3
\]

No overtop!

The volunteer still has a job!

Let’s go to the next forecast!
It is May 1st.

The reservoir is at 413 Mm^3.

You are given the inflow forecasts on May 1st.

Please fill in your release schedule. Remember: $15 \text{ Mm}^3 \leq \text{Release} \leq 60 \text{ Mm}^3$

Reservoir should be close to 500 Mm^3 on August 1st.

If the volume exceeds 500 Mm^3, you are fired.
It is May 1st.

And our volunteer?

Let’s see which release option our volunteer will choose.
May has gone by.

May inflow was: 55 Mm^3

You can update your reservoir volume:
The volume on June 1st is:
May 1 volume $+ 55 \text{ Mm}^3 - \text{May release} = ?$

Did you overtop your reservoir?

☐ NO, I still have my job.
☐ YES, I got fired...

What about our volunteer?
May has gone by.

May inflow was: 55 Mm^3

Our volunteer’s May release was: 45 Mm^3

The volume on June 1st is therefore:

$$413\ Mm^3 + 55\ Mm^3 - 45\ Mm^3 = 423\ Mm^3$$

No overtop!

The volunteer still has a job!

Let’s go to the next forecast!
It is June 1st.

The reservoir is at 423 Mm^3
You are given the inflow forecasts on June 1st.

Please fill in your release schedule. Remember: $15 Mm^3 \leq \text{Release} \leq 60 Mm^3$

Reservoir should be close to 500 Mm^3 on August 1st.
If the volume exceeds 500 Mm^3, you are fired.
It is June 1st.

And our volunteer?

Let’s see which release option our volunteer will choose.

![Forecast chart](chart)

Option A

![Graph](graph)

Option B

![Graph](graph)

Option C

![Graph](graph)

- **Current reservoir volume**
- **Reservoir volume assuming inflow is median forecast**
- **Reservoir volume assuming inflow is min/max forecast**

Previous decisions: B B
June has gone by.

June inflow was: \(120 \, Mm^3\)

You can update your reservoir volume:

The volume on July 1st is:

June 1 volume + 120 \(Mm^3\) - June release = ?

Did you overtop your reservoir?

- □ NO, I still have my job.
- □ YES, I got fired...

What about our volunteer?
June has gone by.

June inflow was: 120 Mm^3

Our volunteer’s June release was: 45 Mm^3

The volume on July 1st is therefore:

$423 \ Mm^3 + 120 \ Mm^3 - 45 \ Mm^3 = 498 \ Mm^3$

No overtop!

The volunteer still has a job!

Let’s go to the next forecast!
It is July 1st.

The reservoir is at $498 \, Mm^3$
You are given the inflow forecasts on July 1st.

Please fill in your release schedule. Remember: $15 \, Mm^3 \leq \text{Release} \leq 60 \, Mm^3$

Reservoir should be close to $500 \, Mm^3$ on August 1st.
If the volume exceeds $500 \, Mm^3$, you are fired.
It is July 1st.

And our volunteer?

Let’s see which release option our volunteer will choose.
July has gone by.

July inflow was: $22 \ Mm^3$

You can update your reservoir volume:
The volume on August 1st is:
July 1 volume + $22 \ Mm^3$ - July release = ?

Did you overtop your reservoir?

□ NO, I still have my job.
□ YES, I got fired...

What about our volunteer?
July has gone by.

July inflow was: 22 Mm^3

Our volunteer’s July release was: 25 Mm^3

The volume on August 1st is therefore:

$$498 \text{ Mm}^3 + 22 \text{ Mm}^3 - 25 \text{ Mm}^3 = 495 \text{ Mm}^3$$

No overtop!

The volunteer still has a job!
GAME OVER

August 1st has arrived.

If you did not overtop the reservoir, you still have a job and you are hired for the next season!

How did you like this experience as a decision-maker?
It is April 1st.

The reservoir is at 450 Mm^3

You are given the inflow forecasts on April 1st.

Please fill in your release schedule. Remember: $15 \text{ Mm}^3 \leq \text{Release} \leq 60 \text{ Mm}^3$

Reservoir should be close to 500 Mm^3 on August 1st.

If the volume exceeds 500 Mm^3, you are fired.
It is April 1st.

And our volunteer?

Let’s see which release option our volunteer will choose.
April has gone by.

April inflow was: $18 \ M m^3$

You can update your reservoir volume:
The volume on May 1st is:
April 1 volume + $18 \ M m^3$ - April release = ?

Did you overtop your reservoir?

□ NO, I still have my job.
□ YES, I got fired...

What about our volunteer?
April has gone by.

April inflow was: \(18 \text{ } Mm^3\)

Our volunteer’s April release was: \(17 \text{ } Mm^3\)

The volume on May 1st is therefore:

\[450 \text{ } Mm^3 + 18 \text{ } Mm^3 - 17 \text{ } Mm^3 = 451 \text{ } Mm^3\]

No overtop!

The volunteer still has a job!

Let’s go to the next forecast!
It is May 1st.

The reservoir is at 451 Mm^3

You are given the inflow forecasts on May 1st.

Please fill in your release schedule. Remember: $15 \text{ Mm}^3 \leq \text{Release} \leq 60 \text{ Mm}^3$

Reservoir should be close to 500 Mm^3 on August 1st.

If the volume exceeds 500 Mm^3, you are fired.
It is May 1st.
And our volunteer?
Let's see which release option our volunteer will choose.

Option A

Option B

Option C

Current reservoir volume
Reservoir volume assuming inflow is median forecast
Reservoir volume assuming inflow is min/max forecast
May has gone by.

May inflow was: $55 \text{ } Mm^3$

You can update your reservoir volume:
The volume on June 1st is:
May 1 volume $+ 55 \text{ } Mm^3 - \text{ May release } = ?$

Did you overtop your reservoir?

☐ NO, I still have my job.
☐ YES, I got fired...

What about our volunteer?
May has gone by.

May inflow was: $55 \text{ } Mm^3$

Our volunteer’s May release was: $45 \text{ } Mm^3$

The volume on June 1st is therefore:

$$451 \text{ } Mm^3 + 55 \text{ } Mm^3 - 45 \text{ } Mm^3 = 461 \text{ } Mm^3$$

No overtop!

The volunteer still has a job!

Let’s go to the next forecast!
It is June 1st.

The reservoir is at $461\ Mm^3$
You are given the inflow forecasts on June 1st.

Please fill in your release schedule. Remember: $15\ Mm^3 \leq \text{Release} \leq 60\ Mm^3$

Reservoir should be close to $500\ Mm^3$ on August 1st.
If the volume exceeds $500\ Mm^3$, you are fired.
It is June 1st.

And our volunteer?

Let’s see which release option our volunteer will choose.

Option A
Release: 28 30

Current reservoir volume
Reservoir volume assuming inflow is median forecast
Reservoir volume assuming inflow is min/max forecast

Option B
Release: 60 50

Current reservoir volume
Reservoir volume assuming inflow is median forecast
Reservoir volume assuming inflow is min/max forecast

Option C
Release: 45 35

Current reservoir volume
Reservoir volume assuming inflow is median forecast
Reservoir volume assuming inflow is min/max forecast
June has gone by.

June inflow was: $120 \text{ } Mm^3$

You can update your reservoir volume:
The volume on July 1st is:
June 1 volume $+ 120 \text{ } Mm^3 - \text{June release} = ?$

Did you overtop your reservoir?

☐ NO, I still have my job.
☐ YES, I got fired...

What about our volunteer?
June has gone by.

June inflow was: $120 \ M m^3$

Our volunteer’s June release was: $45 \ M m^3$

The volume on July 1st is therefore:

$461 \ M m^3 + 120 \ M m^3 - 45 \ M m^3 = 536 \ M m^3$

Overtop!

The volunteer got fired!

Can it be fixed?
It is July 1st.

The reservoir is at $536 \text{ } Mm^3$
You are given the inflow forecasts on July 1st.

Please fill in your release schedule. Remember: $15 \text{ } Mm^3 \leq \text{Release} \leq 60 \text{ } Mm^3$

![Diagram with forecast inflow volume and release schedule]

Reservoir should be close to $500 \text{ } Mm^3$ on August 1st.
If the volume exceeds $500 \text{ } Mm^3$, you are fired.
It is July 1st.

And our volunteer?

Let’s see which release option our volunteer will choose.
July has gone by.

July inflow was: \(22 \text{ Mm}^3\)

You can update your reservoir volume:

The volume on August 1st is:

July 1 volume + \(22 \text{ Mm}^3\) - July release = ?

Did you overtop your reservoir?

□ NO, I still have my job.
□ YES, I got fired...

What about our volunteer?
July has gone by.

July inflow was: $22 \ Mm^3$

Our volunteer’s July release was: $25 \ Mm^3$

The volume on August 1st is therefore:

$536 \ Mm^3 + 22 \ Mm^3 - 25 \ Mm^3 = 533 \ Mm^3$

Overtop!

The volunteer did not get the job back!
GAME OVER

August 1st has arrived.
If you did not overtop the reservoir, you still have a job and you are hired for the next season!

How did you like this experience as a decision-maker?
It is April 1st.

The reservoir is at 450 \(Mm^3 \)
You are given the inflow forecasts on April 1st.

Please fill in your release schedule. Remember: \(15 \ Mm^3 \leq \text{Release} \leq 60 \ Mm^3 \)

Reservoir should be close to 500 \(Mm^3 \) on August 1st.
If the volume exceeds 500 \(Mm^3 \), you are fired.
It is April 1st.

And our volunteer?

Let’s see which release option our volunteer will choose.
April has gone by.

April inflow was: $18 \ Mm^3$

You can update your reservoir volume:

The volume on May 1st is:

April 1 volume $+ 18 \ Mm^3 - \text{April release} = ?$

Did you overtop your reservoir?

☐ NO, I still have my job.
☐ YES, I got fired...

What about our volunteer?
April has gone by.

April inflow was: 18 Mm^3

Our volunteer’s April release was: 37 Mm^3

The volume on May 1st is therefore:

$450 \text{ Mm}^3 + 18 \text{ Mm}^3 - 37 \text{ Mm}^3 = 431 \text{ Mm}^3$

No overtop!

The volunteer still has a job!

Let’s go to the next forecast!
It is May 1st.

The reservoir is at $431 \text{ M} m^3$

You are given the inflow forecasts on May 1st.

Please fill in your release schedule. Remember: $15 \text{ M} m^3 \leq \text{Release} \leq 60 \text{ M} m^3$

Reservoir should be close to $500 \text{ M} m^3$ on August 1st.

If the volume exceeds $500 \text{ M} m^3$, you are fired.
It is May 1st.

And our volunteer?

Let’s see which release option our volunteer will choose.
May has gone by.

May inflow was: 55 Mm3

You can update your reservoir volume:
The volume on June 1st is:
May 1 volume + 55 Mm3 - May release = ?

Did you overtop your reservoir?

- NO, I still have my job.
- YES, I got fired...

What about our volunteer?
May has gone by.

May inflow was: $55 \ Mm^3$

Our volunteer’s May release was: $26 \ Mm^3$

The volume on June 1st is therefore:

$431 \ Mm^3 + 55 \ Mm^3 - 26 \ Mm^3 = 460 \ Mm^3$

No overtop!

The volunteer still has a job!

Let’s go to the next forecast!
It is June 1st.

The reservoir is at $460 \, Mm^3$

You are given the inflow forecasts on June 1st.

Please fill in your release schedule. Remember: $15 \, Mm^3 \leq \text{Release} \leq 60 \, Mm^3$

Reservoir should be close to $500 \, Mm^3$ on August 1st.

If the volume exceeds $500 \, Mm^3$, you are fired.
It is June 1st.

And our volunteer?

Let's see which release option our volunteer will choose.
June has gone by.

June inflow was: \(120 \, Mm^3\)

You can update your reservoir volume:
The volume on July 1st is:
June 1 volume + \(120 \, Mm^3\) - June release = ?

Did you overtop your reservoir?

☐ NO, I still have my job.
☐ YES, I got fired...

What about our volunteer?
June has gone by.

June inflow was: $120 \, Mm^3$

Our volunteer’s June release was: $45 \, Mm^3$

The volume on July 1st is therefore:

$460 \, Mm^3 + 120 \, Mm^3 - 45 \, Mm^3 = 535 \, Mm^3$

Overtop!

The volunteer got fired!

Can it be fixed?
It is July 1st.

The reservoir is at 535 Mm^3
You are given the inflow forecasts on July 1st.

Please fill in your release schedule. Remember: $15 Mm^3 \leq \text{Release} \leq 60 Mm^3$

Reservoir should be close to 500 Mm^3 on August 1st.
If the volume exceeds 500 Mm^3, you are fired.
It is July 1st.

And our volunteer?

Let’s see which release option our volunteer will choose.
July has gone by.

July inflow was: 22 Mm^3

You can update your reservoir volume:
The volume on August 1st is:
July 1 volume + 22 Mm^3 - July release = ?

Did you overtop your reservoir?

☐ NO, I still have my job.
☐ YES, I got fired...

What about our volunteer?
July has gone by.

July inflow was: \(22 \text{ \(Mm^3\)}\)

Our volunteer’s July release was: \(25 \text{ \(Mm^3\)}\)

The volume on August 1st is therefore:

\[535 \text{ \(Mm^3\)} + 22 \text{ \(Mm^3\)} - 25 \text{ \(Mm^3\)} = 532 \text{ \(Mm^3\)}\]

Overtop!

The volunteer did not get the job back!
GAME OVER

August 1st has arrived.
If you did not overtop the reservoir, you still have a job and you are hired for the next season!

How did you like this experience as a decision-maker?
It is April 1st.

The reservoir is at 450 Mm^3
You are given the inflow forecasts on April 1st.

Please fill in your release schedule. Remember: $15 \, Mm^3 \leq \text{Release} \leq 60 \, Mm^3$

Reservoir should be close to 500 Mm^3 on August 1st.
If the volume exceeds 500 Mm^3, you are fired.
It is April 1st.

And our volunteer?

Let’s see which release option our volunteer will choose.
April has gone by.

April inflow was: $18 \, Mm^3$

You can update your reservoir volume:
The volume on May 1st is:
April 1 volume + $18 \, Mm^3$ - April release = ?

Did you overtop your reservoir?

☐ NO, I still have my job.
☐ YES, I got fired...

What about our volunteer?
April has gone by.

April inflow was: 18 Mm^3

Our volunteer’s April release was: 55 Mm^3

The volume on May 1st is therefore:

$450 \ Mm^3 + 18 \ Mm^3 - 55 \ Mm^3 = 413 \ Mm^3$

No overtop!

The volunteer still has a job!

Let’s go to the next forecast!
It is May 1st.

The reservoir is at 413 Mm^3
You are given the inflow forecasts on May 1st.

Please fill in your release schedule. Remember: $15 \text{ Mm}^3 \leq \text{Release} \leq 60 \text{ Mm}^3$

Reservoir should be close to 500 Mm^3 on August 1st.
If the volume exceeds 500 Mm^3, you are fired.
Previous decisions: B

It is May 1st.

And our volunteer?

Let’s see which release option our volunteer will choose.
May has gone by.

May inflow was: 55 Mm^3

You can update your reservoir volume:
The volume on June 1st is:
May 1 volume + 55 Mm^3 - May release = ?

Did you overtop your reservoir?

□ NO, I still have my job.
□ YES, I got fired...

What about our volunteer?
May has gone by.

May inflow was: $55 \, Mm^3$

Our volunteer’s May release was: $26 \, Mm^3$

The volume on June 1st is therefore:

$$413 \, Mm^3 + 55 \, Mm^3 - 26 \, Mm^3 = 442 \, Mm^3$$

No overtop!

The volunteer still has a job!

Let’s go to the next forecast!
It is June 1st.

The reservoir is at 442 $M m^3$
You are given the inflow forecasts on June 1st.

Please fill in your release schedule. Remember: $15 M m^3 \leq \text{Release} \leq 60 M m^3$

Reservoir should be close to 500 $M m^3$ on August 1st.
If the volume exceeds 500 $M m^3$, you are fired.
It is June 1st.

And our volunteer?

Let’s see which release option our volunteer will choose.
June has gone by.

June inflow was: \(120 \text{ Mm}^3\)

You can update your reservoir volume:
The volume on July 1st is:
June 1 volume + \(120 \text{ Mm}^3\) - June release = ?

Did you overtop your reservoir?

☐ NO, I still have my job.
☐ YES, I got fired...

What about our volunteer?
June has gone by.

June inflow was: \(120 \text{ Mm}^3\)

Our volunteer’s June release was: \(45 \text{ Mm}^3\)

The volume on July 1st is therefore:

\[442 \text{ Mm}^3 + 120 \text{ Mm}^3 - 45 \text{ Mm}^3 = 517 \text{ Mm}^3\]

Overtop!

The volunteer got fired!

Can it be fixed?
It is July 1st.

The reservoir is at 517 Mm^3.

You are given the inflow forecasts on July 1st.

Please fill in your release schedule. Remember: $15 \text{ Mm}^3 \leq \text{Release} \leq 60 \text{ Mm}^3$

Reservoir should be close to 500 Mm^3 on August 1st.

If the volume exceeds 500 Mm^3, you are fired.
It is July 1st.

And our volunteer?

Let’s see which release option our volunteer will choose.
July has gone by.

July inflow was: 22 Mm^3

You can update your reservoir volume:
The volume on August 1st is:
July 1 volume + 22 Mm^3 - July release = ?

Did you overtop your reservoir?

☐ NO, I still have my job.
☐ YES, I got fired...

What about our volunteer?
July has gone by.

July inflow was: $22 \ Mm^3$

Our volunteer’s July release was: $25 \ Mm^3$

The volume on August 1st is therefore:

$517 \ Mm^3 + 22 \ Mm^3 - 25 \ Mm^3 = 514 \ Mm^3$

Overtop!

The volunteer did not get the job back!

NEXT
GAME OVER

August 1st has arrived.

If you did not overtop the reservoir, you still have a job and you are hired for the next season!

How did you like this experience as a decision-maker?
It is April 1st.

The reservoir is at 450 Mm^3

You are given the inflow forecasts on April 1st.

Please fill in your release schedule. Remember: $15 Mm^3 \leq \text{Release} \leq 60 Mm^3$

Reservoir should be close to 500 Mm^3 on August 1st.

If the volume exceeds 500 Mm^3, you are fired.
It is April 1st.

And our volunteer?

Let’s see which release option our volunteer will choose.

