ecflow

Axel Bonet
John Hodkinson

Forecast Production
Integration Team

- ECMWF ecflow course 2018 1

Topics to be covered in theory sessions

® Aims ® Important Concepts
® Overview ® Python API
® ecflow Components ® Migration to ecflow
® Writing operational suites and e GUI

scripts

® ecflow in use

LT ECMWF ecflow course 2018

Course Aims

e Introduce ecflow, its APl and viewer(s)

I”

e Guidelines on designing an “operational” suite
e Show how ecflow is used

e Cover aspects of ecFlow : CLI, API, GUI and suite/task design

e Aim for students to be able to write and implement suites of a reasonable complexity by the end
of the course

LT ECMWF ecflow course 2018 3

Overview: ecflow

The ECMWF workflow manager -

“A general purpose application designed to schedule a large number of
computer processes in a heterogeneous environment”

File Onptions Triggers

Cinfay Manual) seript } Jok ¥ Jobstatus } Output) why? ¥ Triggers ¥ Time line) variables) Edit } Messages

A Grapl e Test

- Dependen

faynelololmaind” _:

fadrnaind1 2dcife
falmnaind18fansy N

foimain0/ansy

C fodmnaind1 2ccianidovarifstral finaltra

aind 2defanid dvar

fosmaind 2dcfantsnow fosmaind 2ccfandslvet

ains1 2dciobssfetchmars

ainfl 2dciokaiprechs—. |

ainfl 2dciohsipreoks_wave

Fapnciosolmaing1 2dc1‘an.l’3|wet.l’3ync|

Jodmaind] 2dcfanddeda_to_da Py e —

foagi 2dcrajifesd
foimainS1 2dcrfo Josmaind1 2desfoigetfodata

fosmaind 2dcfantzst foflag A 2dcfarch

C fodmaind1 2cclanidovar ifstral finalwawe

fofag i1 2dciarch

Soflag i1 2dciveri

a1 2ecfobsfore 1 crad_airs

aind1 2elc fobssfore 1 crad_hirs Srnefrmain0tef

Jfosmaind1 Sfanifetcherr
fosmain00fanfetcherr
JoNagi 2dcith ¥ *

Joipopi 2dehvebiandincy |
-

aind1 2elcfobsfore 1 crad_msu Jafmainf1 2dcife

ain 2dciobs/fprelcrad_ssu "y, fnimaing 2deian

Jalag i 2dcrarck
ainf1 2elc/obsforel crad_amsua)

ainf 2deiobsiprecrad_amsub} fofpop! 1 Sdoiwebfaniincr

ain1 2dciobsfore] crad_mhs [

aind1 2ocfobsforegeos
aind1 2ociobsiorerens

ainf1 2ecfobsforescat

LT ECMWF ecflow course 2018 4

Overview: what is ecflow ?

® Work flow package

— Runs large number of programs with dependencies
— Tolerant to hardware and software failures

® Used at EMCWEF to run all operational suites

® Submits tasks and receives acknowledgements from them
— Using embedded child commands

® Stores the relationship between tasks

® http://software.ecmwf.int/wiki/display/ecflow/Home

S~ ECMWF

ecflow course 2018

5

http://software.ecmwf.int/wiki/display/ecflow/Home

Overview: Features?

e Flexible inter-dependencies between tasks
— e.g. triggering

e Complex automated scheduling

— based on events, times, task status

— Multiple users / platforms / queues

e Monitoring information via GUI and CLI

e Dynamic and interactive supervision in real time

— execute, kill, check jobs
e Good recovery - at task and ecflow server level

e But ... ecflow is not a queuing system, ecflow is not a message passing
system, it is a scheduler

LT ECMWF ecflow course 2018 6

Overview: Schematic of our systems

HIGH-PERFORMANCE COMPUTING FACILITY

Cray Sonexion Storage cluster

Cray XC-30
Ventus (ccb)

Cray Sonexion Storage cluster

Cray XC-30
Anemos (cca)

ososee o

IBM pSeries and x86 Linux

1111} 1111}

IBM pSeries IBM TS3500

and x86 Linux
DISASTER RECOVERY BUILDING

DATA HANDLING

S~ ECMWF

Virtual server
infrastructure (VSphere)
HIGH-
PERFORMANCE
10/40 GIGABIT SAPP
NETWORK
gﬂee;vmetryer State Nehiork
ECGATE Attached
Storage
(IBM N6240)

GENERAL PURPOSE + HA

Firewall

Firewall Firewall

PCs (LINUX / WINDOWS)

BRE3

MEMBER STATES and

CO-OPERATING STATES
WIDE AREA NETWORK

OFFICES

ecflow course 2018

Simplified view of our usage ecfilow

ecflow_ui cca ccb
ecflow Linux
Server clusters

ecflow_ui ecflow

ecflow course 2018

Components of ecflow

e ecflow_server

— The scheduler, continuously running daemon process (nohup &)

e ecflow_client
— Command line interface to ecflow

— Child commands updating status and attributes

e Python API

e ecflow ui, ecflowview

— Graphical interface to ecflow

LT ECMWF ecflow course 2018 9

How it works

® Define suite
— Structure (grouping of tasks, interactions)

— Locations of input scripts, job files location, output file location, etc

® Design task template scripts

— add “hooks” to communicate to ecflow server
® \When expected server submits the job

® Job tells server has started
— ecflow_client —init SECF_RID

® If an error is detected, the job tells the server:
— ecflow_client —abort “reason”

— Use error trapping to communicate errors

® |f task completes, tells the server: ecflow_client --complete

— Send complete client command

LT ECMWF ecflow course 2018 10

Server Functionality

® Setup environment: at ECMWF

— module load ecflow # /usr/local/apps/ecflow/current/bin
set up PATH etc

® Starting the server

— ecflow_start.sh # specific start up script
— ecflow_stop.sh
— ecflow_server --port 3141 # manual start

— nohup ecflow_server > ecf.out 2>&1 &

® Server hosts the suites

® Checkpoints (backup) suites tree periodically: as text file (4.8.1)
® Handles user and job requests

® Logs activity

LT ECMWF ecflow course 2018 11

ecflow: checking the server

® |dentifying the presence of a server

Proto Recv-Q Send-Q Local Address

tcp

tcp

tcp

tcp

ecflow_client --ping --port 3141 —host localhost

ecflow_ui, ecflowview

ps -ef | grep ecflow

netstat -Inptu (only if server started with your user ID)

