Introduction to Coupled Ocean-Atmosphere Variability

Magdalena A. Balmaseda
European Center for Medium Range Weather Forecast, Reading, UK
Ocean Atmosphere Interaction

Why does it matter?

• **Predictability**: How far into the future can we predict the weather/climate?

 ➢ How does the atmosphere respond to the ocean?
 ➢ How predictable is the ocean?

• **Modelling**: Which air-sea processes need to be represented to predict the weather/climate at different time scales?

 Momentum flux (wind-wave-currents...) and mixing, diurnal cycle, baroclinic instability over sharp SST fronts, SST and tropical convection (MJO, ENSO) ...
This talk will cover

- **Implications for Predictability**
 - Basis for extended range prediction
 - Some examples of air-sea interaction

- **The ocean and its circulation**
 - Some facts
 - Wind driven and thermohaline circulations

- **Modes of variability at different time scales**
 - From diurnal to decadal
 - Known modes of variability

- **Impact of the ocean in the ECMWF forecasting system**
Ocean and Predictability

• **Ocean** is responsible for the slow time scales

 The ocean has a large heat capacity and slow adjustment times relative to the atmosphere.

• **Atmospheric response to ocean forcing**: very sensitive to the structure, location, and amplitude of the ocean forcing.

 i. **Response to large-scale spatial SST gradients**

 ii. **Response over warm pool: deep atmospheric convection**

 iii. **Response to sharp SST fronts**

 example: mid latitude storm tracks over western boundary currents

Without any atmospheric response to boundary forcing, there can not be interannual-decadal atmospheric “predictability”

Hasselmann 1976

Latif et al 2002, Timmermann 2005...
Traditional view: Atmosphere response to SST

- Large Scale Pressure Gradients, mainly in the tropics
- Convective forcing
Air-Sea Interaction also occurs at small scales, such as that of the Western Boundary currents (above and right) and Tropical Instability Waves TIW (left).

A new paradigm?

Minobe et al 2008

From Czaja, 2016
Air-Sea Interaction in Tropical Cyclones

Heat Flux exchange: ocean mixing and upwelling
Wind-Wave interaction
Ocean Initial conditions also matter

From Ginis 2008
This talk will cover

- **Implications for Predictability**
 - Basis for extended range prediction
 - Some examples of air-sea interaction

- **The ocean and its circulation**
 - Some facts
 - Wind driven and thermohaline circulations

- **Modes of variability at different time scales**
 - From diurnal to decadal
 - Known modes of variability

- **Impact of the ocean in the ECMWF forecasting system**
Some facts

• **Spatial/time scales** The radius of deformation in the ocean is small (~30km) compared to the atmosphere (~3000km).

 Radius of deformation = c/f where c = speed of gravity waves. In the ocean c~<3m/s for baroclinic processes. Smaller spatial scales and Longer time scales

• **The heat capacity** of the ocean is vastly greater than that of the atmosphere (1000 times).

 The total atmospheric heat content ~ the ocean heat content of 3.5m layer

• **The ocean is strongly stratified in the vertical**, although deep convection also occurs

 Density is determined by Temperature and Salinity

• **The ocean is forced at the surface** by the wind/waves, by heating/cooling, and by fresh-water fluxes.

• **Role of the ocean in meridional heat transports**

 ➢ Why is it different in the different basins? Why is the Atlantic heat transport always northward?
 ➢ Presence of bifurcations?
Atmospheric wind speed (12h)

Ocean current speed (model simulation, 5 day mean)
Air-Sea Interaction

- Wind
- Evaporation
- Precipitation
- Sunlight (Qs)
- Clouds
- Salinity Temperature
- Turbulent, Well-Mixed Layer
- Thermocline
- Internal Waves
- Ocean Interior (geostrophy)
What maintains the ocean stratification?

Ellis 1751: The temperature of the ocean at the equator is warm (heated by the atmosphere) at the surface, but is cold at depth: i.e. the ocean is not in thermal equilibrium.

Thought experiment:

The temperature profile becomes homogeneous (well mixed) with increasing time t_1, t_2, t_3 ...