Option A

Release

Reservoir volume

Current reservoir volume

Reservoir volume assuming inflow is median forecast

Reservoir volume assuming inflow is min/max forecast

Option B

Release

Reservoir volume

Current reservoir volume

Reservoir volume assuming inflow is median forecast

Reservoir volume assuming inflow is min/max forecast

Option C

Release

Reservoir volume

Current reservoir volume

Reservoir volume assuming inflow is median forecast

Reservoir volume assuming inflow is min/max forecast
April has gone by.

April inflow was: 18 Mm^3

You can update your reservoir volume:
The volume on May 1st is:
April 1 volume + 18 Mm^3 - April release = ?

Did you overtop your reservoir?

☐ NO, I still have my job.
☐ YES, I got fired...

What about our volunteer?
April has gone by.

April inflow was: $18 \text{ } Mm^3$

Our volunteer’s April release was: $17 \text{ } Mm^3$

The volume on May 1st is therefore:

$450 \text{ } Mm^3 + 18 \text{ } Mm^3 - 17 \text{ } Mm^3 = 451 \text{ } Mm^3$

No overtop!

The volunteer still has a job!

Let’s go to the next forecast!
It is May 1st.

The reservoir is at 451 Mm^3
You are given the inflow forecasts on May 1st.

Please fill in your release schedule. Remember: $15 \text{ Mm}^3 \leq \text{Release} \leq 60 \text{ Mm}^3$

Reservoir should be close to 500 Mm^3 on August 1st.
If the volume exceeds 500 Mm^3, you are fired.
It is May 1st.

And our volunteer?

Let’s see which release option our volunteer will choose.
May has gone by.

May inflow was: 55 Mm^3

You can update your reservoir volume:
The volume on June 1st is:
May 1 volume $+ 55 \text{ Mm}^3$ - May release $=$?

Did you overtop your reservoir?

☐ NO, I still have my job.
☐ YES, I got fired...

What about our volunteer?
May has gone by.

May inflow was: $55 \, Mm^3$

Our volunteer’s May release was: $26 \, Mm^3$

The volume on June 1st is therefore:

$451 \, Mm^3 + 55 \, Mm^3 - 26 \, Mm^3 = 480 \, Mm^3$

No overtop!

The volunteer still has a job!

Let’s go to the next forecast!
It is June 1st.

The reservoir is at 480 Mm^3

You are given the inflow forecasts on June 1st.

Please fill in your release schedule. Remember: $15 \text{ Mm}^3 \leq \text{Release} \leq 60 \text{ Mm}^3$

Reservoir should be close to 500 Mm^3 on August 1st.

If the volume exceeds 500 Mm^3, you are fired.
It is June 1st.

And our volunteer?

Let’s see which release option our volunteer will choose.
June has gone by.

June inflow was: \(120 \text{ } Mm^3\)

You can update your reservoir volume:

The volume on July 1st is:

June 1 volume + \(120 \text{ } Mm^3\) - June release = ?

Did you overtop your reservoir?

☐ NO, I still have my job.
☐ YES, I got fired...

What about our volunteer?
June has gone by.

June inflow was: 120 Mm^3

Our volunteer’s June release was: 45 Mm^3

The volume on July 1st is therefore:

$$480\ Mm^3 + 120\ Mm^3 - 45\ Mm^3 = 555\ Mm^3$$

Overtop!

The volunteer got fired!

Can it be fixed?
It is July 1st.

The reservoir is at 555 Mm^3

You are given the inflow forecasts on July 1st.

Please fill in your release schedule. Remember: $15 \, Mm^3 \leq \text{Release} \leq 60 \, Mm^3$

Reservoir should be close to 500 Mm^3 on August 1st.

If the volume exceeds 500 Mm^3, you are fired.
It is July 1st.

And our volunteer?

Let’s see which release option our volunteer will choose.
July has gone by.

July inflow was: $22 \ Mm^3$

You can update your reservoir volume:
The volume on August 1st is:
July 1 volume $+ 22 \ Mm^3 - $ July release $=$?

Did you overtop your reservoir?

- [] NO, I still have my job.
- [] YES, I got fired...

What about our volunteer?
July has gone by.

July inflow was: $22 \, Mm^3$

Our volunteer’s July release was: $25 \, Mm^3$

The volume on August 1st is therefore:

$555 \, Mm^3 + 22 \, Mm^3 - 25 \, Mm^3 = 552 \, Mm^3$

Overtop!

The volunteer did not get the job back!
GAME OVER

August 1st has arrived.
If you did not overtop the reservoir, you still have a job and you are hired for the next season!

How did you like this experience as a decision-maker?
It is April 1st.

The reservoir is at 450 Mm^3
You are given the inflow forecasts on April 1st.

Please fill in your release schedule. Remember: $15 \ Mm^3 \leq \text{Release} \leq 60 \ Mm^3$

Reservoir should be close to 500 Mm^3 on August 1st.
If the volume exceeds 500 Mm^3, you are fired.
It is April 1st.

And our volunteer?

Let’s see which release option our volunteer will choose.
April has gone by.

April inflow was: \(18 \, Mm^3\)

You can update your reservoir volume:
The volume on May 1st is:
April 1 volume + \(18 \, Mm^3\) - April release = ?

Did you overtop your reservoir?

- [] NO, I still have my job.
- [] YES, I got fired...

What about our volunteer?
April has gone by.

April inflow was: 18 Mm^3

Our volunteer’s April release was: 37 Mm^3

The volume on May 1st is therefore:

$450 \text{ Mm}^3 + 18 \text{ Mm}^3 - 37 \text{ Mm}^3 = 431 \text{ Mm}^3$

No overtop!

The volunteer still has a job!

Let’s go to the next forecast!
It is May 1st.

The reservoir is at 431 Mm^3
You are given the inflow forecasts on May 1st.

Please fill in your release schedule. Remember: $15 \text{ Mm}^3 \leq \text{Release} \leq 60 \text{ Mm}^3$

Reservoir should be close to 500 Mm^3 on August 1st.
If the volume exceeds 500 Mm^3, you are fired.
It is May 1st.

And our volunteer?

Let’s see which release option our volunteer will choose.

Option A

Option B

Option C

Current reservoir volume
Reservoir volume assuming inflow is median forecast
Reservoir volume assuming inflow is min/max forecast
May has gone by.

May inflow was: \(55 \, Mm^3\)

You can update your reservoir volume:

The volume on June 1st is:

\[\text{May 1 volume} + 55 \, Mm^3 - \text{May release} = ?\]

Did you overtop your reservoir?

- □ NO, I still have my job.
- □ YES, I got fired...

What about our volunteer?
May has gone by.

May inflow was: 55 Mm^3

Our volunteer’s May release was: 59 Mm^3

The volume on June 1st is therefore:

$431 \text{ Mm}^3 + 55 \text{ Mm}^3 - 59 \text{ Mm}^3 = 427 \text{ Mm}^3$

No overtop!

The volunteer still has a job!

Let’s go to the next forecast!
It is June 1st.

The reservoir is at 427 Mm^3

You are given the inflow forecasts on June 1st.

Please fill in your release schedule. Remember: $15 \text{ Mm}^3 \leq \text{Release} \leq 60 \text{ Mm}^3$

Reservoir should be close to 500 Mm^3 on August 1st.

If the volume exceeds 500 Mm^3, you are fired.
It is June 1st.

And our volunteer?

Let’s see which release option our volunteer will choose.

Previous decisions: A A

Forecast inflow volume

Forecast issued on the previous month

min (5%) 25% 50% 75% max (95%)

It is June 1st.

And our volunteer?

Let’s see which release option our volunteer will choose.
June has gone by.

June inflow was: 120 \text{ Mm}^3

You can update your reservoir volume:
The volume on July 1st is:
June 1 volume + 120 \text{ Mm}^3 - \text{June release} = ?

Did you overtop your reservoir?

☐ NO, I still have my job.
☐ YES, I got fired...

What about our volunteer?
June has gone by.

June inflow was: 120 Mm^3

Our volunteer’s June release was: 28 Mm^3

The volume on July 1st is therefore:

$$427 \text{ Mm}^3 + 120 \text{ Mm}^3 - 28 \text{ Mm}^3 = 519 \text{ Mm}^3$$

Overtop!

The volunteer got fired!

Can it be fixed?
It is July 1st.

The reservoir is at 519 \(Mm^3 \)

You are given the inflow forecasts on July 1st.

Please fill in your release schedule. Remember: \(15 \ Mm^3 \leq \text{Release} \leq 60 \ Mm^3 \)

Reservoir should be close to 500 \(Mm^3 \) on August 1st.

If the volume exceeds 500 \(Mm^3 \), you are fired.
It is July 1st.

And our volunteer?

Let’s see which release option our volunteer will choose.
July has gone by.

July inflow was: 22 Mm^3

You can update your reservoir volume:
The volume on August 1st is:
July 1 volume + 22 Mm^3 - July release = ?

Did you overtop your reservoir?

- □ NO, I still have my job.
- □ YES, I got fired...

What about our volunteer?
July has gone by.

July inflow was: $22 \text{ } Mm^3$

Our volunteer’s July release was: $40 \text{ } Mm^3$

The volume on August 1st is therefore:

$519 \text{ } Mm^3 + 22 \text{ } Mm^3 - 40 \text{ } Mm^3 = 501 \text{ } Mm^3$

Overtop!

The volunteer did not get the job back!
GAME OVER

August 1st has arrived.
If you did not overtop the reservoir, you still have a job and you are hired for the next season!

How did you like this experience as a decision-maker?
It is April 1st.

The reservoir is at $450\ Mm^3$
You are given the inflow forecasts on April 1st.

Please fill in your release schedule. Remember: $15\ Mm^3 \leq \text{Release} \leq 60\ Mm^3$

Reservoir should be close to $500\ Mm^3$ on August 1st.
If the volume exceeds $500\ Mm^3$, you are fired.
It is April 1st.

And our volunteer?

Let’s see which release option our volunteer will choose.
April has gone by.

April inflow was: $18 \, Mm^3$

You can update your reservoir volume:

The volume on May 1st is:

April 1 volume $+ 18 \, Mm^3 - \text{April release} = ?$

Did you overtop your reservoir?

- □ NO, I still have my job.
- □ YES, I got fired...

What about our volunteer?
April has gone by.

April inflow was: \(18 \text{ } Mm^3\)

Our volunteer’s April release was: \(55 \text{ } Mm^3\)

The volume on May 1st is therefore:
\[450 \text{ } Mm^3 + 18 \text{ } Mm^3 - 55 \text{ } Mm^3 = 413 \text{ } Mm^3\]

No overtop!

The volunteer still has a job!

Let’s go to the next forecast!
It is May 1st.

The reservoir is at $413\ Mm^3$
You are given the inflow forecasts on May 1st.

Please fill in your release schedule. Remember: $15\ Mm^3 \leq \text{Release} \leq 60\ Mm^3$

Reservoir should be close to $500\ Mm^3$ on August 1st.
If the volume exceeds $500\ Mm^3$, you are fired.
It is May 1st.

And our volunteer?

Let’s see which release option our volunteer will choose.
May has gone by.

May inflow was: 55 Mm^3

You can update your reservoir volume:
The volume on June 1st is:
May 1 volume $+ 55 \, Mm^3 - \text{May release} = ?$

Did you overtop your reservoir?

☐ NO, I still have my job.
☐ YES, I got fired...

What about our volunteer?
May has gone by.

May inflow was: $55\ Mm^3$

Our volunteer’s May release was: $59\ Mm^3$

The volume on June 1st is therefore:

$$413\ Mm^3 + 55\ Mm^3 - 59\ Mm^3 = 409\ Mm^3$$

No overtop!

The volunteer still has a job!

Let’s go to the next forecast!
It is June 1st.

The reservoir is at $409 \text{\,} Mm^3$

You are given the inflow forecasts on June 1st.

Please fill in your release schedule. Remember: $15 \text{\,} Mm^3 \leq \text{Release} \leq 60 \text{\,} Mm^3$

Reservoir should be close to $500 \text{\,} Mm^3$ on August 1st.

If the volume exceeds $500 \text{\,} Mm^3$, you are fired.
It is June 1st.

And our volunteer?

Let’s see which release option our volunteer will choose.
June has gone by.

June inflow was: $120 \text{ } Mm^3$

You can update your reservoir volume:
The volume on July 1st is:
June 1 volume + $120 \text{ } Mm^3$ - June release = ?

Did you overtop your reservoir?

□ NO, I still have my job.
□ YES, I got fired...

What about our volunteer?
June has gone by.

June inflow was: $120\ Mm^3$

Our volunteer’s June release was: $28\ Mm^3$

The volume on July 1st is therefore:

$$409\ Mm^3 + 120\ Mm^3 - 28\ Mm^3 = 501\ Mm^3$$

Overtop!

The volunteer got fired!

Can it be fixed?
It is July 1st.

The reservoir is at \(501 \text{ Mm}^3\).

You are given the inflow forecasts on July 1st.

Please fill in your release schedule. Remember: \(15 \text{ Mm}^3 \leq \text{Release} \leq 60 \text{ Mm}^3\)

Reservoir should be close to \(500 \text{ Mm}^3\) on August 1st.

If the volume exceeds \(500 \text{ Mm}^3\), you are fired.
It is July 1st.

And our volunteer?

Let’s see which release option our volunteer will choose.
July has gone by.

July inflow was: $22 \, Mm^3$

You can update your reservoir volume:
The volume on August 1st is:
July 1 volume $+ 22 \, Mm^3 - $ July release $= ?$

Did you overtop your reservoir?

☐ NO, I still have my job.
☐ YES, I got fired...

What about our volunteer?
July has gone by.

July inflow was: \(22 \text{ } Mm^3\)

Our volunteer’s July release was: \(40 \text{ } Mm^3\)

The volume on August 1st is therefore:

\[
501 \text{ } Mm^3 + 22 \text{ } Mm^3 - 40 \text{ } Mm^3 = 483 \text{ } Mm^3
\]

No overtop!

The volunteer got the job back!

NEXT
GAME OVER

August 1st has arrived.
If you did not overtop the reservoir, you still have a job and you are hired for the next season!

How did you like this experience as a decision-maker?
It is April 1st.

The reservoir is at $450 \, Mm^3$
You are given the inflow forecasts on April 1st.

Please fill in your release schedule. Remember: $15 \, Mm^3 \leq \text{Release} \leq 60 \, Mm^3$

Reservoir should be close to $500 \, Mm^3$ on August 1st.
If the volume exceeds $500 \, Mm^3$, you are fired.
It is April 1st.

And our volunteer?

Let’s see which release option our volunteer will choose.

Option A

Option B

Option C

Current reservoir volume

Reservoir volume assuming inflow is median forecast

Reservoir volume assuming inflow is min/max forecast
April has gone by.

April inflow was: $18 \; Mm^3$

You can update your reservoir volume:
The volume on May 1st is:
April 1 volume $+ 18 \; Mm^3$ - April release $=$?

Did you overtop your reservoir?

- NO, I still have my job.
- YES, I got fired...

What about our volunteer?
April has gone by.

April inflow was: 18 Mm^3

Our volunteer’s April release was: 17 Mm^3

The volume on May 1st is therefore:

$450 Mm^3 + 18 Mm^3 - 17 Mm^3 = 451 Mm^3$

No overtop!

The volunteer still has a job!

Let’s go to the next forecast!
It is May 1st.

The reservoir is at 451 Mm^3.

You are given the inflow forecasts on May 1st.

Please fill in your release schedule. Remember: $15 \text{ Mm}^3 \leq \text{Release} \leq 60 \text{ Mm}^3$

Reservoir should be close to 500 Mm^3 on August 1st.

If the volume exceeds 500 Mm^3, you are fired.
It is May 1st.

And our volunteer?

Let's see which release option our volunteer will choose.
May has gone by.

May inflow was: $55 \ Mm^3$

You can update your reservoir volume:
The volume on June 1st is:
May 1 volume + $55 \ Mm^3$ - May release = ?

Did you overtop your reservoir?

☐ NO, I still have my job.
☐ YES, I got fired...

What about our volunteer?
May has gone by.

May inflow was: $55 \, Mm^3$

Our volunteer’s May release was: $59 \, Mm^3$

The volume on June 1st is therefore:

$$451 \, Mm^3 + 55 \, Mm^3 - 59 \, Mm^3 = 447 \, Mm^3$$

No overtop!

The volunteer still has a job!

Let’s go to the next forecast!
It is June 1st.

The reservoir is at $447\, Mm^3$
You are given the inflow forecasts on June 1st.

Please fill in your release schedule. Remember: $15\, Mm^3 \leq \text{Release} \leq 60\, Mm^3$

Reservoir should be close to $500\, Mm^3$ on August 1st.
If the volume exceeds $500\, Mm^3$, you are fired.
It is June 1st.

And our volunteer?

Let's see which release option our volunteer will choose.
June has gone by.

June inflow was: $120 \, Mm^3$

You can update your reservoir volume:
The volume on July 1st is:
June 1 volume $+\, 120 \, Mm^3$ - June release $=$?

Did you overtop your reservoir?

- ☐ NO, I still have my job.
- ☐ YES, I got fired...

What about our volunteer?
June has gone by.

June inflow was: \(120 \, Mm^3\)

Our volunteer’s June release was: \(28 \, Mm^3\)

The volume on July 1st is therefore:

\[
447 \, Mm^3 + 120 \, Mm^3 - 28 \, Mm^3 = 539 \, Mm^3
\]

Overtop!

The volunteer got fired!

Can it be fixed?
It is July 1st.

The reservoir is at 539 Mm^3
You are given the inflow forecasts on July 1st.

Please fill in your release schedule. Remember: $15 Mm^3 \leq \text{Release} \leq 60 Mm^3$

Reservoir should be close to 500 Mm^3 on August 1st.
If the volume exceeds 500 Mm^3, you are fired.
It is July 1st.

And our volunteer?

Let’s see which release option our volunteer will choose.
July has gone by.

July inflow was: \(22 \ Mm^3\)

You can update your reservoir volume:
The volume on August 1st is:
July 1 volume + \(22 \ Mm^3\) - July release = ?

Did you overtop your reservoir?

□ NO, I still have my job.
□ YES, I got fired...

What about our volunteer?
July has gone by.

July inflow was: \(22 \text{ Mm}^3\)

Our volunteer’s July release was: \(40 \text{ Mm}^3\)

The volume on August 1st is therefore:
\[539 \text{ Mm}^3 + 22 \text{ Mm}^3 - 40 \text{ Mm}^3 = 521 \text{ Mm}^3\]

Overtop!

The volunteer did not get the job back!