0 0 0.0.0.0:6008
0 0 0.0.0.0:6009
0 0 0.0.0.0:25

0 0 0.0.0.0:3141

S~ ECMWF

Foreign Address

0.0.0.0:%*

0.0.0.0:%*

0.0.0.0:%*

0.0.0.0:~*

State

LISTEN

LISTEN

LISTEN

LISTEN

PID/Program name

5972/ecflow_server

ecflow course 2018

12

Text client interface

® For remote assistance, batch mode or directly from the shell
® Self contained manual:
— ecflow_client --help <command (optional)>

® Define interaction via environment variables

— ECF_PORT=3141 ECF_HOST=host3 ecflow_client --get

— Or explicitly: ecflow_client --port 3141 --host host3 --get
® (Can use to monitor and interact with server

— ecflow_client --get

— ecflow_client --alter change variable SLEEP 10 /path/to/node
® |oad-replace nodes into the server

— ecflow _client --load suite.def

— ecflow_client --replace /path/to/node suite.def

® Write to log file

— ecflow_client --msg ="this to be written to log file"

LT ECMWF ecflow course 2018 13

Child commands: ecflow client

® For communication between tasks and server

ecflow_client --help child

® Status update:

ecflow_client --init <PID/QID> # task is active e.g. SS (Linux)
ecflow_client --abort <reason> # task has aborted
ecflow_client --complete # task has completed

These commands are blocking (expect acknowledgement from the server)

® Attribute update:

ecflow_client --event <name> # set an event
ecflow_client --meter <name> <value> # update a meter
ecflow_client --label <name> <text> # set a label

® Embedded trigger:

ecflow_client --wait="/suite/t1==complete” # wait for external task to complete
ecflow_client --wait="%CONDITION:1==1%" # wait for a condition set by variable

LT ECMWF ecflow course 2018

14

ecflow ui

Monitoring

Direct interaction with ecflow Servers
Most ecflow client commands available
Easy access to helpful information

— script, manual, job, output, web page, etc.
Alarm features, runs even when iconized

Configuration by panels, system

— Edit/Tools->Preferences->Menus User-Operator-Administrator
Can mask information from being displayed

Config files: ~/.ecflow_ui, servers, options, menu vs ~/.ecflowrc

S~ ECMWF

|.'.' ecFlowlUl {4.5.0) - Preview version (session: esu

File Edit “iew Refresh Servers Tools Help

(ol | ® L
) Info panel - local Mtestifl A2
local test -l 212> local -test -fl 12>
v (12) = @info | W Manual L
~ Bitestl] © (11)
1: 212 @@ man
inlimit ;1
-
~ il ©
I | step: 14
T AL
O a
Ob
- I | etan- 17 S b

local test fl 12

Filter:
Mode Status T v Type Trigger
Mtestffl active family
festfil © active task

ecflow course 2018 15

Terminology (1/2)

Root
Suite
Family
Task
Alias
Node

Attribute

Event
Meter
Label

ecflow server itself

Collection of nodes and attributes
Collection of tasks + other families
Unit of work, a computer job

Task made to run independently
Generic term for Suite, Family, Task
Node property (behavioural, structural,
monitoring)

Milestone set within a task

Like an event, with range of values

Text Information updated by the task

S~ ECMWF

(N

S e B
Iucal/ztest/;)f{,@

[|:' ecFlowll (4.5.0) - Preview version (session: esui
File Edit Wiew Refresh Servers Tools Help

™
\.i.-f' u

Info panel - local itestif1 A2

—y L e e,
local ~test -f1 ~t2>

= (12)
~ Elitest[] © (11)
1: 212 @@
inlimit ;11
-
— .@O
N | step: 14
>~ 2O X
O a

Ob
[| etan: 17

= | @ Info | L3 Manual L

mamn

local ~test ~fl ~212>

Trigger

Filter:

Mode Status T *
ftestifl active
hestfiil © active

ecflow course 2018

16

Terminology (2/2)

e <name>.def Definition file describes a suite
— Expanded or high level

e <name>.ecf Wrapper, task template file

® <name>.jobN job-file
— created by ecflow from the ecf-file

— that is sent by ecflow to be executed

e <name>.usrN alias-file: from direct user interaction with GUI
— Test, debug, rerun without status side effects

— Alias has an alias number and a job instance number

e Variables stored by server, substituted into a job
— %VAR:<default>% # <default> is default

LT ECMWF ecflow course 2018 17

ecflow template script - tasks wrapper (.ecf)

® Similar to a shell script

$include <head.h>
echo "I am a script in SECE HOMESZ”
$include <tail.h>

® On submission job file is created

— Preprocessing
@® Include lines are replaced with relevant file

@ Variables are substituted with server stored values
— Preprocessed to create a job file and submitted

® Job file can be ksh, bash, python, perl, ruby

® Extension is .ecf
— configurable ECF_EXTN (.py, .sh, .pl) in the suite definition

S~ ECMWF

ecflow course 2018

18

Sample head.h include file (1 of 2)

ecflow course 2018 19

Sample head.h include file (2 of 2)

ecflow course 2018 20

Relationship between .def, .ecf and .job files

#definition file | load/ " ecflow - ~N
replace :

E?Xt - > cI:)ernt task t1

Python . API) .)

