
ecflow course 2018 1

ecflow

Axel Bonet
John Hodkinson

Forecast Production

Integration Team

ecflow course 2018 2

Topics to be covered in theory sessions

● Aims

● Overview

● ecflow Components

● Writing operational suites and
scripts

● ecflow in use

● Important Concepts

● Python API

● Migration to ecflow

● GUI

ecflow course 2018 3

Course Aims

● Introduce ecflow, its API and viewer(s)

● Guidelines on designing an “operational” suite

● Show how ecflow is used

● Cover aspects of ecFlow : CLI, API, GUI and suite/task design

● Aim for students to be able to write and implement suites of a reasonable complexity by the end

of the course

ecflow course 2018 4

Overview: ecflow

The ECMWF workflow manager -

“A general purpose application designed to schedule a large number of

computer processes in a heterogeneous environment”

ecflow course 2018 5

Overview: what is ecflow ?

● Work flow package

– Runs large number of programs with dependencies

– Tolerant to hardware and software failures

● Used at EMCWF to run all operational suites

● Submits tasks and receives acknowledgements from them

– Using embedded child commands

● Stores the relationship between tasks

● http://software.ecmwf.int/wiki/display/ecflow/Home

http://software.ecmwf.int/wiki/display/ecflow/Home

ecflow course 2018 6

Overview: Features?

● Flexible inter-dependencies between tasks

– e.g. triggering

● Complex automated scheduling

– based on events, times, task status

– Multiple users / platforms / queues

● Monitoring information via GUI and CLI

● Dynamic and interactive supervision in real time

– execute, kill, check jobs

● Good recovery - at task and ecflow server level

● But … ecflow is not a queuing system, ecflow is not a message passing
system, it is a scheduler

ecflow course 2018 7

Overview: Schematic of our systems

ecflow course 2018 8

Simplified view of our usage ecflow

ecflow
Server(s)

ecflow_ui

ecflow_ui

ecflow_ui

ecflow

Linux
clusters

ecflowecflow_ui

remote

cca ccb

ecflow course 2018 9

Components of ecflow

● ecflow_server

– The scheduler, continuously running daemon process (nohup &)

● ecflow_client

– Command line interface to ecflow

– Child commands updating status and attributes

● Python API

● ecflow_ui, ecflowview

– Graphical interface to ecflow

ecflow course 2018 10

How it works

● Define suite

– Structure (grouping of tasks, interactions)

– Locations of input scripts, job files location, output file location, etc

● Design task template scripts

– add “hooks” to communicate to ecflow server

● When expected server submits the job

● Job tells server has started

– ecflow_client –init $ECF_RID

● If an error is detected, the job tells the server:

– ecflow_client –abort “reason”

– Use error trapping to communicate errors

● If task completes, tells the server: ecflow_client --complete

– Send complete client command

ecflow course 2018 11

Server Functionality

● Setup environment: at ECMWF

– module load ecflow # /usr/local/apps/ecflow/current/bin

set up PATH etc

● Starting the server

– ecflow_start.sh # specific start up script

– ecflow_stop.sh

– ecflow_server --port 3141 # manual start

– nohup ecflow_server > ecf.out 2>&1 &

● Server hosts the suites

● Checkpoints (backup) suites tree periodically: as text file (4.8.1)

● Handles user and job requests

● Logs activity

ecflow course 2018 12

ecflow: checking the server

● Identifying the presence of a server

– ecflow_client --ping --port 3141 –host localhost

– ecflow_ui, ecflowview

– ps -ef | grep ecflow

– netstat -lnptu (only if server started with your user ID)

Proto Recv-Q Send-Q Local Address Foreign Address State PID/Program name

tcp 0 0 0.0.0.0:6008 0.0.0.0:* LISTEN -

tcp 0 0 0.0.0.0:6009 0.0.0.0:* LISTEN -

tcp 0 0 0.0.0.0:25 0.0.0.0:* LISTEN -

tcp 0 0 0.0.0.0:3141 0.0.0.0:* LISTEN 5972/ecflow_server

ecflow course 2018 13

Text client interface

● For remote assistance, batch mode or directly from the shell

● Self contained manual:
─ ecflow_client --help <command (optional)>

● Define interaction via environment variables

─ ECF_PORT=3141 ECF_HOST=host3 ecflow_client --get

─ Or explicitly: ecflow_client --port 3141 --host host3 --get

● Can use to monitor and interact with server

─ ecflow_client --get

─ ecflow_client --alter change variable SLEEP 10 /path/to/node

● Load-replace nodes into the server

─ ecflow_client --load suite.def

─ ecflow_client --replace /path/to/node suite.def

● Write to log file

─ ecflow_client --msg =“this to be written to log file"

ecflow course 2018 14

Child commands: ecflow_client

● For communication between tasks and server
– ecflow_client --help child

● Status update:

– ecflow_client --init <PID/QID> # task is active e.g. $$ (Linux)

– ecflow_client --abort <reason> # task has aborted

– ecflow_client --complete # task has completed

– These commands are blocking (expect acknowledgement from the server)

● Attribute update:

– ecflow_client --event <name> # set an event

– ecflow_client --meter <name> <value> # update a meter

– ecflow_client --label <name> <text> # set a label

● Embedded trigger:

– ecflow_client --wait="/suite/t1==complete“ # wait for external task to complete

– ecflow_client --wait=“%CONDITION:1==1%” # wait for a condition set by variable

ecflow course 2018 15

ecflow_ui

● Monitoring

● Direct interaction with ecflow Servers

● Most ecflow client commands available

● Easy access to helpful information

– script, manual, job, output, web page, etc.

● Alarm features, runs even when iconized

● Configuration by panels, system

– Edit/Tools->Preferences->Menus User-Operator-Administrator

● Can mask information from being displayed

● Config files: ~/.ecflow_ui, servers, options, menu vs ~/.ecflowrc

ecflow course 2018 16

Terminology (1/2)

● Root ecflow server itself

● Suite Collection of nodes and attributes

● Family Collection of tasks + other families

● Task Unit of work, a computer job

● Alias Task made to run independently

● Node Generic term for Suite, Family, Task

● Attribute Node property (behavioural, structural,

monitoring)

● Event Milestone set within a task

● Meter Like an event, with range of values

● Label Text Information updated by the task

ecflow course 2018 17

Terminology (2/2)

● <name>.def Definition file describes a suite

– Expanded or high level

● <name>.ecf Wrapper, task template file

● <name>.jobN job-file

– created by ecflow from the ecf-file

– that is sent by ecflow to be executed

● <name>.usrN alias-file: from direct user interaction with GUI

– Test, debug, rerun without status side effects

– Alias has an alias number and a job instance number

● Variables stored by server, substituted into a job

– %VAR:<default>% # <default> is default

ecflow course 2018 18

ecflow template script - tasks wrapper (.ecf)

● Similar to a shell script

%include <head.h>

echo “I am a script in %ECF_HOME%”

%include <tail.h>

● On submission job file is created

– Preprocessing
● Include lines are replaced with relevant file

● Variables are substituted with server stored values

– Preprocessed to create a job file and submitted

● Job file can be ksh, bash, python, perl, ruby

● Extension is .ecf

– configurable ECF_EXTN (.py, .sh, .pl) in the suite definition

ecflow course 2018 19

Sample head.h include file (1 of 2)

#!%SHELL:/bin/bash%

set -e # stop the shell on first error

set -u # fail when using an undefined variable

set -x # echo script lines as they are executed

Defines the variables that are needed for any communication with ECF

export ECF_PORT=%ECF_PORT% # server port number

export ECF_HOST=%ECF_HOST% # name of ecflow host that issued this task

export ECF_NAME=%ECF_NAME% # name of this current task

export ECF_PASS=%ECF_PASS% # unique password

export ECF_TRYNO=%ECF_TRYNO% # current try number of the task

export ECF_RID=$$ # record the process id. Also for zombie detection

Define the path where to find ecflow_client

export PATH=/usr/local/apps/ecflow/%ECF_VERSION%/bin:$PATH

ecflow_client --init=$$ # tell ecflow we have started

ecflow course 2018 20

Sample head.h include file (2 of 2)

ERROR() { # Define a error handler

set +e # Clear -e flag, so we don't fail

wait # wait for background process to stop

ecflow_client --abort=”trap” # Notify ecflow something went wrong, 'trap' as the reason

trap 0 # Remove the trap

exit 0 # End the script

}

trap ERROR 0 # Trap any calls to exit and errors caught by the -e flag

Trap any signal that may cause the script to fail

trap '{ echo "Killed by a signal"; ERROR ; }' 1 2 3 4 5 6 7 8 10 12 13 15

ecflow course 2018 21

Relationship between .def, .ecf and .job files

ecflow
client

or
API

ecflow

task t1

#definition file
Text
Or
Python

.ecf t1.ecf
%include <head.h>
…
%include <tail.h>

#t1.job1
#expanded job file
#bash,ksh,python,perl

load /
replace

Child
command

Submit

ECF_FILES
ECF_INCLUDE

ecflow course 2018 22

End Section

ecflow course 2018 23

Practical

https://software.ecmwf.int/wiki/display/ECFLOW/Introduction

module load ecflow/4.8.1

module switch ecflow/4.8.1

https://software.ecmwf.int/wiki/display/ECFLOW/Introduction

ecflow course 2018 24

Important Concepts : Status Flow (1/2)