NEXT
GAME OVER

August 1st has arrived.
If you did not overtop the reservoir, you still have a job and you are hired for the next season!

How did you like this experience as a decision-maker?
It is April 1st.

The reservoir is at 450 Mm^3
You are given the inflow forecasts on April 1st.

Please fill in your release schedule. Remember: $15 Mm^3 \leq \text{Release} \leq 60 Mm^3$

Reservoir should be close to 500 Mm^3 on August 1st.
If the volume exceeds 500 Mm^3, you are fired.
It is April 1st.

And our volunteer?

Let’s see which release option our volunteer will choose.
April has gone by.

April inflow was: $18 \, Mm^3$

You can update your reservoir volume:
The volume on May 1st is:
April 1 volume $+ \, 18 \, Mm^3$ - April release $= ?$

Did you overtop your reservoir?

☐ NO, I still have my job.
☐ YES, I got fired...

What about our volunteer?
April has gone by.

April inflow was: 18 Mm^3

Our volunteer’s April release was: 37 Mm^3

The volume on May 1st is therefore:

$450 Mm^3 + 18 Mm^3 - 37 Mm^3 = 431 Mm^3$

No overtop!

The volunteer still has a job!

Let’s go to the next forecast!
It is May 1st.

The reservoir is at 431 Mm^3

You are given the inflow forecasts on May 1st.

Please fill in your release schedule. Remember: $15 Mm^3 \leq \text{Release} \leq 60 Mm^3$

Reservoir should be close to 500 Mm^3 on August 1st.

If the volume exceeds 500 Mm^3, you are fired.
It is May 1st.

And our volunteer?

Let’s see which release option our volunteer will choose.
May has gone by.

May inflow was: 55 Mm^3

You can update your reservoir volume:
The volume on June 1st is:
May 1 volume + 55 Mm^3 - May release = ?

Did you overtop your reservoir?

□ NO, I still have my job.
□ YES, I got fired...

What about our volunteer?
May has gone by.

May inflow was: $55 \, Mm^3$

Our volunteer’s May release was: $45 \, Mm^3$

The volume on June 1st is therefore:

$431 \, Mm^3 + 55 \, Mm^3 - 45 \, Mm^3 = 441 \, Mm^3$

No overtop!

The volunteer still has a job!

Let’s go to the next forecast!
It is June 1st.

The reservoir is at 441 \(Mm^3 \)
You are given the inflow forecasts on June 1st.

Please fill in your release schedule. Remember: 15 \(Mm^3 \) \(\leq \) Release \(\leq \) 60 \(Mm^3 \)

![Graph showing forecast inflow volume]

Reservoir should be close to 500 \(Mm^3 \) on August 1st.
If the volume exceeds 500 \(Mm^3 \), you are fired.
It is June 1st.

And our volunteer?

Let’s see which release option our volunteer will choose.
June has gone by.

June inflow was: $120 \, Mm^3$

You can update your reservoir volume:
The volume on July 1st is:
June 1 volume + $120 \, Mm^3$ - June release = ?

Did you overtop your reservoir?

☐ NO, I still have my job.
☐ YES, I got fired...

What about our volunteer?
June has gone by.

June inflow was: $120 \ Mm^3$

Our volunteer’s June release was: $28 \ Mm^3$

The volume on July 1st is therefore:

$441 \ Mm^3 + 120 \ Mm^3 - 28 \ Mm^3 = 533 \ Mm^3$

Overtop!

The volunteer got fired!

Can it be fixed?
It is July 1st.

The reservoir is at 533 Mm^3

You are given the inflow forecasts on July 1st.

Please fill in your release schedule. Remember: $15 \text{ Mm}^3 \leq \text{Release} \leq 60 \text{ Mm}^3$

Reservoir should be close to 500 Mm^3 on August 1st.

If the volume exceeds 500 Mm^3, you are fired.
It is July 1st.

And our volunteer?

Let’s see which release option our volunteer will choose.
July has gone by.

July inflow was: $22\ Mm^3$

You can update your reservoir volume:
The volume on August 1st is:
July 1 volume + $22\ Mm^3$ - July release = ?

Did you overtop your reservoir?

☐ NO, I still have my job.
☐ YES, I got fired...

What about our volunteer?
July has gone by.

July inflow was: 22 \(Mm^3 \)

Our volunteer’s July release was: 40 \(Mm^3 \)

The volume on August 1st is therefore:

\[
533 \ Mm^3 + 22 \ Mm^3 - 40 \ Mm^3 = 515 \ Mm^3
\]

Overtop!

The volunteer did not get the job back!
GAME OVER

August 1st has arrived.
If you did not overtop the reservoir, you still have a job and you are hired for the next season!

How did you like this experience as a decision-maker?
It is April 1st.

The reservoir is at $450 \ Mm^3$
You are given the inflow forecasts on April 1st.

Please fill in your release schedule. Remember: $15 \ Mm^3 \leq \text{Release} \leq 60 \ Mm^3$

Reservoir should be close to $500 \ Mm^3$ on August 1st.
If the volume exceeds $500 \ Mm^3$, you are fired.

NEXT
It is April 1st.

And our volunteer?

Let’s see which release option our volunteer will choose.
April has gone by.

April inflow was: \(18 \ M m^3\)

You can update your reservoir volume:

The volume on May 1st is:

April 1 volume + \(18 \ M m^3\) - April release = ?

Did you overtop your reservoir?

□ NO, I still have my job.
□ YES, I got fired...

What about our volunteer?
April has gone by.

April inflow was: 18 Mm^3

Our volunteer’s April release was: 55 Mm^3

The volume on May 1st is therefore:

$$450 \ Mm^3 + 18 \ Mm^3 - 55 \ Mm^3 = 413 \ Mm^3$$

No overtop!

The volunteer still has a job!

Let’s go to the next forecast!
It is May 1st.

The reservoir is at $413 \ Mm^3$
You are given the inflow forecasts on May 1st.

Please fill in your release schedule. Remember: $15 \ Mm^3 \leq \text{Release} \leq 60 \ Mm^3$

Reservoir should be close to $500 \ Mm^3$ on August 1st.
If the volume exceeds $500 \ Mm^3$, you are fired.
It is May 1st.

And our volunteer?

Let’s see which release option our volunteer will choose.
May has gone by.

May inflow was: $55\ Mm^3$

You can update your reservoir volume:
The volume on June 1st is:
May 1 volume $+$ $55\ Mm^3$ $-$ May release $=$?

Did you overtop your reservoir?

☐ NO, I still have my job.
☐ YES, I got fired...

What about our volunteer?
May has gone by.

May inflow was: 55 Mm^3

Our volunteer’s May release was: 45 Mm^3

The volume on June 1st is therefore:

$413 \text{ Mm}^3 + 55 \text{ Mm}^3 - 45 \text{ Mm}^3 = 423 \text{ Mm}^3$

No overtop!

The volunteer still has a job!

Let’s go to the next forecast!
It is June 1st.

The reservoir is at \(423 \text{ } Mm^3\)

You are given the inflow forecasts on June 1st.

Please fill in your release schedule. Remember: \(15 \text{ } Mm^3 \leq \text{Release} \leq 60 \text{ } Mm^3\)

Reservoir should be close to \(500 \text{ } Mm^3\) on August 1st.

If the volume exceeds \(500 \text{ } Mm^3\), you are fired.
It is June 1st.

And our volunteer?

Let’s see which release option our volunteer will choose.
June has gone by.

June inflow was: $120 \, Mm^3$

You can update your reservoir volume:
The volume on July 1st is:
June 1 volume $+ 120 \, Mm^3 - $ June release $= ?$

Did you overtop your reservoir?

☐ NO, I still have my job.
☐ YES, I got fired...

What about our volunteer?
June has gone by.

June inflow was: 120 Mm^3

Our volunteer’s June release was: 28 Mm^3

The volume on July 1st is therefore:

$423 \text{ Mm}^3 + 120 \text{ Mm}^3 - 28 \text{ Mm}^3 = 515 \text{ Mm}^3$

Overtop!

The volunteer got fired!

Can it be fixed?
It is July 1st.

The reservoir is at $515 \ Mm^3$

You are given the inflow forecasts on July 1st.

Please fill in your release schedule. Remember: $15 \ Mm^3 \leq \text{Release} \leq 60 \ Mm^3$

Reservoir should be close to $500 \ Mm^3$ on August 1st.

If the volume exceeds $500 \ Mm^3$, you are fired.
It is July 1st.

And our volunteer?

Let’s see which release option our volunteer will choose.
July has gone by.

July inflow was: $22 \ Mm^3$

You can update your reservoir volume:
The volume on August 1st is:
July 1 volume $+ 22 \ Mm^3 -$ July release $= ?$

Did you overtop your reservoir?

☐ NO, I still have my job.
☐ YES, I got fired...

What about our volunteer?
July has gone by.

July inflow was: 22 \(Mm^3 \)

Our volunteer’s July release was: 40 \(Mm^3 \)

The volume on August 1st is therefore:

\[
515 \ Mm^3 + 22 \ Mm^3 - 40 \ Mm^3 = 497 \ Mm^3
\]

No overtop!

The volunteer got the job back!

NEXT
August 1st has arrived.
If you did not overtop the reservoir, you still have a job and you are hired for the next season!

How did you like this experience as a decision-maker?
It is April 1st.

The reservoir is at \(450 \text{ Mm}^3\)

You are given the inflow forecasts on April 1st.

Please fill in your release schedule. Remember: \(15 \text{ Mm}^3 \leq \text{Release} \leq 60 \text{ Mm}^3\)

Reservoir should be close to \(500 \text{ Mm}^3\) on August 1st.

If the volume exceeds \(500 \text{ Mm}^3\), you are fired.
It is April 1st.

And our volunteer?

Let’s see which release option our volunteer will choose.
April has gone by.

April inflow was: 18 Mm^3

You can update your reservoir volume:
The volume on May 1st is:
April 1 volume + 18 Mm^3 - April release = ?

Did you overtop your reservoir?

☐ NO, I still have my job.
☐ YES, I got fired...

What about our volunteer?
April has gone by.

April inflow was: \(18 \, Mm^3\)

Our volunteer’s April release was: \(17 \, Mm^3\)

The volume on May 1st is therefore:
\[450 \, Mm^3 + 18 \, Mm^3 - 17 \, Mm^3 = 451 \, Mm^3\]

No overtop!

The volunteer still has a job!

Let’s go to the next forecast!
It is May 1st.

The reservoir is at 451 Mm^3
You are given the inflow forecasts on May 1st.

Please fill in your release schedule. Remember: $15 Mm^3 \leq \text{Release} \leq 60 Mm^3$

Reservoir should be close to 500 Mm^3 on August 1st.
If the volume exceeds 500 Mm^3, you are fired.
It is May 1st.

And our volunteer?

Let’s see which release option our volunteer will choose.
May has gone by.

May inflow was: $55 \, Mm^3$

You can update your reservoir volume:

The volume on June 1st is:
May 1 volume $+ \, 55 \, Mm^3$ - May release $= ?$

Did you overtop your reservoir?

- [] NO, I still have my job.
- [] YES, I got fired...

What about our volunteer?
May has gone by.

May inflow was: 55 Mm^3

Our volunteer’s May release was: 45 Mm^3

The volume on June 1st is therefore:

$$451 \text{ Mm}^3 + 55 \text{ Mm}^3 - 45 \text{ Mm}^3 = 461 \text{ Mm}^3$$

No overtop!

The volunteer still has a job!

Let’s go to the next forecast!
It is June 1st.

The reservoir is at \(461\text{ Mm}^3\)
You are given the inflow forecasts on June 1st.

Please fill in your release schedule. Remember: \(15\text{ Mm}^3 \leq \text{Release} \leq 60\text{ Mm}^3\)

Reservoir should be close to \(500\text{ Mm}^3\) on August 1st.
If the volume exceeds \(500\text{ Mm}^3\), you are fired.

\(\text{NEXT}\)
It is June 1st.

And our volunteer?

Let’s see which release option our volunteer will choose.
June has gone by.

June inflow was: 120 Mm^3

You can update your reservoir volume:
The volume on July 1st is:
June 1 volume $+ 120 \text{ Mm}^3 - \text{June release} = ?$

Did you overtop your reservoir?

☐ NO, I still have my job.
☐ YES, I got fired...

What about our volunteer?
June has gone by.

June inflow was: 120 Mm^3

Our volunteer’s June release was: 28 Mm^3

The volume on July 1st is therefore:

$461 \text{ Mm}^3 + 120 \text{ Mm}^3 - 28 \text{ Mm}^3 = 553 \text{ Mm}^3$

Overtop!

The volunteer got fired!

Can it be fixed?
It is July 1st.

The reservoir is at $553 \, Mm^3$
You are given the inflow forecasts on July 1st.

Please fill in your release schedule. Remember: $15 \, Mm^3 \leq \text{Release} \leq 60 \, Mm^3$

<table>
<thead>
<tr>
<th>Month</th>
<th>Forecast Inflow Volume</th>
</tr>
</thead>
<tbody>
<tr>
<td>M</td>
<td>5</td>
</tr>
<tr>
<td>A</td>
<td>18</td>
</tr>
<tr>
<td>M</td>
<td>55</td>
</tr>
<tr>
<td>J</td>
<td>120</td>
</tr>
</tbody>
</table>

Reservoir should be close to $500 \, Mm^3$ on August 1st.
If the volume exceeds $500 \, Mm^3$, you are fired.
It is July 1st.

And our volunteer?

Let’s see which release option our volunteer will choose.
July has gone by.

July inflow was: \[22 \text{ Mm}^3\]

You can update your reservoir volume:

The volume on August 1st is:

\[\text{July 1 volume} + 22 \text{ Mm}^3 - \text{July release} = ?\]

Did you overtop your reservoir?

☐ NO, I still have my job.
☐ YES, I got fired...

What about our volunteer?
July has gone by.

July inflow was: $22 \ Mm^3$

Our volunteer’s July release was: $40 \ Mm^3$

The volume on August 1st is therefore:

$553 \ Mm^3 + 22 \ Mm^3 - 40 \ Mm^3 = 535 \ Mm^3$

Overtop!

The volunteer did not get the job back!

NEXT
GAME OVER

August 1st has arrived.
If you did not overtop the reservoir, you still have a job and you are hired for the next season!

How did you like this experience as a decision-maker?
It is April 1st.

The reservoir is at 450 Mm^3

You are given the inflow forecasts on April 1st.

Please fill in your release schedule. Remember: $15 \text{ Mm}^3 \leq \text{Release} \leq 60 \text{ Mm}^3$

Reservoir should be close to 500 Mm^3 on August 1st.

If the volume exceeds 500 Mm^3, you are fired.
It is April 1st.

And our volunteer?

Let’s see which release option our volunteer will choose.
April has gone by.

April inflow was: $18 \ Mm^3$

You can update your reservoir volume:

The volume on May 1st is:

April 1 volume $+ 18 \ Mm^3 - \text{April release} = ?$

Did you overtop your reservoir?

□ NO, I still have my job.
□ YES, I got fired...

What about our volunteer?
April has gone by.

April inflow was: 18 Mm^3

Our volunteer’s April release was: 37 Mm^3

The volume on May 1st is therefore:

$450 \text{ Mm}^3 + 18 \text{ Mm}^3 - 37 \text{ Mm}^3 = 431 \text{ Mm}^3$

No overtop!

The volunteer still has a job!

Let’s go to the next forecast!
It is May 1st.

The reservoir is at 431 Mm^3

You are given the inflow forecasts on May 1st.

Please fill in your release schedule. Remember: $15 \text{ Mm}^3 \leq \text{Release} \leq 60 \text{ Mm}^3$

Reservoir should be close to 500 Mm^3 on August 1st.
If the volume exceeds 500 Mm^3, you are fired.
It is May 1st.

And our volunteer?

Let’s see which release option our volunteer will choose.
May has gone by.

May inflow was: $55 \text{ } Mm^3$

You can update your reservoir volume:
The volume on June 1st is:
May 1 volume $+ 55 \text{ } Mm^3 - \text{ May release } = ?$

Did you overtop your reservoir?

☐ NO, I still have my job.
☐ YES, I got fired...

What about our volunteer?
May has gone by.

May inflow was: 55 Mm^3

Our volunteer’s May release was: 26 Mm^3

The volume on June 1st is therefore:

$431 \text{ Mm}^3 + 55 \text{ Mm}^3 - 26 \text{ Mm}^3 = 460 \text{ Mm}^3$

No overtop!

The volunteer still has a job!

Let’s go to the next forecast!
It is June 1st.

The reservoir is at \(460\ \text{Mm}^3\).

You are given the inflow forecasts on June 1st.

Please fill in your release schedule. Remember: \(15\ \text{Mm}^3 \leq \text{Release} \leq 60\ \text{Mm}^3\)

Reservoir should be close to \(500\ \text{Mm}^3\) on August 1st.

If the volume exceeds \(500\ \text{Mm}^3\), you are fired.
It is June 1st.

And our volunteer?

Let’s see which release option our volunteer will choose.
June has gone by.

June inflow was: $120 \ Mm^3$

You can update your reservoir volume:
The volume on July 1st is:
June 1 volume $+ 120 \ Mm^3 - \text{June release} = ?$

Did you overtop your reservoir?

☐ NO, I still have my job.
☐ YES, I got fired...

What about our volunteer?
June has gone by.

June inflow was: 120 Mm^3

Our volunteer’s June release was: 28 Mm^3
The volume on July 1st is therefore:
460 Mm^3 +120 Mm^3 -28 Mm^3 = 552 Mm^3

Overtop!

The volunteer got fired!

Can it be fixed?
It is July 1st.

The reservoir is at $552\ Mm^3$

You are given the inflow forecasts on July 1st.

Please fill in your release schedule. Remember: $15\ Mm^3 \leq \text{Release} \leq 60\ Mm^3$

Reservoir should be close to $500\ Mm^3$ on August 1st.

If the volume exceeds $500\ Mm^3$, you are fired.
It is July 1st.

And our volunteer?

Let’s see which release option our volunteer will choose.
July has gone by.

July inflow was: $22 \, Mm^3$

You can update your reservoir volume:

The volume on August 1st is:

July 1 volume + $22 \, Mm^3$ - July release = ?

Did you overtop your reservoir?

☐ NO, I still have my job.
☐ YES, I got fired...

What about our volunteer?
July has gone by.

July inflow was: \(22 \, Mm^3\)

Our volunteer’s July release was: \(40 \, Mm^3\)

The volume on August 1st is therefore:

\[552 \, Mm^3 + 22 \, Mm^3 - 40 \, Mm^3 = 534 \, Mm^3\]

Overtop!