/

Child
command

Submit

~

<4

.ecf t1.ecf
%include <head.h> ECF_FILES
ECF INCLUDE

X @
File Edit Show Servers Windows Help
IQIMEE 2 2O =Dl 8

#11 .j0b1 pikachthest“]l—ll—M@ [—time 01:00 -
#expanded job file

#bash,ksh,python,perl

ecFlonni e B = RS

%include <tail.h>

=1

LT ECMWF ecflow course 2018 21

End Section

- ECMWF ecflow course 2018 22

Practical

https://software.ecmwf.int/wiki/display/ECFLOW/Introduction

module load ecflow/4.8.1
module switch ecflow/4.8.1

- ECMWF ecflow course 2018 23

https://software.ecmwf.int/wiki/display/ECFLOW/Introduction

Important Concepts : Status Flow (1/2)

e After you load a suite its status is unknown,

— use begin to start: ecflow_client --begin <suite-name>

— defstatus suspended # def-file

e re-run, can be automatic if set in definition-file

— edit ECF_TRIES 3

e repeat, may take nodes back from complete to queued

— repeat date YMD 20180101 202012311

e date, time, cron may also make a task queued again

LT ECMWF ecflow course 2018 24

Important Concepts: Status Flow (2/2)

| Unknown |
beain re-run/
g execute
9| Complete |
» Queued
Submitted Complete |

—p| Suspended

resume

LT ECMWF ecflow course 2018 25

Important Concepts: Status Flow (2/2)

~ SHUTDOWN
NO jobs submition

. . accept child updates
ecflow_client --restart \ecflow_client --halt /ecflow_client --restart)ecflow_client --shutdown

RUNNING (RESTARTED)
submit jobs
accept child updates
inherit most significant task status
ecflow_client --load
ecflow client --replace <node>

ecflow_start.sh
ecflow server --port 3141

ecflow client --shutdown

(defstatus complete)
ecflow_client --begin

COMPLETE ecflow_client --begin

(defstatus suspended)

liiel et ecflow_client --begin

ecflow_client --complete ecflow_client --suspend\ecflow_client --resume

@ver executes ECF_JOB_CMD)

script not found, ECF_FILES?,
header not found, ECF_INCLUDE?
directory not readable?
. - directory not writable ECF_HOME?
ecflow_client --init file system full?
undefined variable?
error on submit?
remote host not accessible?

lost by the queuing system?
ECF_OUT directory not writable?
syntax error in job?

ecflow_client --abort

loss of power?

LT ECMWF ecflow course 2018 26

Important Concepts: Dependencies

e Node may stay queued because:

e Use “why” button with ecflow_ui to find out why

e GUI may be configured to hide attributes

ecflow server is halted (frozen, accept user command)

ecflow server is shutdown (no new submissions)

Parent has a dependency

Triggered by a state of another node

Waiting for time of day, day of a week, date of year

Limit it uses is full

Suspended

S~ ECMWF

ecFlowll (4.5.0) - Preview version (session: esui

File Edit “iew Refresh Servers Tools Help

cQs @ 1
| Info panel - local: festifl 2
local test 1 12> local test fl 12>

h (12) = Wnfo | W Manual L
~ Hitest| © (11)
1M: 2/2 @& man
inlimit 11
N
T RN
I | step: 14
> 2] © Xl
O a

aOb

. [| etan- 17 - b

local “test - f‘l;ﬁﬁ

Filter:

Mode Status T v Type Trigger

Ntest/fl active family
festifii1 O active task

ecflow course 2018 27

Important Concepts: Inheritance

e Four different kinds of inheritance in ecflow
e Variable inheritance (top to bottom)
— looks at the task first, then parents until it reaches ecflow itself

e Status inheritance (bottom to top)

— family status reflects most important status of its tasks

— likewise for suites and ultimately for ecflow
e Dependency inheritance: time, date, trigger, complete, inlimit

— dependencies on any level
— for task to run, it must be free to run as well as its parents

— Trigger dependencies may be “hidden” below, time dependencies are not!

e Zombie handling attribute inheritance: automate zombie management

LT ECMWF ecflow course 2018 28

Important concepts: Zombies?

e On jobs submission, variable ECF_PASS set to pseudo-random value by ecflow server
e Jobs are defined with unique identifiers ECF_HOST-ECF_PORT-ECF_NAME-ECF_PASS

A zombie arises when a child command is received and ECF_PASS does not match

File Panels Refresh Servers Tools Help
C | localhost2500 A=120s d=0s q a /i LA O] 'U ? I y= H@n El j 7
1_od 3 _od2 5_0..9 o.. | rdd...rdn... eode e../Cl..pik | e.e. | k |1}3|5|'3|r}2 Iocalhoﬁt G v
localhost2500] » (2)—[lorenz {?}—ﬂcuurseEMS—[cumpute A
[multi --
2 0 0
(i) Info ? why | V= Variables is| Server log % Node log | Z. Zombies | Y suite filter L¥ settings
6 ® x ®
Path =~ Type Duration Allowed Password Pid Try no Action Child cmd Calls
florenz/course2018/compute user 22s 300s d|REBIID 11667 1 auto-block init 1
18:14

ecflow course 2018 29

S~ ECMWF

Important Concepts: Task versus Job

e Task is the piece of work you want ecflow to run
e Define the task in the suite definition file: task t1

e Write an ecflow script describing your task, “vi tl.ecf”

e When ecflow is ready to run your task, it

— edits your task and creates a job-file using ecflow variables
— if successfully created submits the job

— the job runs (e.g. via a queuing system)

e A task is a parameterised or configurable job or a template

LT ECMWF ecflow course 2018 30

Important concepts: Alias

An alias is a dynamic node attached to a task, created from GUI or ecflow_client

e There may be multiple aliases for one task

e Each alias can be run multiple times

Initially ecflow server creates the .usrN script for the alias. You can modify it and rerun the

. File Panels Refresh Servers Tools Help
alias.

€ localhost2500 4=120s d=0s | Q, & QWVWOHFEE?LV-Fis|nZ
1_od 3 od2 | 5_od39_ode | rddalrdnaz

local... » lorenz > cour... » com... » alias2
B l compute [} alias0

1113/59)r2 | localhost2... | BB v

Output ? Why :':.Triggers V= Variables @'Edjt 1|»
[Naliagly Submittable::submit_joh_only: J... ‘ | | |

Melasal. o A A QB ¥| Submit as alias |Pre-pmcess ||v" Submit |
[multi -~

1 %comment - ecf user variahles =
2 ECF VERSION =4.8.0

3 SHELL:bin'bash = /bin/bash

4 Fend - ecf user variables

5 %comment - ecf user variables

6 ECF_VERSION =4.7.0

7 SHELL:hin'bash = /hin/bash
4 Fend - ecf user variables

2 Finclude <pyflow_head h>

L} I 10

18:24

S~ ECMWF

ecflow course 2018 31

ECF_MICRO

® A special character for ecflow: by default set to %

— Used by variables it is pre-processed by the ecflow server (%VAR%)
® To get % write %% in scripts
d

o\°
o\°

date +%%Y.%%m.
® %includenopp <script> # include without preprocessing

® Nopp: No preprocessing in a block
snopp
date +%Y.%m.%d
%end
e Change ecfmicro
— Globally: edit ECF MICRO # in def file
— Locally:
%$ecfmicro * # in script -> set ECF MICRO to *
date +%Y.%m.%d # % is normal character

o

~ecfmicro % # set back to default %

LT ECMWF ecflow course 2018

32

%include preprocessing directive

® %include <file.h>
— Include a file under ECF_INCLUDE directory
® %include “file.h”
— Include a file below ECF_HOME directory
e %include /path/to/file
— a hardcoded location
e %include: NOTE % MUST be first character of the line
— Avoid complexity, it prevents: echo “%include <file>”
— Avoid ambiguity: # %include <file>
® %include <%FILE_H%>