Temperature profile from the surface to the deep ocean (4000m)
Ocean Circulation

• **Wind Driven:**
 - Gyres
 - Western Boundary Currents
 - Ekman Pumping: upwelling regions (coastal, equatorial) and subduction

• **Bouyancy Driven: Thermohaline Circulation**
 - Ubiquitous upwelling maintaining the stratification
 - Deep circulation concentrated in the western boundary
 - Sinking of water in localized areas and wind/tide mixing
 - Multiple equilibria

• **Adjustment processes**
 - Equatorial Kelvin waves (c \(\approx\) 2-3 m/s) (months)
 - Planetary Rossby waves (months to decades)
Wind driven circulation

Sverdrup (1947), Stommel (1948), Munk (1950)

The surface circulation of the ocean is largely wind driven: sub-tropical gyres, western boundary currents, coastal upwelling. Note also the countercurrents which flow against the wind and the vigorous Antarctic circumpolar current.

The wind driven circulation is responsible for important SST patterns, ENSO, meridional heat transports, ocean heat absorption.
Ekman and Sverdrup Transports

The wind driven circulation results in meridional transports of mass and heat.

It also influences the vertical distribution of heat (hurricanes, recent hiatus in surface warming).

Ekman transport in the upper ocean (Ekman layer), a balance between wind stress, vertical mixing and rotation.

Convergence and divergence of Ekman transports create subduction/upwelling (Ekman pumping).

The Sverdrup transport is a transport in the ocean interior that feeds the large scale Ekman pumping.

Sverdrup transport is equatorward in subtropical regions and poleward of the subtropics.
Western Boundary Currents (WBC)

- Narrow Currents flowing poleward on the western part of the basins.
 - Conceved as part of the Gyre Circulation.
 - Gulf stream: Narrow boundary current off North American coast (Florida)
 - Pacific has counterpart (Kuro-shio)
 - Gulf Stream cannot collapse, as long as winds blow, continents exist, and the Earth rotates

- The existence of WBC can be anticipated from the existence of Rossby Waves (see later), which travel to the west with group velocity:
 \[\beta c^2 / f^2 \]

- This means energy is carried to the western boundary where it is concentrated so generating western boundary currents such as the Gulf stream or the Kuroshio.

- This westward energy propagation may also be important in ENSO through the delay-oscillator mechanism. (see later)
Thermo+Haline = Circulation driven by density differences.

Related to localized deep water formation areas.

Important for meridional heat transports and ocean stratification.
Thermohaline circulation

- The circulation is driven by density differences.
- Density differences forced to heat and fresh water fluxes, which in some areas act in different directions.
- In the current climate, sinking at high latitudes appears localized in small regions.
- Upwelling is more widespread.
- Stommel box model can present bifurcations. Different solutions depending on the balance between heat and fresh water fluxes.
Thermohaline Stability: Longworth, Marotzke, and Stocker, 2005

Generalization of the Stommel model by including diffusion and wind forcing.

The equations here are only for the diffusive case (no wind)

Φ is a salinity flux. P is precipitation
q is the circulation
T/S/ρ temperature/salinity/density
K_d is the diffusivity

Reducing the number of variables, taking time derivative of q, assuming constant temperature gradient and using the time derivative of S

We calculate now the equilibrium solution by setting the time derivative to zero. We treat q>0 and q<0 separately.
Equilibrium Solutions

1) Temperature dominated: 2 solutions

\[\bar{q} > 0, \quad \alpha T > \beta S, \]

\[\bar{q}_{A/B} = \frac{1}{2} \left\{ (k\alpha T - k_d) \pm \sqrt{(k\alpha T + k_d)^2 - 4k\beta \Phi} \right\}, \]

\[\frac{k\beta \Phi}{(k\alpha T + k_d)^2} < \frac{1}{4}. \]

2) Salinity dominated (only possible for negative values of q)

\[\bar{q} < 0, \quad \alpha T < \beta S, \]

\[\bar{q}_C = \frac{1}{2} \left\{ (k\alpha T + k_d) - \sqrt{(k\alpha T - k_d)^2 + 4k\beta \Phi} \right\} \]

Stability and bifurcations
For weak values of the circulation \(0 < q < q_{crit}\) the equilibrium is unstable, and a bifurcation can exist between a salinity driven mode \(q < 0\) and a temperature driven mode \(q > 0\)
Meridional Heat transport: MOC x Stratification

Stratification of Ocean/Atmosphere
From Czaja and Marshall 2006.

Ocean and atmosphere heat transport

Oceanic heat transport by basins

Predictability training course 2019: <Coupled Ocean Atm
Trenberth and Caron 2001
Ocean Circulation in the Equilibrium

Wind Driven

Buoyancy Driven

What about the transient behaviour?