The volunteer did not get the job back!

NEXT
GAME OVER

August 1st has arrived.
If you did not overtop the reservoir, you still have a job and you are hired for the next season!

How did you like this experience as a decision-maker?
It is April 1st.

The reservoir is at 450 Mm^3
You are given the inflow forecasts on April 1st.

Please fill in your release schedule. Remember: $15 Mm^3 \leq \text{Release} \leq 60 Mm^3$

Reservoir should be close to 500 Mm^3 on August 1st.
If the volume exceeds 500 Mm^3, you are fired.
It is April 1st.

And our volunteer?

Let’s see which release option our volunteer will choose.
April has gone by.

April inflow was: $18 \, Mm^3$

You can update your reservoir volume:
The volume on May 1st is:
April 1 volume + $18 \, Mm^3$ - April release = ?

Did you overtop your reservoir?

☐ NO, I still have my job.
☐ YES, I got fired...

What about our volunteer?
April has gone by.

April inflow was: $18 \ Mm^3$

Our volunteer’s April release was: $55 \ Mm^3$

The volume on May 1st is therefore:

$$450 \ Mm^3 + 18 \ Mm^3 - 55 \ Mm^3 = 413 \ Mm^3$$

No overtop!

The volunteer still has a job!

Let’s go to the next forecast!
It is May 1st.

The reservoir is at 413 Mm^3
You are given the inflow forecasts on May 1st.

Please fill in your release schedule. Remember: $15 \ Mm^3 \leq \text{Release} \leq 60 \ Mm^3$

Reservoir should be close to 500 Mm^3 on August 1st.
If the volume exceeds 500 Mm^3, you are fired.
It is May 1st.

And our volunteer?

Let’s see which release option our volunteer will choose.
May has gone by.

May inflow was: 55 Mm^3

You can update your reservoir volume:
The volume on June 1st is:
May 1 volume + 55 Mm^3 - May release = ?

Did you overtop your reservoir?

☐ NO, I still have my job.
☐ YES, I got fired...

What about our volunteer?
May has gone by.

May inflow was: \(55 \, Mm^3\)

Our volunteer’s May release was: \(26 \, Mm^3\)

The volume on June 1st is therefore:

\[
413 \, Mm^3 + 55 \, Mm^3 - 26 \, Mm^3 = 442 \, Mm^3
\]

No overtop!

The volunteer still has a job!

Let’s go to the next forecast!
It is June 1st.

The reservoir is at 442 Mm^3
You are given the inflow forecasts on June 1st.

Please fill in your release schedule. Remember: $15 \text{ Mm}^3 \leq \text{Release} \leq 60 \text{ Mm}^3$

Reservoir should be close to 500 Mm^3 on August 1st.
If the volume exceeds 500 Mm^3, you are fired.
It is June 1st.

And our volunteer?

Let’s see which release option our volunteer will choose.

Option A

Option B

Option C

Current reservoir volume

Reservoir volume assuming inflow is median forecast

Reservoir volume assuming inflow is min/max forecast
June has gone by.

June inflow was: 120 Mm^3

You can update your reservoir volume:
The volume on July 1st is:
June 1 volume + 120 Mm^3 - June release = ?

Did you overtop your reservoir?

☐ NO, I still have my job.
☐ YES, I got fired...

What about our volunteer?
June has gone by.

June inflow was: $120 \ Mm^3$

Our volunteer’s June release was: $28 \ Mm^3$

The volume on July 1st is therefore:

$442 \ Mm^3 + 120 \ Mm^3 - 28 \ Mm^3 = 534 \ Mm^3$

Overtop!

The volunteer got fired!

Can it be fixed?
It is July 1st.

The reservoir is at 534 \(Mm^3 \)

You are given the inflow forecasts on July 1st.

Please fill in your release schedule. Remember: \(15 \ Mm^3 \leq \text{Release} \leq 60 \ Mm^3 \)

Reservoir should be close to 500 \(Mm^3 \) on August 1st.

If the volume exceeds 500 \(Mm^3 \), you are fired.
It is July 1st.

And our volunteer?

Let’s see which release option our volunteer will choose.
July has gone by.

July inflow was: \(22 \ Mm^3\)

You can update your reservoir volume:
The volume on August 1st is:
July 1 volume + \(22 \ Mm^3\) - July release = ?

Did you overtop your reservoir?

□ NO, I still have my job.
□ YES, I got fired...

What about our volunteer?
July has gone by.

July inflow was: 22 Mm^3

Our volunteer’s July release was: 40 Mm^3

The volume on August 1st is therefore:

$534 \text{ Mm}^3 + 22 \text{ Mm}^3 - 40 \text{ Mm}^3 = 516 \text{ Mm}^3$

Overtop!

The volunteer did not get the job back!

NEXT
GAME OVER

August 1st has arrived.
If you did not overtop the reservoir, you still have a job and you are hired for the next season!

How did you like this experience as a decision-maker?
It is April 1st.

The reservoir is at 450 \(Mm^3 \)
You are given the inflow forecasts on April 1st.

Please fill in your release schedule. Remember: \(15 \ Mm^3 \leq \text{Release} \leq 60 \ Mm^3 \)

Reservoir should be close to 500 \(Mm^3 \) on August 1st.
If the volume exceeds 500 \(Mm^3 \), you are fired.
It is April 1st.

And our volunteer?

Let’s see which release option our volunteer will choose.
April has gone by.

April inflow was: 18 Mm^3

You can update your reservoir volume:
The volume on May 1st is:
April 1 volume + 18 Mm^3 - April release = ?

Did you overtop your reservoir?

☐ NO, I still have my job.
☐ YES, I got fired...

What about our volunteer?
April has gone by.

April inflow was: $18 \, Mm^3$

Our volunteer’s April release was: $17 \, Mm^3$

The volume on May 1st is therefore:

$450 \, Mm^3 + 18 \, Mm^3 - 17 \, Mm^3 = 451 \, Mm^3$

No overtop!

The volunteer still has a job!

Let’s go to the next forecast!
It is May 1st.

The reservoir is at 451 Mm^3
You are given the inflow forecasts on May 1st.

Please fill in your release schedule. Remember: $15 \, Mm^3 \leq \text{Release} \leq 60 \, Mm^3$

Reservoir should be close to 500 Mm^3 on August 1st.
If the volume exceeds 500 Mm^3, you are fired.
It is May 1st.

And our volunteer?

Let’s see which release option our volunteer will choose.
May has gone by.

May inflow was: 55 Mm^3

You can update your reservoir volume:
The volume on June 1st is:
May 1 volume $+ 55 \text{ Mm}^3 - \text{May release} = ?$

Did you overtop your reservoir?

☐ NO, I still have my job.
☐ YES, I got fired...

What about our volunteer?
May has gone by.

May inflow was: $55 \ Mm^3$

Our volunteer’s May release was: $26 \ Mm^3$

The volume on June 1st is therefore:

$$451 \ Mm^3 + 55 \ Mm^3 - 26 \ Mm^3 = 480 \ Mm^3$$

No overtop!

The volunteer still has a job!

Let’s go to the next forecast!
It is June 1st.

The reservoir is at 480 Mm^3

You are given the inflow forecasts on June 1st.

Please fill in your release schedule. Remember: $15 \text{ Mm}^3 \leq \text{Release} \leq 60 \text{ Mm}^3$

![Inflow forecasts graph](image)

Reservoir should be close to 500 Mm^3 on August 1st.

If the volume exceeds 500 Mm^3, you are fired.
It is June 1st.

And our volunteer?

Let’s see which release option our volunteer will choose.
June has gone by.

June inflow was: \(120 \text{ Mm}^3\)

You can update your reservoir volume:
The volume on July 1st is:
June 1 volume + \(120 \text{ Mm}^3\) - June release = ?

Did you overtop your reservoir?

□ NO, I still have my job.
□ YES, I got fired...

What about our volunteer?
June has gone by.

June inflow was: $120 \ Mm^3$

Our volunteer’s June release was: $28 \ Mm^3$

The volume on July 1st is therefore:

$480 \ Mm^3 + 120 \ Mm^3 - 28 \ Mm^3 = 572 \ Mm^3$

Overtop!

The volunteer got fired!

Can it be fixed?
It is July 1st.

The reservoir is at 572 Mm^3

You are given the inflow forecasts on July 1st.

Please fill in your release schedule. Remember: $15 \text{ Mm}^3 \leq \text{Release} \leq 60 \text{ Mm}^3$

Reservoir should be close to 500 Mm^3 on August 1st.

If the volume exceeds 500 Mm^3, you are fired.
It is July 1st.

And our volunteer?

Let’s see which release option our volunteer will choose.
July has gone by.

July inflow was: \(22 \ Mm^3\)

You can update your reservoir volume:
The volume on August 1st is:
July 1 volume + \(22 \ Mm^3\) - July release = ?

Did you overtop your reservoir?

□ NO, I still have my job.
□ YES, I got fired...

What about our volunteer?
July has gone by.

July inflow was: \(22 \text{ Mm}^3\)

Our volunteer’s July release was: \(40 \text{ Mm}^3\)

The volume on August 1st is therefore:
\[572 \text{ Mm}^3 + 22 \text{ Mm}^3 - 40 \text{ Mm}^3 = 554 \text{ Mm}^3\]

Overtop!

The volunteer did not get the job back!

NEXT
GAME OVER

August 1st has arrived.
If you did not overtop the reservoir, you still have a job and you are hired for the next season!

How did you like this experience as a decision-maker?
It is April 1st.

The reservoir is at 450 Mm^3

You are given the inflow forecasts on April 1st.

Please fill in your release schedule. Remember: $15 \, Mm^3 \leq \text{Release} \leq 60 \, Mm^3$

Reservoir should be close to 500 Mm^3 on August 1st.

If the volume exceeds 500 Mm^3, you are fired.
It is April 1st.

And our volunteer?

Let’s see which release option our volunteer will choose.
April has gone by.

April inflow was: $18 \, Mm^3$

You can update your reservoir volume:

The volume on May 1st is:

April 1 volume $+ 18 \, Mm^3 - \text{April release} = ?$

Did you overtop your reservoir?

☐ NO, I still have my job.
☐ YES, I got fired...

What about our volunteer?
April has gone by.

April inflow was: 18\ Mm^3

Our volunteer’s April release was: 37\ Mm^3

The volume on May 1st is therefore:

$450 \text{\ Mm}^3 + 18 \text{\ Mm}^3 - 37 \text{\ Mm}^3 = 431 \text{\ Mm}^3$

No overtop!

The volunteer still has a job!

Let’s go to the next forecast!
It is May 1st.

The reservoir is at 431 Mm^3

You are given the inflow forecasts on May 1st.

Please fill in your release schedule. Remember: $15 Mm^3 \leq \text{Release} \leq 60 Mm^3$

Reservoir should be close to 500 Mm^3 on August 1st.

If the volume exceeds 500 Mm^3, you are fired.
It is May 1st.

And our volunteer?

Let’s see which release option our volunteer will choose.
May has gone by.

May inflow was: 55 Mm^3

You can update your reservoir volume:

The volume on June 1st is:

May 1 volume $+ 55 \text{ Mm}^3 - \text{ May release} = ?$

Did you overtop your reservoir?

☐ NO, I still have my job.
☐ YES, I got fired...

What about our volunteer?
May has gone by.

May inflow was: \(55 \text{ } Mm^3\)

Our volunteer’s May release was: \(59 \text{ } Mm^3\)

The volume on June 1st is therefore:

\[
431 \text{ } Mm^3 + 55 \text{ } Mm^3 - 59 \text{ } Mm^3 = 427 \text{ } Mm^3
\]

No overtop!

The volunteer still has a job!

Let’s go to the next forecast!
It is June 1st.

The reservoir is at $427 \ Mm^3$
You are given the inflow forecasts on June 1st.

Please fill in your release schedule. Remember: $15 \ Mm^3 \leq \text{Release} \leq 60 \ Mm^3$

Reservoir should be close to $500 \ Mm^3$ on August 1st.
If the volume exceeds $500 \ Mm^3$, you are fired.
It is June 1st.

And our volunteer?

Let’s see which release option our volunteer will choose.
June has gone by.

June inflow was: $120\, Mm^3$

You can update your reservoir volume:
The volume on July 1st is:
June 1 volume $+ 120\, Mm^3$ - June release $= ?$

Did you overtop your reservoir?

☐ NO, I still have my job.
☐ YES, I got fired...

What about our volunteer?
June has gone by.

June inflow was: \(120 \ Mm^3\)

Our volunteer’s June release was: \(60 \ Mm^3\)

The volume on July 1st is therefore:

\[
427\ Mm^3 + 120\ Mm^3 - 60\ Mm^3 = 487\ Mm^3
\]

No overtop!

The volunteer still has a job!

Let’s go to the next forecast!
It is July 1st.

The reservoir is at 487 Mm^3

You are given the inflow forecasts on July 1st.

Please fill in your release schedule. Remember: $15 Mm^3 \leq \text{Release} \leq 60 Mm^3$

Reservoir should be close to 500 Mm^3 on August 1st.

If the volume exceeds 500 Mm^3, you are fired.
It is July 1st.

And our volunteer?

Let’s see which release option our volunteer will choose.

Previous decisions: A A B
July has gone by.

July inflow was: $22 \ Mm^3$

You can update your reservoir volume:
The volume on August 1st is:
July 1 volume $+ 22 \ Mm^3 -$ July release $= ?$

Did you overtop your reservoir?

☐ NO, I still have my job.
☐ YES, I got fired...

What about our volunteer?
July has gone by.

July inflow was: 22 Mm^3

Our volunteer’s July release was: 40 Mm^3

The volume on August 1st is therefore:

$$487 \ Mm^3 + 22 \ Mm^3 - 40 \ Mm^3 = 469 \ Mm^3$$

No overtop!

The volunteer still has a job!

NEXT
GAME OVER

August 1st has arrived.
If you did not overtop the reservoir, you still have a job and you are hired for the next season!

How did you like this experience as a decision-maker?
It is April 1st.

The reservoir is at 450 Mm^3
You are given the inflow forecasts on April 1st.

Please fill in your release schedule. Remember: $15 \text{ Mm}^3 \leq \text{Release} \leq 60 \text{ Mm}^3$

Reservoir should be close to 500 Mm^3 on August 1st.
If the volume exceeds 500 Mm^3, you are fired.
It is April 1st.

And our volunteer?

Let’s see which release option our volunteer will choose.
April has gone by.

April inflow was: $18 \, Mm^3$

You can update your reservoir volume:
The volume on May 1st is:
April 1 volume $+ 18 \, Mm^3$ - April release $= ?$

Did you overtop your reservoir?

- [] NO, I still have my job.
- [] YES, I got fired...

What about our volunteer?
April has gone by.

April inflow was: $18 \ Mm^3$

Our volunteer’s April release was: $55 \ Mm^3$

The volume on May 1st is therefore:

$450 \ Mm^3 + 18 \ Mm^3 - 55 \ Mm^3 = 413 \ Mm^3$

No overtop!

The volunteer still has a job!

Let’s go to the next forecast!
It is May 1st.

The reservoir is at \(413 \, Mm^3\).

You are given the inflow forecasts on May 1st.

Please fill in your release schedule. Remember: \(15 \, Mm^3 \leq \text{Release} \leq 60 \, Mm^3\)

Reservoir should be close to \(500 \, Mm^3\) on August 1st.

If the volume exceeds \(500 \, Mm^3\), you are fired.
It is May 1st.

And our volunteer?

Let’s see which release option our volunteer will choose.
May has gone by.

May inflow was: $55 \ Mm^3$

You can update your reservoir volume:
The volume on June 1st is:
May 1 volume $+ 55 \ Mm^3 - \text{May release} = ?$

Did you overtop your reservoir?

☐ NO, I still have my job.
☐ YES, I got fired...

What about our volunteer?
May has gone by.

May inflow was: \(55 \text{ \(Mm^3 \)}\)

Our volunteer’s May release was: \(59 \text{ \(Mm^3 \)}\)

The volume on June 1st is therefore:
\[413 \text{ \(Mm^3 \)} + 55 \text{ \(Mm^3 \)} - 59 \text{ \(Mm^3 \)} = 409 \text{ \(Mm^3 \)}\]

No overtop!

The volunteer still has a job!

Let’s go to the next forecast!
It is June 1st.

The reservoir is at 409 Mm^3

You are given the inflow forecasts on June 1st.

Please fill in your release schedule. Remember: $15 Mm^3 \leq \text{Release} \leq 60 Mm^3$

Reservoir should be close to 500 Mm^3 on August 1st.

If the volume exceeds 500 Mm^3, you are fired.
It is June 1st.

And our volunteer?

Let's see which release option our volunteer will choose.

Previous decisions: B A
June has gone by.

June inflow was: \(120 \ Mm^3 \)

You can update your reservoir volume:

The volume on July 1st is:

June 1 volume + \(120 \ Mm^3 \) - June release = ?

Did you overtop your reservoir?

□ NO, I still have my job.
□ YES, I got fired...

What about our volunteer?
June has gone by.

June inflow was: 120 Mm^3

Our volunteer’s June release was: 60 Mm^3

The volume on July 1st is therefore:

$409 \text{ Mm}^3 + 120 \text{ Mm}^3 - 60 \text{ Mm}^3 = 469 \text{ Mm}^3$

No overtop!

The volunteer still has a job!

Let’s go to the next forecast!
It is July 1st.

The reservoir is at $469 \text{ } Mm^3$
You are given the inflow forecasts on July 1st.

Please fill in your release schedule. Remember: $15 \text{ } Mm^3 \leq \text{Release} \leq 60 \text{ } Mm^3$

Reservoir should be close to $500 \text{ } Mm^3$ on August 1st.
If the volume exceeds $500 \text{ } Mm^3$, you are fired.
It is July 1st.

And our volunteer?

Let’s see which release option our volunteer will choose.
July has gone by.

July inflow was: 22 Mm^3

You can update your reservoir volume:
The volume on August 1st is:
July 1 volume + 22 Mm^3 - July release = ?

Did you overtop your reservoir?

☐ NO, I still have my job.
☐ YES, I got fired...

What about our volunteer?
July has gone by.

July inflow was: 22 Mm^3

Our volunteer’s July release was: 40 Mm^3

The volume on August 1st is therefore:

$469 \text{ Mm}^3 + 22 \text{ Mm}^3 - 40 \text{ Mm}^3 = 451 \text{ Mm}^3$

No overtop!