— Filename can be provided by a suite variable, here FILE_H
— edit({“FILE_H": “config.oper.h”, })
— edit({“FILE_H": “config.test.h”, })

LT ECMWF ecflow course 2018 33

Security

e Designed for collaborative working, so default access is open

e ecflow server can be protected with white list file: ecf.lists

— restricted set of users with read (Script, Output) or read-write access (Edit, Submit)

e We use specific accounts for operations and research

e Communication on fixed port: ECF_PORT
e 4.4.8+: black list file for user authentication to access server, suite, node
e 4.4.8+: Communication may be encrypted: compile with option ENABLE_SSL

e Some jobs are submitted for another user: careful with

— job-file owner, output file owner, ssh settings, queueing system permissions

e Never run as root!

e Really: Do not even think about running as root!

LT ECMWF ecflow course 2018 34

Files locations - ECF_HOME ECF _FILES ECF _INCLUDE

|Tutoria| begins B]

|
\ Then we facilitate maintenance and cleaning B] i
———______q__‘_‘_
| —

—_ I \
SERVER | |

-

e T S —

| (SUITE node | | FAMILY node
ECF_HOME(rw) | [N
g T | SERVER | ECF_HOME(w) | | ECF_INCLUDE(r)

I

‘—~—~_._______—____'_,_,_,—#
server log ECF_HOME(rw) task jobl task.outl - —
. . > - | : ' head.h tail.h TASK node
| checkpoint file | m — —
— — server log ECF_INCLUDE?

ECF_FILES(r)

Y

. checkpoint file ECF FILES? —_= "t
head.h tail.h ECF_JOB_CMD?
task.ecf ECF_FETCH_CMD? task.ecf
—— Iy
task.jobl

_ R

LT ECMWF ecflow course 2018 35

Esk.outl

Files locations - ecr HOME ECF ouT

Direct disk access Remote job: sometimes job file and
output file must be separated

(e.g. /tmp)

Or access through server (preferences)

- ECMWF ecflow course 2018 36

Files locations - distributed suite

direct access: best case Remote job, disk not shared:
all directories are visibles on each host Access through server after job

global/local Preferences completion (scp)
To force network access

(15k lines)

- ECMWF ecflow course 2018 37

Files locations - distributed suite

Direct output access from GUI, Normal case: use log-server to access live ouput,
need scp scp at completion

nohup start logserver
-d <dir>
-m <dir>:<dir>

ecflow cour

Handling multiple platforms: ECF_JOB_CMD,
ECF _KILL CMD, ECF_STATUS CMD, ECF_CHECK_CMD

e In course we generally submit jobs directly

e Can use a script to submit, to kill, get status behaviour depending on system:
edit ECF_JOB_CMD “SUBMISSION_SCRIPT %USER% %HOST% %ECF_JOB% %ECF_JOBOUT%"

e if (PBS) then gsub .. gdel .. gstat

e If (SLURM) then sbatch .. scancel .. squeue
e Can also use generic queuing commands
— #QSUB -g emos
— For PBS becomes #PBS -g emos
— For SLURM #SBATCH —-gos=emos

— ForSGE “# s” Il beware a comment can lead to an error

LT ECMWF ecflow course 2018

39

ecflow 4.8.1

e Text based checkpoint files

e Native python APl update

e %include %VARIABLE% - variable in include

e %includeonce

e Repeat: additional variables to simplify trigger expressions

e Trigger: cal::date_to _julian(), late can be used in trigger expression

e ecflow client --alter add (limit, inlimit, label) change (trigger, complete):
— Beware to keep updated the definition file

e Nodes attribute sorting: limits, variables, events, meters, labels

e ecflowUl updates

e ECF HOST (was ECF_NODE)

LT ECMWF ecflow course 2018 40

ecflow 5.0.0 - Future Release

e GUI and server not compatible with 4.x.x

e archive(migrate), restore attribute to get lighter server and GUI
e A new attribute: queue (worker-queue pattern)

e Family Limit

e Better zombie identification (password, pid, user command)
e Query command (event, meter, non blocking trigger check)
o C++11

e Updated Boost library

e Python3

e Security (password protection, host identification)
e ecflowview decommissioned

LT ECMWF ecflow course 2018 41

Python definition file

e The definition may be sequential (like a bash suite definition),

Starts at the beginning and you follow it through to the end

Fix/verify a suite before loading?

e Object-oriented design opens more possibilities

Stream-like design, no temporary variables (Functional Programming)

Use functions to return a family or a task

Use a class to store objects to be accessed by multiple members

Another module may add attributes (Trigger, Late, Variables), delete, replace
Navigate the suite (tune, verify) before loading it?

Trigger expressions may be computed dynamically from node objects (path)

e Readable code, peer-review, KISS

S~ ECMWF

ecflow course 2018

42

Python definition file

e Create a definition object:

— defs = ecflow.Defs () # create an ecflow definition
e Module script: provide families

e Standalone script:

— 1if name == " main " :
SUITE = TC3Suite (defs, EXPVER) # create an instance of class
SUITE.suilte () # and execute i1ts method suite ()

Options: target suite, node to replace, host server, mode SMS/ecflow, expand/print definition

e Class derivation: extend, disable parent class abilities

— class TC3Suite(ic.Seed) :
def setup(self,node): pass

def main(self,node): pass

LT ECMWF ecflow course 2018 43

Python

e Typed variables:
— 1f VERSION in (“0001”, 9001, ™“9001”): print “str OR integer”
— 1f CYCLE == “00”: print 'ok'
e Object Oriented Programming OOP
— Composition v. inheritance:
e class derivation: operational vs test suite
e Extend a suite (is_a)
* “No moreif” ...
— multiple inheritance: separate system and functional aspect of a suite?
— Polymorphism: treat all Attributes as one entity
— Encapsulation: complexity hiding mechanism, restriction mechanism (pyflow)