- Response to external forcing: diurnal, seasonal, ...
- Response to a perturbation: Adjustment processes?
- Modes of variability and bifurcations?
Dynamical Adjustment
Vertically stratified fluid and rotation

• **Kelvin waves**: equatorially confined, eastward propagating and non dispersive.

\[c = \sqrt{Hg'} \sim 0.5 - 3m/s \]
\[g' = g\delta\rho / \rho_0 \]
\[a = \sqrt{c/2\beta} \sim 100 - 200Km \]
Equatorial Radius of Deformation

It takes about 2 months for the first baroclinic Kelvin wave to cross the Equatorial Pacific

• **Rossby waves**: westward propagating and dispersive

 ➢ Lower frequencies for shorter waves
 ➢ Speed decreases with latitude

\[\omega = -\beta k / (k^2 + l^2 + f^2 / c^2) \]
\[a = c \cdot f \]; Rossby Radius of deformation

\[a\sim40Km \text{ at mid latitudes (H}\sim800m,g'\sim0.02,f\sim10^4s^{-1}) \]

It takes 10 years for the first baroclinic Rossby mode to cross the Atlantic at 40N
Kelvin & Rossby waves and Delayed Oscillator

\[u_t - fv = -g' h_x + \tau_x / h \]

Prediction training course 2019: "Coupled Ocean Atmosphere Variability"
Observing waves from space: Vertical Stratification and Satellite altimetry

- The density of the second layer is only a little greater than that of the upper layer.

 Typically $g' \sim g/300$

- A 10cm displacement of the top surface is associated with a 30m displacement of the interface (the thermocline).

If we observe sea level, one can infer information on the vertical density structure.
Rossby/Kelvin Waves from Space

Chelton et al 1996

Phase speed as a function of latitude

Rossby waves

Kelvin wave

EQ

4N

39N

32N

21N
Time scales for ocean-atmosphere interaction

ATM delay:
- days-weeks

OCN delay:
- Hours-days-decades

ATM forcing

OCN forcing

ATM response

OCN response

Boundary layer processes
- Tropical cyclones
- Surface waves
- Diurnal Cycle

Madden-Julian Oscillation
- Tropical Instability Waves

Equatorial Ocean Dynamics:
- ENSO, IOD
- Seasonal ML variations: NAO?

Subtropical Gyre, Rossby Waves, THC, MOC
- Pacific/Atlantic Decadal Variability

Heating/cooling
Evaporation/precipitation
Momentum transfer
Turbulent Kinetic energy for mixing
Diurnal Warm Layers: amplification of diurnal cycle

- Stably stratified (warm) thin layers form during the day.
- They isolate the deeper ocean by reducing vertical mixing.
- The increase the value of peak temperature.
- They trigger convection events, which can rectify in MJO
Madden-Julian Oscillation (MJO): 30-60 days

- Eastward propagating atmospheric disturbances associated to deep convection (see OLR above).
- Bridge connecting diurnal and interannual variability. They can trigger ENSO.
- Backbone of Monthly forecasts. Impacts NAO regimes.

Figure 1: Schematic diagram of cross-scale air-sea interactions between the MJO and diurnal cycle and between the MJO and ENSO. Arrows denote directions of influences.
The lead-lag relationship between SST and deep convection seems instrumental for setting the propagation speed of the MJO.

A two way coupling is required. Thin ocean layers are needed to represent this phase relationship.
Coupled model produces better predictions of MJO than “observed” SST

MJO prediction

--- Coupled Forecast

Solid: prescribed SST different products

De Boisseson et al 2012
Interannual Time scales: ENSO

ENSO: El Nino -Southern Oscillation

Largest mode of O-A interannual variability

Best known source of predictability at seasonal time scales

It affects global patterns of atmospheric circulation, with changes in rainfall, temperature, hurricanes, extreme events

SOI: Southern Oscillation Index (SLP Darwin – Tahiti)

Sea Level Pressure (SOI)

Sea Surface Temperature (Nino 3)

Predictability training course 2019: "Coupled Ocean Atmosphere Variability"
EL Nino (warm) and La Nina (cold)

Normal/La Nina is associated with strong(er) easterly winds at the surface, a stronger thermocline tilt and cold water in the east.

El Nino is associated with reduced easterly (maybe even westerly) winds at the surface, a reduced thermocline slope and warm water in the east.
Indian Ocean Dipole

- Changes in the slope of the thermocline in the Indian Ocean, related to changes in the winds, can create SST anomalies, resulting in a positive feedback.
- Important impacts on precipitation regime (some of them (wrongly?) attributed to El Nino

Question: is it independent of ENSO in the Pacific?