The volunteer still has a job!

NEXT
GAME OVER

August 1st has arrived.

If you did not overtop the reservoir, you still have a job and you are hired for the next season!

How did you like this experience as a decision-maker?
It is April 1st.

The reservoir is at 450 Mm^3.
You are given the inflow forecasts on April 1st.

Please fill in your release schedule. Remember: $15 Mm^3 \leq \text{Release} \leq 60 Mm^3$

Reservoir should be close to 500 Mm^3 on August 1st.
If the volume exceeds 500 Mm^3, you are fired.
It is April 1st.

And our volunteer?

Let’s see which release option our volunteer will choose.
April has gone by.

April inflow was: 18 Mm^3

You can update your reservoir volume:
The volume on May 1st is:
April 1 volume $+ 18 \text{ Mm}^3$ - April release $= ?$

Did you overtop your reservoir?

□ NO, I still have my job.
□ YES, I got fired...

What about our volunteer?
April has gone by.

April inflow was: 18 Mm^3

Our volunteer’s April release was: 17 Mm^3

The volume on May 1st is therefore:

$450 \text{ Mm}^3 + 18 \text{ Mm}^3 - 17 \text{ Mm}^3 = 451 \text{ Mm}^3$

No overtop!

The volunteer still has a job!

Let’s go to the next forecast!
It is May 1st.

The reservoir is at $451 \, Mm^3$

You are given the inflow forecasts on May 1st.

Please fill in your release schedule. Remember: $15 \, Mm^3 \leq \text{Release} \leq 60 \, Mm^3$

Reservoir should be close to $500 \, Mm^3$ on August 1st.

If the volume exceeds $500 \, Mm^3$, you are fired.
It is May 1st.

And our volunteer?

Let’s see which release option our volunteer will choose.
May has gone by.

May inflow was: 55 Mm^3

You can update your reservoir volume:

The volume on June 1st is:

May 1 volume $+ 55 \text{ Mm}^3$ - May release $= ?$

Did you overtop your reservoir?

☐ NO, I still have my job.
☐ YES, I got fired...

What about our volunteer?
May has gone by.

May inflow was: $55 \, Mm^3$

Our volunteer’s May release was: $59 \, Mm^3$

The volume on June 1st is therefore:

$$451 \, Mm^3 + 55 \, Mm^3 - 59 \, Mm^3 = 447 \, Mm^3$$

No overttop!

The volunteer still has a job!

Let’s go to the next forecast!
Previous decisions: CA

It is June 1st.

The reservoir is at 447 Mm^3
You are given the inflow forecasts on June 1st.

Please fill in your release schedule. Remember: 15 $Mm^3 \leq \text{Release} \leq 60 \ Mm^3$

Reservoir should be close to 500 Mm^3 on August 1st.
If the volume exceeds 500 Mm^3, you are fired.
It is June 1st.

And our volunteer?

Let's see which release option our volunteer will choose.
June has gone by.

June inflow was: $120 \text{ } Mm^3$

You can update your reservoir volume:
The volume on July 1st is:
June 1 volume + $120 \text{ } Mm^3$ - June release = ?

Did you overtop your reservoir?

□ NO, I still have my job.
□ YES, I got fired...

What about our volunteer?
June has gone by.

June inflow was: 120 Mm^3

Our volunteer’s June release was: 60 Mm^3

The volume on July 1st is therefore:

$447 \ Mm^3 + 120 \ Mm^3 - 60 \ Mm^3 = 507 \ Mm^3$

Overtop!

The volunteer got fired!

Can it be fixed?
It is July 1st.

The reservoir is at 507 Mm^3

You are given the inflow forecasts on July 1st.

Please fill in your release schedule. Remember: $15 Mm^3 \leq \text{Release} \leq 60 Mm^3$

Reservoir should be close to 500 Mm^3 on August 1st.

If the volume exceeds 500 Mm^3, you are fired.
It is July 1st.

And our volunteer?

Let’s see which release option our volunteer will choose.
July has gone by.

July inflow was: \(22 \text{ Mm}^3\)

You can update your reservoir volume:
The volume on August 1st is:
July 1 volume + \(22 \text{ Mm}^3\) - July release = ?

Did you overtop your reservoir?

☐ NO, I still have my job.
☐ YES, I got fired...

What about our volunteer?
July has gone by.

July inflow was: 22 Mm^3

Our volunteer’s July release was: 40 Mm^3

The volume on August 1st is therefore:

$$507 \ Mm^3 + 22 \ Mm^3 - 40 \ Mm^3 = 489 \ Mm^3$$

No overtop!

The volunteer got the job back!

NEXT
GAME OVER

August 1st has arrived.
If you did not overtop the reservoir, you still have a job and you are hired for the next season!

How did you like this experience as a decision-maker?
It is April 1st.

The reservoir is at 450 Mm^3

You are given the inflow forecasts on April 1st.

Please fill in your release schedule. Remember: $15 \text{ } Mm^3 \leq \text{Release} \leq 60 \text{ } Mm^3$

Reservoir should be close to 500 Mm^3 on August 1st.

If the volume exceeds 500 Mm^3, you are fired.
It is April 1st.

And our volunteer?

Let’s see which release option our volunteer will choose.
April has gone by.

April inflow was: \(18 \text{ Mm}^3\)

You can update your reservoir volume:
The volume on May 1st is:
April 1 volume + \(18 \text{ Mm}^3\) - April release = ?

Did you overtop your reservoir?

☐ NO, I still have my job.
☐ YES, I got fired...

What about our volunteer?
April has gone by.

April inflow was: 18 \(Mm^3 \)

Our volunteer’s April release was: 37 \(Mm^3 \)

The volume on May 1st is therefore:

$450 \text{ \(Mm^3 \)} + 18 \text{ \(Mm^3 \)} - 37 \text{ \(Mm^3 \)} = 431 \text{ \(Mm^3 \)}$

No overtop!

The volunteer still has a job!

Let’s go to the next forecast!
It is May 1st.

The reservoir is at \(431 \text{ } Mm^3\)

You are given the inflow forecasts on May 1st.

Please fill in your release schedule. Remember: \(15 \text{ } Mm^3 \leq \text{Release} \leq 60 \text{ } Mm^3\)

Reservoir should be close to 500 \(Mm^3 \) on August 1st.

If the volume exceeds 500 \(Mm^3 \), you are fired.
It is May 1st.

And our volunteer?

Let’s see which release option our volunteer will choose.
May has gone by.

May inflow was: 55 Mm^3

You can update your reservoir volume:

The volume on June 1st is:

May 1 volume $+ 55 \text{ Mm}^3 - \text{ May release} = ?$

Did you overtop your reservoir?

- [] NO, I still have my job.
- [] YES, I got fired...

What about our volunteer?
May has gone by.

May inflow was: $55\ Mm^3$

Our volunteer’s May release was: $45\ Mm^3$

The volume on June 1st is therefore:

$431\ Mm^3 + 55\ Mm^3 - 45\ Mm^3 = 441\ Mm^3$

No overtop!

The volunteer still has a job!

Let’s go to the next forecast!
Previous decisions: A B

It is June 1st.

The reservoir is at 441 Mm^3
You are given the inflow forecasts on June 1st.

Please fill in your release schedule. Remember: $15 Mm^3 \leq \text{Release} \leq 60 Mm^3$

Reservoir should be close to 500 Mm^3 on August 1st.
If the volume exceeds 500 Mm^3, you are fired.
It is June 1st.

And our volunteer?

Let’s see which release option our volunteer will choose.
June has gone by.

June inflow was: \(120 \, Mm^3\)

You can update your reservoir volume:
The volume on July 1st is:
June 1 volume + 120 \(Mm^3\) - June release = ?

Did you overtop your reservoir?

□ NO, I still have my job.
□ YES, I got fired...

What about our volunteer?
June has gone by.

June inflow was: $120 \text{ } Mm^3$

Our volunteer’s June release was: $60 \text{ } Mm^3$

The volume on July 1st is therefore:

$441 \text{ } Mm^3 + 120 \text{ } Mm^3 - 60 \text{ } Mm^3 = 501 \text{ } Mm^3$

Overtop!

The volunteer got fired!

Can it be fixed?
It is July 1st.

The reservoir is at $501 \ Mm^3$

You are given the inflow forecasts on July 1st.

Please fill in your release schedule. Remember: $15 \ Mm^3 \leq \text{Release} \leq 60 \ Mm^3$

Reservoir should be close to $500 \ Mm^3$ on August 1st.

If the volume exceeds $500 \ Mm^3$, you are fired.
It is July 1st.

And our volunteer?

Let’s see which release option our volunteer will choose.
July has gone by.

July inflow was: \(22 \ Mm^3\)

You can update your reservoir volume:

The volume on August 1st is:

\[\text{July 1 volume} + 22 \ Mm^3 - \text{July release} = ?\]

Did you overtop your reservoir?

- ☐ NO, I still have my job.
- ☐ YES, I got fired...

What about our volunteer?
July has gone by.

July inflow was: 22 Mm^3

Our volunteer’s July release was: 40 Mm^3

The volume on August 1st is therefore:

$$501 \text{ Mm}^3 + 22 \text{ Mm}^3 - 40 \text{ Mm}^3 = 483 \text{ Mm}^3$$

No overtop!

The volunteer got the job back!

NEXT
GAME OVER

August 1st has arrived.
If you did not overtop the reservoir, you still have a job and you are hired for the next season!

How did you like this experience as a decision-maker?
It is April 1st.

The reservoir is at 450 Mm^3
You are given the inflow forecasts on April 1st.

Please fill in your release schedule. Remember: $15 Mm^3 \leq \text{Release} \leq 60 Mm^3$

Reservoir should be close to 500 Mm^3 on August 1st.
If the volume exceeds 500 Mm^3, you are fired.
It is April 1st.

And our volunteer?

Let’s see which release option our volunteer will choose.
April has gone by.

April inflow was: $18 \ Mm^3$

You can update your reservoir volume:
The volume on May 1st is:
April 1 volume + $18 \ Mm^3$ - April release = ?

Did you overtop your reservoir?

□ NO, I still have my job.
□ YES, I got fired...

What about our volunteer?
April has gone by.

April inflow was: $18 \, Mm^3$

Our volunteer’s April release was: $55 \, Mm^3$

The volume on May 1st is therefore:

$$450 \, Mm^3 + 18 \, Mm^3 - 55 \, Mm^3 = 413 \, Mm^3$$

No overtop!

The volunteer still has a job!

Let’s go to the next forecast!
It is May 1st.

The reservoir is at 413 Mm^3
You are given the inflow forecasts on May 1st.

Please fill in your release schedule. Remember: $15 Mm^3 \leq \text{Release} \leq 60 \, Mm^3$

Reservoir should be close to 500 Mm^3 on August 1st.
If the volume exceeds 500 Mm^3, you are fired.
It is May 1st.

And our volunteer?

Let’s see which release option our volunteer will choose.

Option A

Option B

Option C

Current reservoir volume
Reservoir volume assuming inflow is median forecast
Reservoir volume assuming inflow is min/max forecast
May has gone by.

May inflow was: \(55 \text{ Mm}^3\)

You can update your reservoir volume:
The volume on June 1st is:
May 1 volume + \(55 \text{ Mm}^3\) - May release = ?

Did you overtop your reservoir?

□ NO, I still have my job.
□ YES, I got fired...

What about our volunteer?
May has gone by.

May inflow was: $55 \ Mm^3$

Our volunteer’s May release was: $45 \ Mm^3$

The volume on June 1st is therefore:

$413 \ Mm^3 + 55 \ Mm^3 - 45 \ Mm^3 = 423 \ Mm^3$

No overtop!

The volunteer still has a job!

Let’s go to the next forecast!
It is June 1st.

The reservoir is at $423 \quad Mm^3$
You are given the inflow forecasts on June 1st.

Please fill in your release schedule. Remember: $15 \quad Mm^3 \leq \text{Release} \leq 60 \quad Mm^3$

Reservoir should be close to $500 \quad Mm^3$ on August 1st.
If the volume exceeds $500 \quad Mm^3$, you are fired.
It is June 1st.

And our volunteer?

Let’s see which release option our volunteer will choose.
June has gone by.

June inflow was: 120 Mm^3

You can update your reservoir volume:
The volume on July 1st is:
June 1 volume $+ 120 \text{ Mm}^3 - $ June release $=$?

Did you overtop your reservoir?

☐ NO, I still have my job.
☐ YES, I got fired...

What about our volunteer?
June has gone by.

June inflow was: 120 Mm^3

Our volunteer’s June release was: 60 Mm^3

The volume on July 1st is therefore:

$423\ Mm^3 + 120\ Mm^3 - 60\ Mm^3 = 483\ Mm^3$

No overtop!

The volunteer still has a job!

Let’s go to the next forecast!
It is July 1st.

The reservoir is at $483\ Mm^3$.

You are given the inflow forecasts on July 1st.

Please fill in your release schedule. Remember: $15\ Mm^3 \leq Release \leq 60\ Mm^3$

Reservoir should be close to $500\ Mm^3$ on August 1st.

If the volume exceeds $500\ Mm^3$, you are fired.
It is July 1st.

And our volunteer?

Let’s see which release option our volunteer will choose.
July has gone by.

July inflow was: $22 \text{ } Mm^3$

You can update your reservoir volume:

The volume on August 1st is:

July 1 volume $+ 22 \text{ } Mm^3$ - July release $= ?$

Did you overtop your reservoir?

☐ NO, I still have my job.
☐ YES, I got fired...

What about our volunteer?
July has gone by.

July inflow was: 22 Mm^3

Our volunteer’s July release was: 40 Mm^3

The volume on August 1st is therefore:

$$483 \text{ Mm}^3 + 22 \text{ Mm}^3 - 40 \text{ Mm}^3 = 465 \text{ Mm}^3$$

No overtop!

The volunteer still has a job!

NEXT
GAME OVER

August 1st has arrived.
If you did not overtop the reservoir, you still have a job and you are hired for the next season!

How did you like this experience as a decision-maker?
It is April 1st.

The reservoir is at 450 Mm^3.
You are given the inflow forecasts on April 1st.

Please fill in your release schedule. Remember: $15 Mm^3 \leq \text{Release} \leq 60 Mm^3$

Reservoir should be close to 500 Mm^3 on August 1st.
If the volume exceeds 500 Mm^3, you are fired.
It is April 1st.

And our volunteer?

Let’s see which release option our volunteer will choose.
April has gone by.

April inflow was: $18 \, Mm^3$

You can update your reservoir volume:

The volume on May 1st is:

April 1 volume $+ 18 \, Mm^3 - \text{April release} = ?$

Did you overtop your reservoir?

□ NO, I still have my job.
□ YES, I got fired...

What about our volunteer?
April has gone by.

April inflow was: $18 \ Mm^3$

Our volunteer’s April release was: $17 \ Mm^3$

The volume on May 1st is therefore:

$450 \ Mm^3 + 18 \ Mm^3 - 17 \ Mm^3 = 451 \ Mm^3$

No overtop!

The volunteer still has a job!

Let’s go to the next forecast!
It is May 1st.

The reservoir is at 451 Mm^3
You are given the inflow forecasts on May 1st.

Please fill in your release schedule. Remember: $15 \text{ Mm}^3 \leq \text{Release} \leq 60 \text{ Mm}^3$

Reservoir should be close to 500 Mm^3 on August 1st.
If the volume exceeds 500 Mm^3, you are fired.
It is May 1st.

And our volunteer?

Let’s see which release option our volunteer will choose.

Option A
Option B
Option C
May has gone by.

May inflow was: $55 \, Mm^3$

You can update your reservoir volume:
The volume on June 1st is:
May 1 volume + $55 \, Mm^3$ - May release = ?

Did you overtop your reservoir?

☐ NO, I still have my job.
☐ YES, I got fired...

What about our volunteer?
May has gone by.

May inflow was: 55 \(Mm^3 \)

Our volunteer’s May release was: 45 \(Mm^3 \)

The volume on June 1st is therefore:

\[
451 \ Mm^3 + 55 \ Mm^3 - 45 \ Mm^3 = 461 \ Mm^3
\]

No overtop!

The volunteer still has a job!

Let’s go to the next forecast!
It is June 1st.

The reservoir is at 461 Mm^3.
You are given the inflow forecasts on June 1st.

Please fill in your release schedule. Remember: $15 \, Mm^3 \leq \text{Release} \leq 60 \, Mm^3$.

Reservoir should be close to 500 Mm^3 on August 1st.
If the volume exceeds 500 Mm^3, you are fired.
It is June 1st.

And our volunteer?

Let’s see which release option our volunteer will choose.

Previous decisions: C B
June has gone by.

June inflow was: \(120 \text{ } Mm^3\)

You can update your reservoir volume:
The volume on July 1st is:
June 1 volume + \(120 \text{ } Mm^3\) - June release = ?

Did you overtop your reservoir?

□ NO, I still have my job.
□ YES, I got fired...

What about our volunteer?
June has gone by.

June inflow was: 120 Mm^3

Our volunteer’s June release was: 60 Mm^3

The volume on July 1st is therefore:

$461 \text{ Mm}^3 + 120 \text{ Mm}^3 - 60 \text{ Mm}^3 = 521 \text{ Mm}^3$

Overtop!

The volunteer got fired!

Can it be fixed?
It is July 1st.

The reservoir is at 521 Mm^3
You are given the inflow forecasts on July 1st.

Please fill in your release schedule. Remember: $15 \text{ Mm}^3 \leq \text{Release} \leq 60 \text{ Mm}^3$

Reservoir should be close to 500 Mm^3 on August 1st.
If the volume exceeds 500 Mm^3, you are fired.
It is July 1st.

And our volunteer?

Let’s see which release option our volunteer will choose.

Option A

Option B

Option C

- Current reservoir volume
- Reservoir volume assuming inflow is median forecast
- Reservoir volume assuming inflow is min/max forecast
July has gone by.

July inflow was: 22 Mm^3

You can update your reservoir volume:
The volume on August 1st is:
July 1 volume + 22 Mm^3 - July release = ?

Did you overtop your reservoir?

☐ NO, I still have my job.
☐ YES, I got fired...

What about our volunteer?
July has gone by.

July inflow was: \(22 \ Mm^3\)

Our volunteer’s July release was: \(40 \ Mm^3\)

The volume on August 1st is therefore:
\[
521 \ Mm^3 + 22 \ Mm^3 - 40 \ Mm^3 = 503 \ Mm^3
\]

Overtop!

The volunteer did not get the job back!
GAME OVER

August 1st has arrived.
If you did not overtop the reservoir, you still have a job and you are hired for the next season!