— classes, instances, methods: e.g. new attributes created from compounded native attributes

LT ECMWF ecflow course 2018

44

Python

e raise, catch exceptions
e dynamically typed, aka Duck Typing

— it is then possible to mix types (ecflow-SMS GUI)
e Functional Programming in Python:

— eliminating flow control statements

— Functions as first class objects

— Reduce number of temporary objects

— List comprehension

e embedded, or library extension

e portable, open source

LT ECMWF ecflow course 2018 45

Suite design with Python

e python modules:
— No global scope anymore
— Dedicated parameters.py file
— Modules split according to teams domain and interactions
— Makefile: to validate that main suites can be built
e benefit in accessing the ecflow API through a layer module (aka ecf.py):
— Activator variable: enable/disable attributes Trigger, Inlimit, Late
— Maintain the ability to load the suite on SMS (dynamic variable translation)
— Intercept Variables/Triggers to identify where it is created/modified in complex suites

— Add decorators (dedicated Label for operators)

LT ECMWF ecflow course 2018 46

Python error handling

e May raise Exceptions
— missing key in dictionary,
— Use assert

e A chance to detect issues earlier

e |f your Python is incorrect, the error messages can be helpful for finding where and why it fails

o Navigate, walk, verify, validate the suite tree
— It is not so obvious with shell suite definition

e ecflow has a built-in ‘Job generation checker’ which can be run in advance.
— It detects, for example, if .ecf job wrappers are missing, or if triggers are invalid.

e Suite simulation mode, to verify correct design

LT ECMWF ecflow course 2018 47

Python: Code Quality

File Ede Selwinon Fed Vew Goto Tools Proect Preferences Help

PyLint
— Rates code
— Enforces syntax

— warns about large code: too many
members, variables

Fle [Yew Sefresh Servers Tools Hel

pep8 python style, PyChecker, Comiia 38/
PyFlackes ==

coverage: identify dead code

documentation: pydoc B
iPython: interactive interpreter, interactive documentation

beware module dependencies (portability)

LT ECMWF ecflow course 2018 48

End Section

- ECMWF ecflow course 2018 49

Migrating scripts to ecflow

For example migrating a cronjob
e Write simple suite with task controlled by “cron” or “time and repeat”

e Write wrapper file
— containing header files and include your script
%include <head.h>
sincludenopp <script.ksh>

%$include <tail.h>
e Improve by splitting into logical units following guidelines
e Decide on ecflow variables vs included variables
e Separate into families carrying out related activities

e Separate based on criticality

LT ECMWF ecflow course 2018 50

Migration from a python script - a

starting point

import script

script = """# Thanks https://en.wikipedia.org/wiki/Lorenz_system

import numpy as np

import matplotlib.pyplot as plt

from scipy.integrate import odeint

from mpl_toolkits.mplot3d -\import Axes3D

rho = 28.0
sigma = 10.0
beta = 8.0 / 3.0

def f(state,
t):
X, ¥, Z = state # unpack the state wvector

return sigma * (y — x), x * (rho —) — ¥y, X * v — beta = =z

state® = [1.0, 1.0, 1.8]
t = np.arange(®.0, 40.@, ©.01)

states = odeint(f, stated, t)

fig = plt.figure()

ax = fig.gca(projection='3d")
ax.plot(states[:,08], states[:,1], states[:,2])
plt.show() """

exec(script)

e An example where
jupyter notebook helps

define suite, create task t.empllate

import sys

sys.path.append(os.getenv("HOME") + "/jgit/pyTlow")
import os

import pyflow as p

home = os.getenv("HOME") + "/feflow_server"
user = os.getenv("USER")
with p.Suite("lorenz",
ECF_HOME=home, ECF_IMNCLUDE=home, ECF_FILES=home, ECF_OUT=home,
ECF_EXTN=".ecT", USER=user, SCHO5T="lccalhost",
ECF_JOB_CMD="/home/ma/emos/bin/trimurti %USER% %SCHOST% %ECF_JO0B% %ECF_JOBI(
p.Defstatus("suspended")
with p.Family({"course2ela"):
with p.Task("compute"):
p.Script("python <<@\n" + script + "\ngg")
with p.Family("multi"}:
for num in xrange (1,5):
with p.Task("computesxd" % num):
p.Script("python <<g@\n" +
script.replace("[1.8, 1.8, 1.8]",

"[%d.@, %d.@, 1.8]" % (num, num)) + "\nEa")
suite.deploy_suite(overwrite=True) # create task template files
suite.replace_on_server("localhost:2566") # replace the suite in the server
lecflow_client --port 2580 --begin florenz
lecflow_client --port 2580 --resume florenz

ecflow course 2018 51

http://jupyter.org

Designing a suite - a simple NWP example

1) Get data ‘ get |(7

v
2) Analysis ‘ an ‘
v
3) Model ‘ model ‘
v
4) Products ‘ prodgen ‘
5) Archive data ‘ : ‘
arcnive
6) Plots v

‘ plot |7

LT ECMWF ecflow course 2018 52

Designing an operational suite - considerations

Critical path - minimise dependencies systems/file systems
Documentation - man pages for suites/families/tasks
Rerunnabililty of tasks

Simplicity - KISS

Keep runtimes under control

Keep logfiles for support/optimisation

Make/rebuild within suite plus admin tasks

Allow for simple switching of systems

Clean up

LT ECMWF ecflow course 2018 53

Designing an operational suite - critical path

oot Je — miin | repeat YMD 20180221

* .
‘ an ‘ | get a | | get b | | get_c | time 04:00

| | |

y v
‘ model ‘ | an_1 |->| an_2 |

A 4 v |
‘ prodgen ‘ | model _
‘ arc:ive ‘ >I prodgen_1|

* Plprodgen_zl
‘ plot |_ time 15:00 >|prodgen_3|

I logs |< !