Experiments seem to suggest that IOD can be independent on the Pacific
Decadal: Pacific Decadal Oscillation

- Latif et al, using results from a coupled model, hypothesized there is a coupled feedback (meridional SST gradients and gyre circulation).
- Link with ENSO decadal variability.
- More recently, link with ocean heat absorption and hiatus decades:
 - The -ve phase of the PDO is associated with larger heat absorption by the ocean, weaker ocean stratification, and reduced coastal ENSO activity. Stronger trades
 - The +ve phase of the PDO is associated with reduced heat absorption, stronger ocean stratification, more chances of coastal ENSO and weaker trades.
PDO, Hiatus decades and deep ocean warming

SST trends

Hiatus decades

Accelerated decades

The warming penetrates deeper during the hiatus decades, with less surface warming (weaker stratification). Stronger surface warming and stratification in accelerated decades.

Meehl et al 2011, NG, Meehl et al 2013, J Clim
Atlantic Multidecadal Oscillation: AMO

- Changes in the AMO linked to NE Brazil and Sahel rainfall, North Atlantic hurricane frequency, European and North American climate

 Warm AMO phase during the 40-50’s associated to decreased NE Brazil rainfall, increased Sahel rainfall, increased hurricane frequency

- Evidence from observations and model studies.
- Connected to the AMOC (Atlantic Meridional Overturning circulation)

From King et al 2005
Sensitive to the Stability of the THC

Vellinga and Wood 2002:
Surface Air Temperature change 20-30 years after the THC slowdown by large fresh water input. The THC recovers after 120 years

Bryden et al 2005 suggested the slowing down of the AMOC based on 5 snapshots But large uncertainty due to possible aliasing

RAPID program is monitoring the AMOC at 26N since 2004.
But this is not long enough. It needs to be sustained.

Estimation of the AMOC using models and data assimilation is a big challenge
A weakening of the AMOC can also explain the increased heat uptake by the deep ocean (and hiatus of the surface warming).
Variability: **Scale interaction**
ECMWF has slowly embraced the ocean as a component of the forecasting system

1997
- Coupled model for Seasonal Forecasts

2002
- Coupled model for Monthly Forecast

2014
- Coupled model for Medium Range

2018
- Coupled model in Hres
Predicted SST with observations for TC Neoguri

Uncoupled forecast:
• Constant SST bad approximation

Coupled forecast:
• Gets the SST cooling about right

Mogensen et al 2017
SST observations: TC Neoguri 2014

➢ The coupled model is able to simulate the cool wake after the TC with a realistic response
➢ The uncoupled model is obviously not able to simulate this

Mogensen et al 2017
Diurnal cycle of SST for different wind regimes

Progn equation for SST (Zeng and Beljaars, 2005)

D. Salisbury, K. Mogensen
Impact of coupling (1 year, TCo1279):

- Fully coupled
- Partially coupled everywhere
- Partially coupled extratropics
North Atlantic SST errors

A: Transition Zone
Flow-dependent errors in SEAS5 (decadal modulation)
Objective: Remove the problem in SEAS6

B: Gulf Stream Separation
High impact on prediction skill at all lead times
When can this be sorted out?
next 4 years: parameterizations.
next 10 years; 1/12 degree

F. Vitart, M. Balmaseda, H. Zuo, K. Mogensen
The ocean-atmosphere interaction involves many time scales and a multiplicity of feedbacks:

- **Large scale**: mainly in the tropics, and meridional SST gradients: Atmos responds to large and small scale SST anomalies and gradients. Organized deep convection and associated wind-driven circulation are key elements.
 - SST anomalies can trigger deep convection (diurnal, MJO, ENSO...)
 - Zonal SST gradients influence the Walker circulation (ENSO)
 - Meridional SST gradient influence the Hadley and Gyre circulations (decadal)

- **Small scale**: the atmosphere responds to sharp SST fronts (WBC and TIWs)
 - Impact on storm tracks, blocking, teleconnections
 - Strong implications for modelling and predictability

- **The ocean affects predictability and prediction skill at different forecast ranges**
 - Extending the predictability horizon: large memory; dynamics and thermodynamics
 - Better representation of processes: MJO, tropical cyclones, diurnal cycle
 - The ocean also shows chaotic behaviour and regime transitions.
 - The ocean model in the coupled system also brings errors. WBC as main challenge
Some additional References

On Simple dynamical systems and predictability

On Ocean Circulation: Given in main presentation

On Ocean Heat Transports:

On Air Sea interaction at Mid-latitudes

On Air-Sea interaction in sharp SST fronts

On El Nino

On the MJO