How did you like this experience as a decision-maker?
It is April 1st.

The reservoir is at $450 \text{ } Mm^3$
You are given the inflow forecasts on April 1st.

Please fill in your release schedule. Remember: $15 \text{ } Mm^3 \leq \text{Release} \leq 60 \text{ } Mm^3$

Reservoir should be close to $500 \text{ } Mm^3$ on August 1st.
If the volume exceeds $500 \text{ } Mm^3$, you are fired.
It is April 1st.

And our volunteer?

Let’s see which release option our volunteer will choose.
April has gone by.

April inflow was: \(18 \, Mm^3\)

You can update your reservoir volume:
The volume on May 1st is:
April 1 volume + 18 \(Mm^3 \) - April release = ?

Did you overtop your reservoir?

□ NO, I still have my job.
□ YES, I got fired...

What about our volunteer?
April has gone by.

April inflow was: \(18 \ Mm^3\)

Our volunteer’s April release was: \(37 \ Mm^3\)

The volume on May 1st is therefore:
\[
450 \ Mm^3 + 18 \ Mm^3 - 37 \ Mm^3 = 431 \ Mm^3
\]

No overtrop!

The volunteer still has a job!

Let’s go to the next forecast!
It is May 1st.

The reservoir is at $431 \ Mm^3$

You are given the inflow forecasts on May 1st.

Please fill in your release schedule. Remember: $15 \ Mm^3 \leq \text{Release} \leq 60 \ Mm^3$

Reservoir should be close to $500 \ Mm^3$ on August 1st.

If the volume exceeds $500 \ Mm^3$, you are fired.
It is May 1st.

And our volunteer?

Let’s see which release option our volunteer will choose.
May has gone by.

May inflow was: $55 \, Mm^3$

You can update your reservoir volume:

The volume on June 1st is:

May 1 volume $+ 55 \, Mm^3 - $ May release $= ?$

Did you overtop your reservoir?

☐ NO, I still have my job.
☐ YES, I got fired...

What about our volunteer?
May has gone by.

May inflow was: 55 \(Mm^3 \)

Our volunteer’s May release was: 26 \(Mm^3 \)

The volume on June 1st is therefore:

\[
431 \ Mm^3 + 55 \ Mm^3 - 26 \ Mm^3 = 460 \ Mm^3
\]

No overtop!

The volunteer still has a job!

Let’s go to the next forecast!
It is June 1st.

The reservoir is at \(460 \text{ } Mm^3\).

You are given the inflow forecasts on June 1st.

Please fill in your release schedule. Remember: \(15 \text{ } Mm^3 \leq \text{Release} \leq 60 \text{ } Mm^3\)

Reservoir should be close to 500 \(Mm^3 \) on August 1st.

If the volume exceeds 500 \(Mm^3 \), you are fired.
It is June 1st.

And our volunteer?

Let’s see which release option our volunteer will choose.
June has gone by.

June inflow was: $120 \ Mm^3$

You can update your reservoir volume:
The volume on July 1st is:
June 1 volume + $120 \ Mm^3$ - June release = ?

Did you overttop your reservoir?

☐ NO, I still have my job.
☐ YES, I got fired...

What about our volunteer?
June has gone by.

June inflow was: 120 Mm^3

Our volunteer’s June release was: 60 Mm^3

The volume on July 1st is therefore:

$460 \text{ Mm}^3 + 120 \text{ Mm}^3 - 60 \text{ Mm}^3 = 520 \text{ Mm}^3$

Overtop!

The volunteer got fired!

Can it be fixed?
It is July 1st.

The reservoir is at **520 \(\text{Mm}^3 \)**

You are given the inflow forecasts on July 1st.

Please fill in your release schedule. Remember: \(15 \text{ Mm}^3 \leq \text{Release} \leq 60 \text{ Mm}^3\)

Reservoir should be close to **500 \(\text{Mm}^3 \)** on August 1st.

If the volume exceeds **500 \(\text{Mm}^3 \)**, you are fired.
It is July 1st.

And our volunteer?

Let’s see which release option our volunteer will choose.
July has gone by.

July inflow was: \(22 \ Mm^3\)

You can update your reservoir volume:
The volume on August 1st is:
July 1 volume + \(22 \ Mm^3\) - July release = ?

Did you overtop your reservoir?

□ NO, I still have my job.
□ YES, I got fired...

What about our volunteer?
July has gone by.

July inflow was: $22 \ Mm^3$

Our volunteer’s July release was: $40 \ Mm^3$

The volume on August 1st is therefore:

$520 \ Mm^3 + 22 \ Mm^3 - 40 \ Mm^3 = 502 \ Mm^3$

Overtop!

The volunteer did not get the job back!

NEXT
GAME OVER

August 1st has arrived.
If you did not overtop the reservoir, you still have a job and you are hired for the next season!

How did you like this experience as a decision-maker?
It is April 1st.

The reservoir is at 450 Mm^3
You are given the inflow forecasts on April 1st.

Please fill in your release schedule. Remember: $15 \ Mm^3 \leq \text{Release} \leq 60 \ Mm^3$

Reservoir should be close to 500 Mm^3 on August 1st.
If the volume exceeds 500 Mm^3, you are fired.

NEXT
It is April 1st.

And our volunteer?

Let’s see which release option our volunteer will choose.
April has gone by.

April inflow was: $18 \ Mm^3$

You can update your reservoir volume:
The volume on May 1st is:
April 1 volume $+ 18 \ Mm^3 - \text{April release} = ?$

Did you overtop your reservoir?

☐ NO, I still have my job.
☐ YES, I got fired...

What about our volunteer?
April has gone by.

April inflow was: 18 Mm^3

Our volunteer’s April release was: 55 Mm^3

The volume on May 1st is therefore:

\[450 \ Mm^3 + 18 \ Mm^3 - 55 \ Mm^3 = 413 \ Mm^3 \]

No overtop!

The volunteer still has a job!

Let’s go to the next forecast!
Previous decisions: B

It is May 1st.

The reservoir is at 413 Mm^3

You are given the inflow forecasts on May 1st.

Please fill in your release schedule. Remember: $15 Mm^3 \leq \text{Release} \leq 60 Mm^3$

Reservoir should be close to 500 Mm^3 on August 1st.
If the volume exceeds 500 Mm^3, you are fired.
It is May 1st.

And our volunteer?

Let’s see which release option our volunteer will choose.
May has gone by.

May inflow was: $55\ Mm^3$

You can update your reservoir volume:

The volume on June 1st is:

May 1 volume + $55\ Mm^3$ - May release = ?

Did you overtop your reservoir?

□ NO, I still have my job.
□ YES, I got fired...

What about our volunteer?
May has gone by.

May inflow was: $55 \, Mm^3$

Our volunteer’s May release was: $26 \, Mm^3$

The volume on June 1st is therefore:

$$413 \, Mm^3 + 55 \, Mm^3 - 26 \, Mm^3 = 442 \, Mm^3$$

No overtop!

The volunteer still has a job!

Let’s go to the next forecast!
It is June 1st.

The reservoir is at 442 Mm^3
You are given the inflow forecasts on June 1st.

Please fill in your release schedule. Remember: $15 \text{ Mm}^3 \leq \text{Release} \leq 60 \text{ Mm}^3$

Reservoir should be close to 500 Mm^3 on August 1st.
If the volume exceeds 500 Mm^3, you are fired.
Previous decisions: B C

It is June 1st.

And our volunteer?

Let’s see which release option our volunteer will choose.
June has gone by.

June inflow was: $120 \ M m^3$

You can update your reservoir volume:
The volume on July 1st is:
June 1 volume $+ 120 \ M m^3 - \text{June release} = ?$

Did you overtop your reservoir?

☐ NO, I still have my job.
☐ YES, I got fired...

What about our volunteer?
June has gone by.

June inflow was: 120 Mm^3

Our volunteer’s June release was: 60 Mm^3

The volume on July 1st is therefore:

$442 \text{ Mm}^3 + 120 \text{ Mm}^3 - 60 \text{ Mm}^3 = 502 \text{ Mm}^3$

Overtop!

The volunteer got fired!

Can it be fixed?
It is July 1st.

The reservoir is at $502 \ Mm^3$
You are given the inflow forecasts on July 1st.

Please fill in your release schedule. Remember: $15 \ Mm^3 \leq \text{Release} \leq 60 \ Mm^3$

Reservoir should be close to $500 \ Mm^3$ on August 1st.
If the volume exceeds $500 \ Mm^3$, you are fired.
It is July 1st.

And our volunteer?

Let’s see which release option our volunteer will choose.
July has gone by.

July inflow was: \(22 \, Mm^3\)

You can update your reservoir volume:

The volume on August 1st is:

\(\text{July 1 volume} + 22 \, Mm^3 - \text{July release} = ?\)

Did you overtop your reservoir?

☐ NO, I still have my job.
☐ YES, I got fired...

What about our volunteer?
July has gone by.

July inflow was: $22 \ Mm^3$

Our volunteer’s July release was: $40 \ Mm^3$

The volume on August 1st is therefore:

$502 \ Mm^3 + 22 \ Mm^3 - 40 \ Mm^3 = 484 \ Mm^3$

No overtop!

The volunteer got the job back!

NEXT
GAME OVER

August 1st has arrived.
If you did not overtop the reservoir, you still have a job and you are hired for the next season!

How did you like this experience as a decision-maker?
It is April 1st.

The reservoir is at 450 Mm^3
You are given the inflow forecasts on April 1st.

Please fill in your release schedule. Remember: $15\ Mm^3 \leq \text{Release} \leq 60\ Mm^3$

Reservoir should be close to 500 Mm^3 on August 1st.
If the volume exceeds 500 Mm^3, you are fired.
It is April 1st.

And our volunteer?

Let’s see which release option our volunteer will choose.
April has gone by.

April inflow was: $18 \ Mm^3$

You can update your reservoir volume:

The volume on May 1st is:

April 1 volume $+ 18 \ Mm^3 - \text{April release} = ?$

Did you overtop your reservoir?

☐ NO, I still have my job.
☐ YES, I got fired...

What about our volunteer?
April has gone by.

April inflow was: 18 \(Mm^3 \)

Our volunteer’s April release was: 17 \(Mm^3 \)

The volume on May 1st is therefore:

\[
450 \ Mm^3 + 18 \ Mm^3 - 17 \ Mm^3 = 451 \ Mm^3
\]

No overtop!

The volunteer still has a job!

Let’s go to the next forecast!
It is May 1st.

The reservoir is at $451 \, Mm^3$

You are given the inflow forecasts on May 1st.

Please fill in your release schedule. Remember: $15 \, Mm^3 \leq \text{Release} \leq 60 \, Mm^3$

Reservoir should be close to $500 \, Mm^3$ on August 1st.

If the volume exceeds $500 \, Mm^3$, you are fired.
It is May 1st.

And our volunteer?

Let’s see which release option our volunteer will choose.

Option A

Option B

Option C

Current reservoir volume

Reservoir volume assuming inflow is median forecast

Reservoir volume assuming inflow is min/max forecast
May has gone by.

May inflow was: $55 \text{ } Mm^3$

You can update your reservoir volume:
The volume on June 1st is:
May 1 volume $+ 55 \text{ } Mm^3$ - May release $=$?

Did you overtop your reservoir?

☐ NO, I still have my job.
☐ YES, I got fired...

What about our volunteer?
May has gone by.

May inflow was: $55 \, Mm^3$

Our volunteer’s May release was: $26 \, Mm^3$

The volume on June 1st is therefore:

$451 \, Mm^3 + 55 \, Mm^3 - 26 \, Mm^3 = 480 \, Mm^3$

No overtop!

The volunteer still has a job!

Let’s go to the next forecast!
It is June 1st.

The reservoir is at $480\, Mm^3$
You are given the inflow forecasts on June 1st.

Please fill in your release schedule. Remember: $15\, Mm^3 \leq \text{Release} \leq 60\, Mm^3$

Reservoir should be close to 500 Mm^3 on August 1st.
If the volume exceeds 500 Mm^3, you are fired.
It is June 1st.

And our volunteer?

Let’s see which release option our volunteer will choose.
June has gone by.

June inflow was: $120 \text{ } Mm^3$

You can update your reservoir volume:
The volume on July 1st is:
June 1 volume $+ 120 \text{ } Mm^3 - \text{ June release } = ?$

Did you overtop your reservoir?

☐ NO, I still have my job.
☐ YES, I got fired...

What about our volunteer?
June has gone by.

June inflow was: $120\ Mm^3$

Our volunteer’s June release was: $60\ Mm^3$

The volume on July 1st is therefore:
\[
480\ Mm^3 + 120\ Mm^3 - 60\ Mm^3 = 540\ Mm^3
\]

Overtop!

The volunteer got fired!

Can it be fixed?
It is July 1st.

The reservoir is at 540 Mm^3
You are given the inflow forecasts on July 1st.

Please fill in your release schedule. Remember: 15 $Mm^3 \leq$ Release \leq 60 Mm^3

Reservoir should be close to 500 Mm^3 on August 1st.
If the volume exceeds 500 Mm^3, you are fired.
It is July 1st.

And our volunteer?

Let’s see which release option our volunteer will choose.
July has gone by.

July inflow was: 22 Mm^3

You can update your reservoir volume:

The volume on August 1st is:

July 1 volume + 22 Mm^3 - July release = ?

Did you overtop your reservoir?

□ NO, I still have my job.
□ YES, I got fired...

What about our volunteer?
July has gone by.

July inflow was: $22\ Mm^3$

Our volunteer’s July release was: $40\ Mm^3$

The volume on August 1st is therefore:

$$540\ Mm^3 + 22\ Mm^3 - 40\ Mm^3 = 522\ Mm^3$$

Overtop!

The volunteer did not get the job back!
GAME OVER

August 1st has arrived.
If you did not overtop the reservoir, you still have a job and you are hired for the next season!

How did you like this experience as a decision-maker?
It is April 1st.

The reservoir is at 450 Mm^3
You are given the inflow forecasts on April 1st.

Please fill in your release schedule. Remember: $15 \text{ Mm}^3 \leq \text{Release} \leq 60 \text{ Mm}^3$

Reservoir should be close to 500 Mm^3 on August 1st.
If the volume exceeds 500 Mm^3, you are fired.
It is April 1st.

And our volunteer?

Let’s see which release option our volunteer will choose.
April has gone by.

April inflow was: 18 Mm^3

You can update your reservoir volume:
The volume on May 1st is:
April 1 volume + 18 Mm^3 - April release = ?

Did you overtop your reservoir?

□ NO, I still have my job.
□ YES, I got fired...

What about our volunteer?
April has gone by.

April inflow was: $18 \, Mm^3$

Our volunteer’s April release was: $37 \, Mm^3$

The volume on May 1st is therefore:

$450 \, Mm^3 + 18 \, Mm^3 - 37 \, Mm^3 = 431 \, Mm^3$

No overtop!

The volunteer still has a job!

Let’s go to the next forecast!
It is May 1st.

The reservoir is at $431 \ Mm^3$

You are given the inflow forecasts on May 1st.

Please fill in your release schedule. Remember: $15 \ Mm^3 \leq \text{Release} \leq 60 \ Mm^3$

Reservoir should be close to $500 \ Mm^3$ on August 1st.

If the volume exceeds $500 \ Mm^3$, you are fired.
It is May 1st.

And our volunteer?

Let’s see which release option our volunteer will choose.
May has gone by.

May inflow was: $55 \ M m^3$

You can update your reservoir volume:
The volume on June 1st is:
May 1 volume $+ 55 \ M m^3 - \text{May release} = ?$

Did you overtop your reservoir?

☐ NO, I still have my job.
☐ YES, I got fired...

What about our volunteer?
May has gone by.

May inflow was: 55 Mm^3

Our volunteer’s May release was: 59 Mm^3

The volume on June 1st is therefore:

$431 \ Mm^3 + 55 \ Mm^3 - 59 \ Mm^3 = 427 \ Mm^3$

No overtop!

The volunteer still has a job!

Let’s go to the next forecast!
Previous decisions: A A

It is June 1st.

The reservoir is at $427\, Mm^3$
You are given the inflow forecasts on June 1st.

Please fill in your release schedule. Remember: $15\, Mm^3 \leq \text{Release} \leq 60\, Mm^3$

Reservoir should be close to $500\, Mm^3$ on August 1st.
If the volume exceeds $500\, Mm^3$, you are fired.
It is June 1st.

And our volunteer?

Let's see which release option our volunteer will choose.
June has gone by.

June inflow was: $120 \, Mm^3$

You can update your reservoir volume:

The volume on July 1st is:

June 1 volume $+ 120 \, Mm^3 -$ June release $= ?$

Did you overtop your reservoir?

☐ NO, I still have my job.
☐ YES, I got fired...

What about our volunteer?
June has gone by.

June inflow was: $120 \, Mm^3$

Our volunteer’s June release was: $45 \, Mm^3$

The volume on July 1st is therefore:

$$427 \, Mm^3 + 120 \, Mm^3 - 45 \, Mm^3 = 502 \, Mm^3$$

Overtop!

The volunteer got fired!

Can it be fixed?
It is July 1st.

The reservoir is at $502\text{\,} Mm^3$

You are given the inflow forecasts on July 1st.

Please fill in your release schedule. Remember: $15\text{\,} Mm^3 \leq \text{Release} \leq 60\text{\,} Mm^3$

![Graph showing forecast inflow volumes]

Reservoir should be close to $500\text{\,} Mm^3$ on August 1st.

If the volume exceeds $500\text{\,} Mm^3$, you are fired.
It is July 1st.

And our volunteer?

Let’s see which release option our volunteer will choose.
July has gone by.

July inflow was: $22\ Mm^3$

You can update your reservoir volume:

The volume on August 1st is:

July 1 volume $+ 22\ Mm^3 - \text{July release} = ?$

Did you overtop your reservoir?

□ NO, I still have my job.
□ YES, I got fired...

What about our volunteer?
July has gone by.

July inflow was: $22 \ Mm^3$

Our volunteer’s July release was: $40 \ Mm^3$

The volume on August 1st is therefore:

$502 \ Mm^3 + 22 \ Mm^3 - 40 \ Mm^3 = 484 \ Mm^3$

No overtop!

The volunteer got the job back!

NEXT
GAME OVER

August 1st has arrived.
If you did not overtop the reservoir, you still have a job and you are hired for the next season!

How did you like this experience as a decision-maker?
It is April 1st.

The reservoir is at 450 Mm^3
You are given the inflow forecasts on April 1st.