LT ECMWF ecflow course 2018 54

Designing an operational suite - archiving

—>»| lag | repeat YMD 20180121

¢ limit:mars 2

| archive | limited by /suite/lag/limit:mars

trigger (/suite/main:YMD>lag:YMD) or
obs | (/suite/main:YMD==/suite/lag:YMD and

/suite/main/get==complete)

] trigger (/suite/main:YMD>lag:YMD) or
analysis (/suite/main:YMD==/suite/lag:YMD and /suite/main/an==complete)

_>| forecast | trigger (/suite/main:YMD>lag:YMD) or
(/suite/main:YMD==/suite/lag:YMD and /suite/main/model==complete)

I logs | time 13:15 though time trigger not necessary

LT ECMWF ecflow course 2018 55

Designing an operational suite - plotting

>| plot

v

repeat YMD 20180121

limit: workstation 2

| web | limited by ../limits:workstation

trigger (/suite/main:YMD>/suite/plot:YMD) or
(/suite/main:YMD == /suite/plot:YMD and ./suite/main/model ==
complete)

Pl ref |D event saturday

>| daily_plots |

trigger (/other_suite/main/model == complete and

>| combined |/suite/main/mode| == complete)

trigger ./ref ==complete

»I weekly_plots |complete not ../ref:Saturday and
../ref==complete

S~ ECMWF

logs |<—

ecflow course 2018

56

Writing “operational” scripts -
considerations for critical tasks

e Re-runnability e Avoid accessing off-line data in critical path

e Avoid NFS mounted files or unsafe file-
systems (SCRATCH)

e Look after critical data - HA systems, backups

e Limit number of languages used

. . e Tasks can be serial or parallel
e Be careful with error trapping

. — don’t do serial things in parallel tasks
e All variables should to be set (use default

values %VAR:1%) e Use generic directories to simplify cleaning

_ _ _ _ and always clean up!
e Use a generic user - identify operations

_ e Check task runtimes
e Works on multiple systems

e Keep output and job files
— ECF_JOB_CMD

. . e Always use a CM system and test
e Design based on constraints y y

- — Test ecflow server/suites
— Staff availability

LT ECMWF ecflow course 2018

57

Monitoring operational suites

e GUI - our operators do not view completed or queued tasks

— Only submitted, active, aborted tasks

e Colours give clear indication of suite status
— Pop up windows

— man pages and output

e Task colours give clear indication of task status (configurable!)

— Submitted for too long can indicate resource problems

e “Late” warnings are useful: submitted, active or complete

e Check tasks are also useful - schedule, tasks running, feeds

LT ECMWF ecflow course 2018 58

Implementing suites

e A definition file can hold both operational and test versions of suites

e Use conditional statements in suite definition to modify behaviour
— 1f SUITE == Y“oper suite”: PRODGEN = 1
— elif “test ” in SUITE: PRODGEN = 0
— PRODGEN = not “test ” in SUITE

e Use variables to distinguish versions and behaviour
— 1f not PRODGEN: task.add(Defstatus (“complete”))
— task.add (If (not PRODGEN, Defstatus (“complete”)))

e Suite can be loaded on a test ecflow server and plugged into an operational server

e One script for suite definition: import suite # suite.py

— suite expansion: defs.save as (“suite.exp”)

— load: if name == " main ”: client.load(“suite name”)

LT ECMWF ecflow course 2018

59

Suite design: functional aspects

e group time dependencies in dedicated families + triggers
— easy replacement when schedule changes

— defstatus complete in not-real-time-mode

e group external trigger dependencies in dedicated families (dummy tasks)

— easily replaced if reference suite changes

— can be set defstatus complete in standalone-mode

e 'umbrella triggers' to prevent evaluating multiple triggers all day long

— 80-90 triggers for products generation depending on model meter

LT ECMWF ecflow course 2018 60

Similarities to parallel programming (1/2)

« ecflow as a central point:
— Collect-Share information
— Reporting status
— Re-Routing

— Retrieving job information

« ecflow as distributed fleet: inter-server cooperation
— Maintaining work during server and network outages
— Handling of priorities, systems, tests
— Sharing load
— Sync suite: client to mirror status/variables

LT ECMWF ecflow course 2018 61

Similarities to parallel programming (2/2)

e ecflow allows you to handle:
— Deadlocks - broken fluidity
— Livelocks - wasting resources
— Mutual exclusion (events as mutex)

— Semaphores (limits, hardware, software)
e Allows profiling with timeline

e Works in “soft” real-time (ECF_INTERVAL is 60 seconds)

LT ECMWF ecflow course 2018 62

ECMWF Projects: Background

e ECMWEF code runs on multiple platforms

e Software installation should be simultaneous across them all

— Need ability to quickly revert changes if problems

e Need automated routine maintenance
e Need to handle both operational and non-operational tasks

e Numerous housekeeping tasks

LT ECMWF ecflow course 2018 63

Operational Systems

e Operationally we will run dozens of suites, tens of thousands of tasks

e Number of servers reflecting criticality
— ode: tests and design mode
— o0d3: official e-suites monitored by Operators, special projects
— o0d2: higher criticality, seasonal suites

— od: operational suites looping daily
e Servers hosted on linux workstation in Ops-room (with UPS), VM, or WS
e Access controlled
e Heterogeneous: tasks run on HPC, Linux Clusters, locally
e Suite structure separated by criticality: main-crit-lag-pop families
e Operators monitoring

e Watchdog tasks both internal and external to suites

— Operators/Analysts “like” red boxes

LT ECMWF ecflow course 2018

64

Operational System: SMS/ecflow server

e Server is target agnostic: /
— ECF_JOB_CMD (submit)
— ECF_KILL_CMD (kill)
— ECF_STATUS_CMD (query)

!

e Variable to locate wrapper files:
— ECF_FILES

Variable to locate header files:
— ECF_INCLUDE

e Checkpoint files:
— Written /2min, back /4min

— Duplicated /10min,
— stored /30min

ecaccess VPN

Cluster, host, storage host switch ’

E

LT ECMWF ecflow course 2018 65

Operational System: Servers/suites

F

File

Panels

Refresh Servers Tools Help

(C) 1_od|a-155sd-355| O £

_od

3_od2

isappal 25734 |
A (29648)

A (147767) Hadmin] & (56) -

e limits | e o) --
Elleda] & (5486)--
FEllle] & (14054)--
e aw] & (1581)--
FHElllme] & (15665)--
Elllmofe] & (57658) -
55 | A [5263)--

ES | [(10488) -
55 | A (2882)--
-Hlloceans] + 927)--
FElllsync| & (16044)—-
=

25 | A (3500)--
LE[pop] A (13960)--

S | A (19993) -
Slisapp_sync| & (15738)--
~Elllimits | o (0 --

ES | A (23169) -

=S | A (2537)--
-Eliseasplot4] + (487)
-Eliseas_ncep2| 4 (81)
-Hliseas_mm| & @323)--
-Ellseas_uki1] 4 (486)--
-Ellseas_ii6] & (229)--
g A (6)--
Ellseas_jp]| & (376)--
-Sltigge| & (1363)--
~Rlei] & (1241)--
-Bllerabada_3] 4 (1524
-ElleraShres 3] (703)--
FEl limits | e (o) --

=

FRllel | & (104)--
-Ells2s_prod| 4 (38893)--

=S | [| & (10489)--
-Elltigge_lam_prod] 4 (576)
Ellverify] + (s68) -

S| () -

eS| A (30)--

F

File Panels Refresh Servers Tools

(C) 1od[a-160sd-40s| Q, &

Help

3 _od2

=
FElllimits | & (0)--
3s | A (S468)--

HERllaw)] & (1581)

HRllme] & (15665)

-Ellio] & (14054) ———i

HElllmefc] & (57658) —

mit fodimits:hpc

it Aimits:hpe
——@limits| a&--
——[@main| &+ ————YMD=_. 20180117 .
- Rlref]--
@ make | &~
—— [00w & -~
—@12bc| & --
7E12 -
——[@[18bc| a--
——[l12hw] & -
——[@C0bc| A --
—EUU -
- [Hsbe
——[@stora] & --
- Helogfles] &
F |
——[Ffcdepar| - -
i it Aawlimits:hpo
inlimit Aimits:hpe
@Alimits] & --

a--
inlimit fmedimits:hpe
inlimit Aimits:hpe

@Alimits| as--

IF [

[Blads] ~ (136883)--
deegemsil « = (30155)
4 1872)—Fnmmb] 4 (1871

S~ ECMWF

——inlimit Aimits:hpe

—Gimon/ -

A —

—— YNMD=_. 20180117 ...
—[@store | -~

- [elogiles] +

- Hweb & -

ecflow course 2018

66

Contact Points:

e Axel BONET axel.bonet@ecmwf.int

e John HODKINSON john.hodkinson@ecmwf.int
e Avi BAHRA avi.bahra@ecmwf.int

e Blazej KRZEMINSKI blazej.krzeminski@ecmwf.int

e Problems/Requests:

— ECMWEF Software Support software.support@ecmwf.int

LT ECMWF ecflow course 2018 67

mailto:software.support@ecmwf.int

End Section

- ECMWF ecflow course 2018 68

ecflowUl

e interface based on Qt rather than Motif

— allows for faster development of features
tabbed interface, multiple windows allowed

— each can have different servers and can have any node as its root (e.g. a suite or
family)

e tree view will be familiar to existing users, but more accessible to
new users

e table-based view provides a flat representation of the tree

— enables sorting, e.g. by status

e client/server communication is thread-based

— user interface should not hang when waiting for a server response

LT ECMWF ecflow course 2018

69

Practical Sessions

e URL: https://software.ecmmwf.int/wiki/display/ecflow/Introduction

- ECMWF ecflow course 2018 70

https://software.ecmwf.int/wiki/display/ecflow/Introduction

Additional slides

- ECMWF ecflow course 2018 71

Debugging: an overview

When playing definition file

— Check first on test server, Python debugger pdb

When submitting look at ecflow log (or history via GUI) for info

Can you see the script in ecFlow_ui?

— No - unknown file location ECF_FILES (Python has job checking option)
Can you edit and pre-process the script?

— Cannot find includes (ECF_INCLUDE)

— Missing variable (check log or history) or misleading use of ECF_MICRO %
Script stays submitted/active? Syntax error, trapping issue.

— Submission problem, child process access or header problem. Try submitting job from
command line with NOECF=1? Output directory does not exist (ECF_HOME,
ECF_OUT), queuing system holding job

LT ECMWF ecflow course 2018

72

Debugging

e Task aborts?

— Script problem, check output

e No output after task aborts

— Mount point not available, ECF_OUT wrong, log server problem
e Task remains active
— Erroris not trapped

— Internal ssh call

— Remote system crash

LT ECMWF ecflow course 2018 73

Server Configuration

e Server configuration variables:

ECF_HOME # server admin directory
ECF_PORT # port number

ECF_CHECK # checkpoint file name
ECF_CHECKOLD # backup checkpoint file name
ECF_LOG # server log file name
ECF_CHECKINTERVAL #[120], 600 sec

ECF_LISTS # white list file name

ECF_DEBUG_SERVER # turn on debug mode

e Server log file:
— Can be handled by client command

— ecflow_client --port 3141 --log=new # [new|clear|flush]

LT ECMWF ecflow course 2018 74

Key ecflow variables

e ECF_HOME, ECF_FILES, ECF_INCLUDE : input scripts

e ECF_HOME (ECF_OUT): job files, (remote) output

e Mandatory variables for jobs

ECF_HOST # server hostname

ECF_PORT # server port

ECF_NAME # task path

ECF_PASS # pseudorandom unique identifier

e Useful variable for jobs

ECF_TRYNO # job occurrence number

ECF_HOSTFILE # alternative host server list (server recovery)
ECF_RID # job remote id (queuing id)

ECF_TIMEOUT # interval between two attempts
ECF_DENIED # to enable job exit with error before 24h

NO _ECF # standalone mode (set to use)

LT ECMWF ecflow course 2018 75

Similarities with SMS

e Functionality is very similar
— Suites, Family, Task, Variables, Trigger, Time, Date, Late, etc
— Child commands: init, complete, event, meter, label, wait, abort

— Variable inheritance

e Scripts are similar

— file name extension: .sms ->.ecf (ECF_EXTN)

— SMS variables replaced with ECF, i.e. SMSHOME -> ECF_HOME

e GUI: ecflowview was ported from XCdp to facilitate transition,

— About to be changed

LT ECMWF ecflow course 2018 76

Differences with SMS (1)

e Maintenance and enhancement of Client/Server easier
— Built from the ground up in C++
— Design Patterns, Observer, Template, Singleton, etc