Please fill in your release schedule. Remember: $15 \text{ Mm}^3 \leq \text{Release} \leq 60 \text{ Mm}^3$

Reservoir should be close to 500 Mm^3 on August 1st.
If the volume exceeds 500 Mm^3, you are fired.
It is April 1st.

And our volunteer?

Let's see which release option our volunteer will choose.
April has gone by.

April inflow was: 18 Mm^3

You can update your reservoir volume:
The volume on May 1st is:
April 1 volume $+ 18 \text{ Mm}^3 - \text{April release} = ?$

Did you overtop your reservoir?

☐ NO, I still have my job.
☐ YES, I got fired...

What about our volunteer?
April has gone by.

April inflow was: 18 Mm^3

Our volunteer’s April release was: 55 Mm^3

The volume on May 1st is therefore:

$$450 \ Mm^3 + 18 \ Mm^3 - 55 \ Mm^3 = 413 \ Mm^3$$

No overtop!

The volunteer still has a job!

Let’s go to the next forecast!
It is May 1st.

The reservoir is at $413\ Mm^3$

You are given the inflow forecasts on May 1st.

Please fill in your release schedule. Remember: $15\ Mm^3 \leq \text{Release} \leq 60\ Mm^3$

Reservoir should be close to $500\ Mm^3$ on August 1st.

If the volume exceeds $500\ Mm^3$, you are fired.
It is May 1st.

And our volunteer?

Let’s see which release option our volunteer will choose.
May has gone by.

May inflow was: $55 \ Mm^3$

You can update your reservoir volume:

The volume on June 1st is:

May 1 volume $+ 55 \ Mm^3 - \text{May release} = ?$

Did you overtop your reservoir?

- □ NO, I still have my job.
- □ YES, I got fired...

What about our volunteer?
May has gone by.

May inflow was: $55 \ Mm^3$

Our volunteer’s May release was: $59 \ Mm^3$

The volume on June 1st is therefore:

$413 \ Mm^3 + 55 \ Mm^3 - 59 \ Mm^3 = 409 \ Mm^3$

No overtop!

The volunteer still has a job!

Let’s go to the next forecast!
It is June 1st.

The reservoir is at 409 Mm^3
You are given the inflow forecasts on June 1st.

Please fill in your release schedule. Remember: $15 Mm^3 \leq \text{Release} \leq 60 Mm^3$

Reservoir should be close to 500 Mm^3 on August 1st.
If the volume exceeds 500 Mm^3, you are fired.
It is June 1st.

And our volunteer?

Let’s see which release option our volunteer will choose.
June has gone by.

June inflow was: 120 Mm^3

You can update your reservoir volume:
The volume on July 1st is:
June 1 volume $+ 120 \ Mm^3 - \text{June release} = ?$

Did you overtop your reservoir?

☐ NO, I still have my job.
☐ YES, I got fired...

What about our volunteer?
June has gone by.

June inflow was: $120\ Mm^3$

Our volunteer’s June release was: $45\ Mm^3$

The volume on July 1st is therefore:

$409\ Mm^3 + 120\ Mm^3 - 45\ Mm^3 = 484\ Mm^3$

No overtop!

The volunteer still has a job!

Let’s go to the next forecast!
It is July 1st.

The reservoir is at 484 Mm^3

You are given the inflow forecasts on July 1st.

Please fill in your release schedule. Remember: $15 \text{ Mm}^3 \leq \text{Release} \leq 60 \text{ Mm}^3$

Reservoir should be close to 500 Mm^3 on August 1st.
If the volume exceeds 500 Mm^3, you are fired.
Previous decisions: B A C

It is July 1st.

And our volunteer?

Let’s see which release option our volunteer will choose.

Option A

Option B

Option C

Current reservoir volume

Reservoir volume assuming inflow is median forecast

Reservoir volume assuming inflow is min/max forecast
July has gone by.

July inflow was: 22 \(Mm^3 \)

You can update your reservoir volume:
The volume on August 1st is:
July 1 volume + 22 \(Mm^3 \) - July release = ?

Did you overtop your reservoir?

☐ NO, I still have my job.
☐ YES, I got fired...

What about our volunteer?
July has gone by.

July inflow was: \(22 \ Mm^3\)

Our volunteer’s July release was: \(40 \ Mm^3\)

The volume on August 1st is therefore:

\[
484 \ Mm^3 + 22 \ Mm^3 - 40 \ Mm^3 = 466 \ Mm^3
\]

No overtop!

The volunteer still has a job!

NEXT
GAME OVER

August 1st has arrived.
If you did not overtop the reservoir, you still have a job and you are hired for the next season!

How did you like this experience as a decision-maker?
It is April 1st.

The reservoir is at $450 \ Mm^3$
You are given the inflow forecasts on April 1st.

Please fill in your release schedule. Remember: $15 \ Mm^3 \leq \text{Release} \leq 60 \ Mm^3$

Reservoir should be close to $500 \ Mm^3$ on August 1st.
If the volume exceeds $500 \ Mm^3$, you are fired.
It is April 1st.

And our volunteer?

Let’s see which release option our volunteer will choose.
April has gone by.

April inflow was: $18 \text{ } Mm^3$

You can update your reservoir volume:

The volume on May 1st is:

April 1 volume $+ 18 \text{ } Mm^3 - \text{ April release } = ?$

Did you overtop your reservoir?

☐ NO, I still have my job.
☐ YES, I got fired...

What about our volunteer?
April has gone by.

April inflow was: $18 \, Mm^3$

Our volunteer’s April release was: $17 \, Mm^3$

The volume on May 1st is therefore:

$450 \, Mm^3 + 18 \, Mm^3 - 17 \, Mm^3 = 451 \, Mm^3$

No overtop!

The volunteer still has a job!

Let’s go to the next forecast!
It is May 1st.

The reservoir is at $451 \, Mm^3$
You are given the inflow forecasts on May 1st.

Please fill in your release schedule. Remember: $15 \, Mm^3 \leq \text{Release} \leq 60 \, Mm^3$

Reservoir should be close to $500 \, Mm^3$ on August 1st.
If the volume exceeds $500 \, Mm^3$, you are fired.
It is May 1st.

And our volunteer?

Let’s see which release option our volunteer will choose.
May has gone by.

May inflow was: $55 \, Mm^3$

You can update your reservoir volume:
The volume on June 1st is:
May 1 volume + $55 \, Mm^3$ - May release = ?

Did you overtop your reservoir?

☐ NO, I still have my job.
☐ YES, I got fired...

What about our volunteer?
May has gone by.

May inflow was: $55 \text{ } Mm^3$

Our volunteer’s May release was: $59 \text{ } Mm^3$

The volume on June 1st is therefore:

$451 \text{ } Mm^3 + 55 \text{ } Mm^3 - 59 \text{ } Mm^3 = 447 \text{ } Mm^3$

No overtop!

The volunteer still has a job!

Let’s go to the next forecast!
It is June 1st.

The reservoir is at $447 \ Mm^3$
You are given the inflow forecasts on June 1st.

Please fill in your release schedule. Remember: $15 \ Mm^3 \leq \text{Release} \leq 60 \ Mm^3$

Reservoir should be close to $500 \ Mm^3$ on August 1st.
If the volume exceeds $500 \ Mm^3$, you are fired.
It is June 1st.

And our volunteer?

Let’s see which release option our volunteer will choose.

Option A

Option B

Option C

Current reservoir volume

Reservoir volume assuming inflow is median forecast

Reservoir volume assuming inflow is min/max forecast
June has gone by.

June inflow was: $120\ Mm^3$

You can update your reservoir volume:
The volume on July 1st is:
June 1 volume $+\ 120\ Mm^3\ -\ June\ release\ =\ ?$

Did you overtop your reservoir?

☐ NO, I still have my job.
☐ YES, I got fired...

What about our volunteer?
June has gone by.

June inflow was: $120 \ Mm^3$

Our volunteer’s June release was: $45 \ Mm^3$

The volume on July 1st is therefore:

$447 \ Mm^3 + 120 \ Mm^3 - 45 \ Mm^3 = 522 \ Mm^3$

Overtop!

The volunteer got fired!

Can it be fixed?
It is July 1st.

The reservoir is at $522 \ Mm^3$
You are given the inflow forecasts on July 1st.

Please fill in your release schedule. Remember: $15 \ Mm^3 \leq \text{Release} \leq 60 \ Mm^3$

Reservoir should be close to $500 \ Mm^3$ on August 1st.
If the volume exceeds $500 \ Mm^3$, you are fired.
It is July 1st.

And our volunteer?

Let’s see which release option our volunteer will choose.
July has gone by.

July inflow was: \(22 \ Mm^3\)

You can update your reservoir volume:
The volume on August 1st is:
July 1 volume + \(22 \ Mm^3\) - July release = ?

Did you overtop your reservoir?

□ NO, I still have my job.
□ YES, I got fired...

What about our volunteer?
July has gone by.

July inflow was: 22 Mm^3

Our volunteer’s July release was: 40 Mm^3

The volume on August 1st is therefore:

$522 \text{ Mm}^3 + 22 \text{ Mm}^3 - 40 \text{ Mm}^3 = 504 \text{ Mm}^3$

Overtop!

The volunteer did not get the job back!

NEXT
GAME OVER

August 1st has arrived.
If you did not overtop the reservoir, you still have a job and you are hired for the next season!

How did you like this experience as a decision-maker?
It is April 1st.

The reservoir is at 450 Mm^3.
You are given the inflow forecasts on April 1st.

Please fill in your release schedule. Remember: $15 Mm^3 \leq \text{Release} \leq 60 Mm^3$

Reservoir should be close to 500 Mm^3 on August 1st.
If the volume exceeds 500 Mm^3, you are fired.
It is April 1st.

And our volunteer?

Let’s see which release option our volunteer will choose.
April has gone by.

April inflow was: $18 \, Mm^3$

You can update your reservoir volume:

The volume on May 1st is:

April 1 volume $+ \, 18 \, Mm^3$ - April release $= ?$

Did you overtop your reservoir?

□ NO, I still have my job.
□ YES, I got fired...

What about our volunteer?
April has gone by.

April inflow was: 18 Mm^3

Our volunteer’s April release was: 37 Mm^3

The volume on May 1st is therefore:

$450 \, Mm^3 + 18 \, Mm^3 - 37 \, Mm^3 = 431 \, Mm^3$

No overtop!

The volunteer still has a job!

Let’s go to the next forecast!
It is May 1st.

The reservoir is at 431 Mm^3

You are given the inflow forecasts on May 1st.

Please fill in your release schedule. Remember: $15 \, Mm^3 \leq Release \leq 60 \, Mm^3$

Reservoir should be close to 500 Mm^3 on August 1st.

If the volume exceeds 500 Mm^3, you are fired.
It is May 1st.

And our volunteer?

Let’s see which release option our volunteer will choose.
May has gone by.

May inflow was: $55 \, Mm^3$

You can update your reservoir volume:
The volume on June 1st is:
May 1 volume + $55 \, Mm^3$ - May release = ?

Did you overtop your reservoir?

☐ NO, I still have my job.
☐ YES, I got fired...

What about our volunteer?
May has gone by.

May inflow was: $55 \ M m^3$

Our volunteer’s May release was: $45 \ M m^3$

The volume on June 1st is therefore:

$$431 \ M m^3 + 55 \ M m^3 - 45 \ M m^3 = 441 \ M m^3$$

No overtop!

The volunteer still has a job!

Let’s go to the next forecast!
It is June 1st.

The reservoir is at 441 \(Mm^3 \)

You are given the inflow forecasts on June 1st.

Please fill in your release schedule. Remember: 15 \(Mm^3 \leq \) Release \(\leq \) 60 \(Mm^3 \)

Reservoir should be close to 500 \(Mm^3 \) on August 1st.

If the volume exceeds 500 \(Mm^3 \), you are fired.
It is June 1st.

And our volunteer?

Let’s see which release option our volunteer will choose.
June has gone by.

June inflow was: 120 Mm^3

You can update your reservoir volume:
The volume on July 1st is:
June 1 volume $+ 120 \text{ Mm}^3 - \text{June release} = ?$

Did you overtop your reservoir?

☐ NO, I still have my job.
☐ YES, I got fired...

What about our volunteer?
June has gone by.

June inflow was: 120 Mm^3

Our volunteer’s June release was: 45 Mm^3

The volume on July 1st is therefore:

441 $Mm^3 + 120 Mm^3 - 45 Mm^3 = 516 Mm^3$

Overtop!

The volunteer got fired!

Can it be fixed?
It is July 1st.

The reservoir is at $516 \ Mm^3$

You are given the inflow forecasts on July 1st.

Please fill in your release schedule. Remember: $15 \ Mm^3 \leq \text{Release} \leq 60 \ Mm^3$

Reservoir should be close to $500 \ Mm^3$ on August 1st.

If the volume exceeds $500 \ Mm^3$, you are fired.
Previous decisions: A B C

It is July 1st.

And our volunteer?

Let’s see which release option our volunteer will choose.
July has gone by.

July inflow was: $22 \, Mm^3$

You can update your reservoir volume:

The volume on August 1st is:

July 1 volume + $22 \, Mm^3$ - July release = ?

Did you overtop your reservoir?

☐ NO, I still have my job.
☐ YES, I got fired...

What about our volunteer?
July has gone by.

July inflow was: $22 \ Mm^3$

Our volunteer’s July release was: $40 \ Mm^3$

The volume on August 1st is therefore:

$$516 \ Mm^3 + 22 \ Mm^3 - 40 \ Mm^3 = 498 \ Mm^3$$

No overtop!

The volunteer got the job back!
GAME OVER

August 1st has arrived.
If you did not overtop the reservoir, you still have a job and you are hired for the next season!

How did you like this experience as a decision-maker?
It is April 1st.

The reservoir is at 450 $M m^3$

You are given the inflow forecasts on April 1st.

Please fill in your release schedule. Remember: $15 \, M m^3 \leq \text{Release} \leq 60 \, M m^3$

Reservoir should be close to 500 $M m^3$ on August 1st.

If the volume exceeds 500 $M m^3$, you are fired.
It is April 1st.

And our volunteer?

Let’s see which release option our volunteer will choose.
April has gone by.

April inflow was: $18 \ Mm^3$

You can update your reservoir volume:

The volume on May 1st is:

April 1 volume $+ 18 \ Mm^3 -$ April release $= ?$

Did you overtop your reservoir?

☐ NO, I still have my job.
☐ YES, I got fired...

What about our volunteer?
April has gone by.

April inflow was: \(18 \, Mm^3\)

Our volunteer’s April release was: \(55 \, Mm^3\)

The volume on May 1st is therefore:
\[
450 \, Mm^3 + 18 \, Mm^3 - 55 \, Mm^3 = 413 \, Mm^3
\]

No overtop!

The volunteer still has a job!

Let’s go to the next forecast!
It is May 1st.

The reservoir is at 413 Mm^3

You are given the inflow forecasts on May 1st.

Please fill in your release schedule. Remember: $15 Mm^3 \leq \text{Release} \leq 60 Mm^3$

Reservoir should be close to 500 Mm^3 on August 1st.

If the volume exceeds 500 Mm^3, you are fired.
It is May 1st.

And our volunteer?

Let’s see which release option our volunteer will choose.
May has gone by.

May inflow was: 55 Mm^3

You can update your reservoir volume:
The volume on June 1st is:
May 1 volume $+ 55 \text{ Mm}^3 - \text{May release} = ?$

Did you overtop your reservoir?

☐ NO, I still have my job.
☐ YES, I got fired...

What about our volunteer?
May has gone by.

May inflow was: 55 Mm^3

Our volunteer’s May release was: 45 Mm^3

The volume on June 1st is therefore:

$$413 \text{ } Mm^3 + 55 \text{ } Mm^3 - 45 \text{ } Mm^3 = 423 \text{ } Mm^3$$

No overtop!

The volunteer still has a job!

Let’s go to the next forecast!
It is June 1st.

The reservoir is at $423 \, Mm^3$
You are given the inflow forecasts on June 1st.

Please fill in your release schedule. Remember: $15 \, Mm^3 \leq \text{Release} \leq 60 \, Mm^3$

Reservoir should be close to $500 \, Mm^3$ on August 1st.
If the volume exceeds $500 \, Mm^3$, you are fired.
It is June 1st.

And our volunteer?

Let’s see which release option our volunteer will choose.
June has gone by.

June inflow was: $120 \, Mm^3$

You can update your reservoir volume:
The volume on July 1st is:
June 1 volume $+ \, 120 \, Mm^3 \, - \, $June release $=$?

Did you overtop your reservoir?

☐ NO, I still have my job.
☐ YES, I got fired...

What about our volunteer?
June has gone by.

June inflow was: 120 Mm^3

Our volunteer’s June release was: 45 Mm^3

The volume on July 1st is therefore:

$$423 \text{ Mm}^3 + 120 \text{ Mm}^3 - 45 \text{ Mm}^3 = 498 \text{ Mm}^3$$

No overtop!

The volunteer still has a job!

Let’s go to the next forecast!
It is July 1st.

The reservoir is at $498 \ Mm^3$
You are given the inflow forecasts on July 1st.

Please fill in your release schedule. Remember: $15 \ Mm^3 \leq \text{Release} \leq 60 \ Mm^3$

Reservoir should be close to $500 \ Mm^3$ on August 1st.
If the volume exceeds $500 \ Mm^3$, you are fired.
It is July 1st.

And our volunteer?

Let’s see which release option our volunteer will choose.
July has gone by.

July inflow was: \(22 \text{ Mm}^3\)

You can update your reservoir volume:
The volume on August 1st is:
July 1 volume + \(22 \text{ Mm}^3\) - July release = ?

Did you overtop your reservoir?

- □ NO, I still have my job.
- □ YES, I got fired...

What about our volunteer?
July has gone by.

July inflow was: $22 \, Mm^3$

Our volunteer’s July release was: $40 \, Mm^3$

The volume on August 1st is therefore:

$$498 \, Mm^3 + 22 \, Mm^3 - 40 \, Mm^3 = 480 \, Mm^3$$

No overtop!

The volunteer still has a job!
GAME OVER

August 1st has arrived.

If you did not overtop the reservoir, you still have a job and you are hired for the next season!

How did you like this experience as a decision-maker?
It is April 1st.

The reservoir is at 450 Mm^3
You are given the inflow forecasts on April 1st.

Please fill in your release schedule. Remember: $15 \text{ Mm}^3 \leq \text{Release} \leq 60 \text{ Mm}^3$

Reservoir should be close to 500 Mm^3 on August 1st.
If the volume exceeds 500 Mm^3, you are fired.
It is April 1st.