— Test Driven, large set of regression tests

e SMS provided a custom scripting language, ecflow provides Python

integration, that allows:
— Building of the suite definition

— Client-Server communication

e Not restricted to Python, can use shell level interface

e Published format, any language for generating the suite definition

S~ ECMWF

ecflow course 2018

77

Differences with SMS (2)

e Improved Error Checking for:
— Trigger Expressions
— Validation of externs in Trigger expression
— Earlier checking for job generation
— Checks for recursive includes

— Simulation with out the need for scripts or server

e Customisable handling of zombies
e When a task is aborted, a reason can be provided

e No explicit login

LT ECMWF ecflow course 2018 78

Migration from SMS to ecflow

e Definition files
e Header files
e Script wrappers
e Queuing system directives
— # QSUB -0 <output file>
e Associated scripts
— ecf _submit, ecf_kill, ecf status
— trimurti
e Embedded dependency in applications

— IFS (meter), mars (label and events)

LT ECMWF ecflow course 2018 79

Migration of definition files

e In CDP

get
show /suite >suite.exp”

e Outputs an expanded definition file
suite test
edit SMSHOME “SHOME/course”
edit SMSINCLUDE “SHOME/course/include”
edit SMSFILES “SHOME/course/smsfiles”
task t1

endsuite

LT ECMWF ecflow course 2018 80

Migration of definition files

e Convert variables to produce text based ecflow suite (see Key ecflow

variables)

sed -f Ymap/bin/sms2ecf/sms2ecf-min.sed < suite.def > ecflow.def
suite test

edit ECF HOME SHOME/course

edit ECF_INCLUDE SHOME/course/include

edit ECF_FILES SHOME/course/smsfiles

task t1

endsuite

LT ECMWF ecflow course 2018 81

http://ppt/slides/slide69.xml

Migration of definition files

e This could be all you require, especially for small simple suites

e However....

e For more complex suites we recommend you use this as target for generation of a python suite

— Easier to maintain
— Testable

— Much easier to debug

LT ECMWF ecflow course 2018 82

Migration of header files

e trap.h, endt.h
— smsinit, smsabort, smscomplete replaced with ecflow_client commands

— SMS variables replaced with ECF_ variables

e gsub.h (ECMWEF specific generic queuing commands)

— gueuing system directive replaced before job submission,

— ecf_submit (ECF_JOB_CMD)

e smsmeter, smsevent, smslabel:

— replace with ecflow_client commands

LT ECMWF ecflow course 2018 83

Migration: explicit CDP calls

e Replace with ecflow_client commands

cdp <<EOF

set SMS PROG $SMS PROG; login -t 60 $SSMSNODE SUSER 1
1f (rc eq 0) then; exit 1; endif

alter -V $SSMSNAME:BASEDATE SBASEDATE

force set SSMSNAME:1

force complete $SMSNAME
exit O
EOF

e Becomes
ecflow client --alter change variable BASEDATE S$BASEDATE SECF NAME

ecflow client --alter change event 1 set SECF NAME
ecfow client --force complete SECFEF NAME

LT ECMWF ecflow course 2018 84

Migration: wrapper files

e Replace occurrences of %SMS% variables

— %SMSTRYNO%, %SMSJIOBOUT%

e Replace cdp calls with ecflow_client equivalents

or

e suite design can remove some embedded CDP

— cdp call to force complete

— replace with event /complete combination in the definition file

e Migrate child commands

LT ECMWF ecflow course 2018 85

End Section

- ECMWF ecflow course 2018 86

Interface design

e nodes: Client, Defs, Suite, Family, Task, Alias
e states
e attributes

— Autocancel Defstatus Late
— Repeat Edit Event Meter Label Limit Inlimit
— Trigger Complete Date Time Cron Today

e actions
— server: Check History Suites 'Time line' Variables Zombies Options

e nodes
— script Manual Job Output Edit
— info Messages 'Time line' Triggers Variables Why?
— check Jobstatus Execute Requeue Force

LT ECMWF ecflow course 2018 87

Operation System: servers -

suites

File Edit Show Servers

Windows

Help |

usingSNﬁPSHOT;presstﬂ@m-ﬂﬂﬂ@ﬂg@ gﬂﬂ QI

-|;|-- litits |3 ----
Fadmin [3----
Fsyne |3 ----
'.D'"'
LR

L Dcean4||;|----
Jaw|m
e

! mofc||;|----
Fefas |-
ICON=R
=R

-Q-[hasync |[3----

BBl
BB2

-|;|-- seas_mm“j----

L seasd -

L seas_f3|=32----
Fseas_frd -
Fseas_ukb (3T

L seas_hcep |3 ----
FjasonZ |3 ----
sl

od3 ||;|-| [ET== ||;|.__:|
[GEE o - [figge| = -

-|;|-[emc_38r [3----
sessabackID

LR
EegEms

i

Bl

S~ ECMWF

.—— limits |----

[main | YHD=... 20121205 ...

e

— refl---
— make [---
— admin |---
— O0dc | ---
OB |---
—[2BE]
—[Z}————— imake == complete|
a_}---
g.etreq |----
L prodzdiss }---
— 18bc|---
—12dc|---
18]---
— O0bc |---
o f---
— O6bc | ---
— logfilestore
—M—[me: submitted 0005
{make == complete and
ot YiD=... 20121205 ...
—H—— data|---
- wrep -
L—— msjohs |---
L oaf---
— 12bc|---
— 18bc |-
— O0bec | ---
— OGbc |-
— logfilestore
L— logfiles late: submitted 00:05 ¢
{012 == complete and
_-__.

limits | -
& —MD=... 20121205 ...

ecflow course 2018

88

Relationship between .def, .ecf and .job
files

load suste
Definition 4
File replace node

submit - u:]llh File
ECF_HOME path

-

'y t kill check status —P

_ -

-r template scripts

T lreat iy se job
emplate read - alter suite, supervise jobs

EEF_FILEEﬁllh
task.ecf

e

Task Headers

ECF INCLUDE path | 4-read —

e — read

' %nopp ... %end write ¥

- %manual .., %end

- Yinchude file.h Logfile

- Sinchedenopp x.py Checkpoint

| SVARIABLE% White list

- %VARIABLE value% ECF HOME path

&~ ECMWF e—— 18 89