And our volunteer?

Let’s see which release option our volunteer will choose.
April has gone by.

April inflow was: 18 Mm^3

You can update your reservoir volume:
The volume on May 1st is:
April 1 volume $+ 18 \text{ Mm}^3 - \text{April release} =$

Did you overtop your reservoir?

☐ NO, I still have my job.
☐ YES, I got fired...

What about our volunteer?
April has gone by.

April inflow was: 18 Mm^3

Our volunteer’s April release was: 17 Mm^3

The volume on May 1st is therefore:

$450 \ Mm^3 + 18 \ Mm^3 - 17 \ Mm^3 = 451 \ Mm^3$

No overtop!

The volunteer still has a job!

Let’s go to the next forecast!
It is May 1st.

The reservoir is at $451 \, Mm^3$

You are given the inflow forecasts on May 1st.

Please fill in your release schedule. Remember: $15 \, Mm^3 \leq \text{Release} \leq 60 \, Mm^3$

Reservoir should be close to $500 \, Mm^3$ on August 1st.

If the volume exceeds $500 \, Mm^3$, you are fired.
It is May 1st.

And our volunteer?

Let’s see which release option our volunteer will choose.
May has gone by.

May inflow was: 55 Mm^3

You can update your reservoir volume:
The volume on June 1st is:
May 1 volume $+ 55 \text{ Mm}^3 - \text{May release} = ?$

Did you overtop your reservoir?

☐ NO, I still have my job.
☐ YES, I got fired...

What about our volunteer?
May has gone by.

May inflow was: 55 Mm^3

Our volunteer’s May release was: 45 Mm^3

The volume on June 1st is therefore:

$$451 \ Mm^3 + 55 \ Mm^3 - 45 \ Mm^3 = 461 \ Mm^3$$

No overtop!

The volunteer still has a job!

Let’s go to the next forecast!
It is June 1st.

The reservoir is at 461 Mm^3.

You are given the inflow forecasts on June 1st.

Please fill in your release schedule. Remember: $15 Mm^3 \leq \text{Release} \leq 60 Mm^3$

Reservoir should be close to 500 Mm^3 on August 1st.

If the volume exceeds 500 Mm^3, you are fired.
It is June 1st.

And our volunteer?

Let’s see which release option our volunteer will choose.
June has gone by.

June inflow was: 120 Mm^3

You can update your reservoir volume:

The volume on July 1st is:

June 1 volume $+ 120 \text{ Mm}^3$ $- \text{June release} = ?$

Did you overtop your reservoir?

☐ NO, I still have my job.
☐ YES, I got fired...

What about our volunteer?
June has gone by.

June inflow was: 120 Mm^3

Our volunteer’s June release was: 45 Mm^3

The volume on July 1st is therefore:

$$461\ Mm^3 + 120\ Mm^3 - 45\ Mm^3 = 536\ Mm^3$$

Overtop!

The volunteer got fired!

Can it be fixed?
Previous decisions: C B C

It is July 1st.

The reservoir is at 536 Mm^3
You are given the inflow forecasts on July 1st.

Please fill in your release schedule. Remember: $15 \text{ Mm}^3 \leq \text{Release} \leq 60 \text{ Mm}^3$

Reservoir should be close to 500 Mm^3 on August 1st.
If the volume exceeds 500 Mm^3, you are fired.
It is July 1st.

And our volunteer?

Let’s see which release option our volunteer will choose.
July has gone by.

July inflow was: \(22 \, Mm^3\)

You can update your reservoir volume:

The volume on August 1st is:

July 1 volume + \(22 \, Mm^3\) - July release = ?

Did you overtop your reservoir?

☐ NO, I still have my job.
☐ YES, I got fired...

What about our volunteer?
July has gone by.

July inflow was: 22 Mm^3

Our volunteer’s July release was: 40 Mm^3

The volume on August 1st is therefore:

$536 \text{ Mm}^3 + 22 \text{ Mm}^3 - 40 \text{ Mm}^3 = 518 \text{ Mm}^3$

Overtop!

The volunteer did not get the job back!

NEXT
GAME OVER

August 1st has arrived.
If you did not overtop the reservoir, you still have a job and you are hired for the next season!

How did you like this experience as a decision-maker?
It is April 1st.

The reservoir is at $450 \, Mm^3$
You are given the inflow forecasts on April 1st.

Please fill in your release schedule. Remember: $15 \, Mm^3 \leq \text{Release} \leq 60 \, Mm^3$

Reservoir should be close to $500 \, Mm^3$ on August 1st.
If the volume exceeds $500 \, Mm^3$, you are fired.
It is April 1st.

And our volunteer?

Let’s see which release option our volunteer will choose.
April has gone by.

April inflow was: \(18 \text{ Mm}^3\)

You can update your reservoir volume:
The volume on May 1st is:
April 1 volume + \(18 \text{ Mm}^3\) - April release = ?

Did you overtop your reservoir?

☐ NO, I still have my job.
☐ YES, I got fired...

What about our volunteer?
April has gone by.

April inflow was: 18 $M m^3$

Our volunteer’s April release was: 37 $M m^3$

The volume on May 1st is therefore:

$$450 \ M m^3 + 18 \ M m^3 - 37 \ M m^3 = 431 \ M m^3$$

No overtop!

The volunteer still has a job!

Let’s go to the next forecast!
It is May 1st.

The reservoir is at 431 Mm^3

You are given the inflow forecasts on May 1st.

Please fill in your release schedule. Remember: $15 \text{ Mm}^3 \leq \text{Release} \leq 60 \text{ Mm}^3$

Reservoir should be close to 500 Mm^3 on August 1st.

If the volume exceeds 500 Mm^3, you are fired.
It is May 1st.

And our volunteer?

Let’s see which release option our volunteer will choose.
May has gone by.

May inflow was: $55 \text{ } Mm^3$

You can update your reservoir volume:

The volume on June 1st is:

May 1 volume + $55 \text{ } Mm^3$ - May release = ?

Did you overtop your reservoir?

☐ NO, I still have my job.
☐ YES, I got fired...

What about our volunteer?
May has gone by.

May inflow was: $55\ Mm^3$

Our volunteer’s May release was: $26\ Mm^3$

The volume on June 1st is therefore:

$431\ Mm^3 + 55\ Mm^3 - 26\ Mm^3 = 460\ Mm^3$

No overtop!

The volunteer still has a job!

Let’s go to the next forecast!
It is June 1st.

The reservoir is at $460 \text{ } Mm^3$

You are given the inflow forecasts on June 1st.

Please fill in your release schedule. Remember: $15 \text{ } Mm^3 \leq \text{Release} \leq 60 \text{ } Mm^3$

Reservoir should be close to $500 \text{ } Mm^3$ on August 1st.

If the volume exceeds $500 \text{ } Mm^3$, you are fired.
It is June 1st.

And our volunteer?

Let’s see which release option our volunteer will choose.
June has gone by.

June inflow was: \(120 \text{ } Mm^3\)

You can update your reservoir volume:
The volume on July 1st is:
June 1 volume \(+120 \text{ } Mm^3\) - June release = ?

Did you overtop your reservoir?

- \(\square\) NO, I still have my job.
- \(\square\) YES, I got fired...

What about our volunteer?
June has gone by.

June inflow was: $120 \ M m^3$

Our volunteer’s June release was: $45 \ M m^3$

The volume on July 1st is therefore:

$460 \ M m^3 + 120 \ M m^3 - 45 \ M m^3 = 535 \ M m^3$

Overtop!

The volunteer got fired!

Can it be fixed?
It is July 1st.

The reservoir is at $535\ Mm^3$

You are given the inflow forecasts on July 1st.

Please fill in your release schedule. Remember: $15 \ Mm^3 \leq \text{Release} \leq 60 \ Mm^3$

Reservoir should be close to $500\ Mm^3$ on August 1st.
If the volume exceeds $500\ Mm^3$, you are fired.
It is July 1st.

And our volunteer?

Let’s see which release option our volunteer will choose.

![Graph showing inflow volume forecasts and reservoir volume for options A, B, and C.]
July has gone by.

July inflow was: $22 \ Mm^3$

You can update your reservoir volume:
The volume on August 1st is:
July 1 volume $+ 22 \ Mm^3 - \text{July release} = ?$

Did you overtop your reservoir?

☐ NO, I still have my job.
☐ YES, I got fired...

What about our volunteer?
July has gone by.

July inflow was: \(22 \, Mm^3\)

Our volunteer’s July release was: \(40 \, Mm^3\)

The volume on August 1st is therefore:

\(535 \, Mm^3 + 22 \, Mm^3 - 40 \, Mm^3 = 517 \, Mm^3\)

Overtop!

The volunteer did not get the job back!
GAME OVER

August 1st has arrived.
If you did not overtop the reservoir, you still have a job and you are hired for the next season!

How did you like this experience as a decision-maker?
It is April 1st.

The reservoir is at \(450 \text{ } Mm^3\).

You are given the inflow forecasts on April 1st.

Please fill in your release schedule. Remember: \(15 \text{ } Mm^3 \leq \text{Release} \leq 60 \text{ } Mm^3\)

Reservoir should be close to \(500 \text{ } Mm^3\) on August 1st.

If the volume exceeds \(500 \text{ } Mm^3\), you are fired.
It is April 1st.

And our volunteer?

Let’s see which release option our volunteer will choose.
April has gone by.

April inflow was: $18 \, Mm^3$

You can update your reservoir volume:
The volume on May 1st is:
April 1 volume $+ 18 \, Mm^3$ - April release $= ?$

Did you overtop your reservoir?

☐ NO, I still have my job.
☐ YES, I got fired...

What about our volunteer?
April has gone by.

April inflow was: 18 Mm^3

Our volunteer’s April release was: 55 Mm^3

The volume on May 1st is therefore:

$450 \text{ Mm}^3 + 18 \text{ Mm}^3 - 55 \text{ Mm}^3 = 413 \text{ Mm}^3$

No overtop!

The volunteer still has a job!

Let’s go to the next forecast!
It is May 1st.

The reservoir is at \(413 \, Mm^3\)
You are given the inflow forecasts on May 1st.

Please fill in your release schedule. Remember: \(15 \, Mm^3 \leq \text{Release} \leq 60 \, Mm^3\)

Reservoir should be close to \(500 \, Mm^3\) on August 1st.
If the volume exceeds \(500 \, Mm^3\), you are fired.
It is May 1st.

And our volunteer?

Let’s see which release option our volunteer will choose.
May has gone by.

May inflow was: $55 \, Mm^3$

You can update your reservoir volume:

The volume on June 1st is:

May 1 volume $+ 55 \, Mm^3 - \text{May release} = ?$

Did you overtop your reservoir?

☐ NO, I still have my job.
☐ YES, I got fired...

What about our volunteer?
May has gone by.

May inflow was: $55 \text{ } Mm^3$

Our volunteer’s May release was: $26 \text{ } Mm^3$

The volume on June 1st is therefore:

$413 \text{ } Mm^3 + 55 \text{ } Mm^3 - 26 \text{ } Mm^3 = 442 \text{ } Mm^3$

No overtop!

The volunteer still has a job!

Let’s go to the next forecast!
It is June 1st.

The reservoir is at 442 Mm^3

You are given the inflow forecasts on June 1st.

Please fill in your release schedule. Remember: $15 \text{ Mm}^3 \leq \text{Release} \leq 60 \text{ Mm}^3$

Reservoir should be close to 500 Mm^3 on August 1st.

If the volume exceeds 500 Mm^3, you are fired.
It is June 1st.

And our volunteer?

Let’s see which release option our volunteer will choose.
June has gone by.

June inflow was: 120 Mm^3

You can update your reservoir volume:
The volume on July 1st is:
June 1 volume $+ 120 \text{ Mm}^3 - \text{June release} = ?$

Did you overtop your reservoir?

☐ NO, I still have my job.
☐ YES, I got fired...

What about our volunteer?
June has gone by.

June inflow was: $120 \ Mm^3$

Our volunteer’s June release was: $45 \ Mm^3$

The volume on July 1st is therefore:

$442 \ Mm^3 + 120 \ Mm^3 - 45 \ Mm^3 = 517 \ Mm^3$

Overtop!

The volunteer got fired!

Can it be fixed?
It is July 1st.

The reservoir is at 517 Mm^3

You are given the inflow forecasts on July 1st.

Please fill in your release schedule. Remember: $15 \text{ Mm}^3 \leq \text{Release} \leq 60 \text{ Mm}^3$

Reservoir should be close to 500 Mm^3 on August 1st.

If the volume exceeds 500 Mm^3, you are fired.
It is July 1st.

And our volunteer?

Let’s see which release option our volunteer will choose.
July has gone by.

July inflow was: $22 \ Mm^3$

You can update your reservoir volume:
The volume on August 1st is:
July 1 volume + $22 \ Mm^3$ - July release = ?

Did you overtop your reservoir?

☐ NO, I still have my job.
☐ YES, I got fired...

What about our volunteer?
July has gone by.

July inflow was: 22 Mm^3

Our volunteer’s July release was: 40 Mm^3

The volume on August 1st is therefore:

$$517 \ Mm^3 + 22 \ Mm^3 - 40 \ Mm^3 = 499 \ Mm^3$$

No overtop!

The volunteer got the job back!

NEXT
GAME OVER

August 1st has arrived.
If you did not overtop the reservoir, you still have a job and you are hired for the next season!

How did you like this experience as a decision-maker?
It is April 1st.

The reservoir is at 450 Mm^3
You are given the inflow forecasts on April 1st.

Please fill in your release schedule. Remember: $15 \ Mm^3 \leq \text{Release} \leq 60 \ Mm^3$

Reservoir should be close to 500 Mm^3 on August 1st.
If the volume exceeds 500 Mm^3, you are fired.
It is April 1st.

And our volunteer?

Let’s see which release option our volunteer will choose.
April has gone by.

April inflow was: 18 Mm^3

You can update your reservoir volume:

The volume on May 1st is:

April 1 volume + 18 Mm^3 - April release = ?

Did you overtop your reservoir?

☐ NO, I still have my job.
☐ YES, I got fired...

What about our volunteer?
April has gone by.

April inflow was: \(18 \text{ Mm}^3\)

Our volunteer’s April release was: \(17 \text{ Mm}^3\)

The volume on May 1st is therefore:

\[
450 \text{ Mm}^3 + 18 \text{ Mm}^3 - 17 \text{ Mm}^3 = 451 \text{ Mm}^3
\]

No overtop!

The volunteer still has a job!

Let’s go to the next forecast!
It is May 1st.

The reservoir is at $451\, Mm^3$

You are given the inflow forecasts on May 1st.

Please fill in your release schedule. Remember: $15\, Mm^3 \leq \text{Release} \leq 60\, Mm^3$

Reservoir should be close to $500\, Mm^3$ on August 1st.

If the volume exceeds $500\, Mm^3$, you are fired.
It is May 1st.

And our volunteer?

Let’s see which release option our volunteer will choose.

Option A

Release

59 60 56

Reservoir volume

Current reservoir volume

Reservoir volume assuming inflow is median forecast

Reservoir volume assuming inflow is min/max forecast

Option B

Release

45 46 39

Reservoir volume

Current reservoir volume

Reservoir volume assuming inflow is median forecast

Reservoir volume assuming inflow is min/max forecast

Option C

Release

26 24 25

Reservoir volume

Current reservoir volume

Reservoir volume assuming inflow is median forecast

Reservoir volume assuming inflow is min/max forecast
May has gone by.

May inflow was: 55 Mm^3

You can update your reservoir volume:
The volume on June 1st is:
May 1 volume $+ \ 55 \text{ Mm}^3$ - May release $=$?

Did you overtop your reservoir?

☐ NO, I still have my job.
☐ YES, I got fired...

What about our volunteer?
May has gone by.

May inflow was: 55 Mm^3

Our volunteer’s May release was: 26 Mm^3

The volume on June 1st is therefore:

$451 \text{ Mm}^3 + 55 \text{ Mm}^3 - 26 \text{ Mm}^3 = 480 \text{ Mm}^3$

No overtop!

The volunteer still has a job!

Let’s go to the next forecast!
It is June 1st.

The reservoir is at $480 \ Mm^3$

You are given the inflow forecasts on June 1st.

Please fill in your release schedule. Remember: $15 \ Mm^3 \leq Release \leq 60 \ Mm^3$

Reservoir should be close to $500 \ Mm^3$ on August 1st.

If the volume exceeds $500 \ Mm^3$, you are fired.
It is June 1st.

And our volunteer?

Let’s see which release option our volunteer will choose.

Previous decisions: C C
June has gone by.

June inflow was: $120 \, Mm^3$

You can update your reservoir volume:
The volume on July 1st is:
June 1 volume + $120 \, Mm^3$ - June release = ?

Did you overtop your reservoir?

☐ NO, I still have my job.
☐ YES, I got fired...

What about our volunteer?
June has gone by.

June inflow was: $120\ Mm^3$

Our volunteer’s June release was: $45\ Mm^3$

The volume on July 1st is therefore:

$480\ Mm^3 + 120\ Mm^3 - 45\ Mm^3 = 555\ Mm^3$

Overtop!

The volunteer got fired!

Can it be fixed?
It is July 1st.

The reservoir is at $555 \ Mm^3$

You are given the inflow forecasts on July 1st.

Please fill in your release schedule. Remember: $15 \ Mm^3 \leq \text{Release} \leq 60 \ Mm^3$

Reservoir should be close to $500 \ Mm^3$ on August 1st.

If the volume exceeds $500 \ Mm^3$, you are fired.
It is July 1st.

And our volunteer?

Let’s see which release option our volunteer will choose.
July has gone by.

July inflow was: 22 Mm^3

You can update your reservoir volume:
The volume on August 1st is:
July 1 volume $+ 22 \text{ Mm}^3 - $ July release $= ?$

Did you overtop your reservoir?

☐ NO, I still have my job.
☐ YES, I got fired...

What about our volunteer?
July has gone by.

July inflow was: \(22 \ \text{Mm}^3\)

Our volunteer’s July release was: \(40 \ \text{Mm}^3\)

The volume on August 1st is therefore:
\[555 \ \text{Mm}^3 + 22 \ \text{Mm}^3 - 40 \ \text{Mm}^3 = 537 \ \text{Mm}^3\]

Overtop!

The volunteer did not get the job back!

NEXT
GAME OVER

August 1st has arrived.
If you did not overtop the reservoir, you still have a job and you are hired for the next season!

How did you like this experience as a decision-maker?