● After you load a suite its status is unknown,

– use begin to start: ecflow_client --begin <suite-name>

– defstatus suspended # def-file

● re-run, can be automatic if set in definition-file

– edit ECF_TRIES 3

● repeat, may take nodes back from complete to queued

– repeat date YMD 20180101 20201231 1

● date, time, cron may also make a task queued again

ecflow course 2018 25

Unknown

Complete

Queued

Suspended

Aborted

Submitted Active Complete

Aborted

Aborted

begin

resume

re-run/
execute

Important Concepts: Status Flow (2/2)

ecflow course 2018 26

Important Concepts: Status Flow (2/2)

ecflow course 2018 27

Important Concepts: Dependencies

● Node may stay queued because:

– ecflow server is halted (frozen, accept user command)

– ecflow server is shutdown (no new submissions)

– Parent has a dependency

– Triggered by a state of another node

– Waiting for time of day, day of a week, date of year

– Limit it uses is full

– Suspended

● Use “why” button with ecflow_ui to find out why

● GUI may be configured to hide attributes

ecflow course 2018 28

Important Concepts: Inheritance

● Four different kinds of inheritance in ecflow

● Variable inheritance (top to bottom)

– looks at the task first, then parents until it reaches ecflow itself

● Status inheritance (bottom to top)

– family status reflects most important status of its tasks

– likewise for suites and ultimately for ecflow

● Dependency inheritance: time, date, trigger, complete, inlimit

– dependencies on any level

– for task to run, it must be free to run as well as its parents

– Trigger dependencies may be “hidden” below, time dependencies are not!

● Zombie handling attribute inheritance: automate zombie management

ecflow course 2018 29

Important concepts: Zombies?

● On jobs submission, variable ECF_PASS set to pseudo-random value by ecflow server

● Jobs are defined with unique identifiers ECF_HOST-ECF_PORT-ECF_NAME-ECF_PASS
– A zombie arises when a child command is received and ECF_PASS does not match

ecflow course 2018 30

Important Concepts: Task versus Job

● Task is the piece of work you want ecflow to run

● Define the task in the suite definition file: task t1

● Write an ecflow script describing your task, “vi t1.ecf”

● When ecflow is ready to run your task, it

– edits your task and creates a job-file using ecflow variables

– if successfully created submits the job

– the job runs (e.g. via a queuing system)

● A task is a parameterised or configurable job or a template

ecflow course 2018 31

Important concepts: Alias

● An alias is a dynamic node attached to a task, created from GUI or ecflow_client

● There may be multiple aliases for one task

● Each alias can be run multiple times

● Initially ecflow server creates the .usrN script for the alias. You can modify it and rerun the

alias.

ecflow course 2018 32

ECF_MICRO

● A special character for ecflow: by default set to %

– Used by variables it is pre-processed by the ecflow server (%VAR%)

● To get % write %% in scripts

date +%%Y.%%m.%%d

● %includenopp <script> # include without preprocessing

● Nopp: No preprocessing in a block

%nopp

date +%Y.%m.%d

%end

● Change ecfmicro

– Globally: edit ECF_MICRO ^ # in def file

– Locally:

%ecfmicro ^ # in script -> set ECF_MICRO to ^

date +%Y.%m.%d # % is normal character

^ecfmicro % # set back to default %

ecflow course 2018 33

%include preprocessing directive

● %include <file.h>
– Include a file under ECF_INCLUDE directory

● %include “file.h”
– Include a file below ECF_HOME directory

● %include /path/to/file
– a hardcoded location

● %include: NOTE % MUST be first character of the line
– Avoid complexity, it prevents: echo “%include <file>”

– Avoid ambiguity: # %include <file>

● %include <%FILE_H%>
– Filename can be provided by a suite variable, here FILE_H

– edit({“FILE_H”: “config.oper.h”, })

– edit({“FILE_H”: “config.test.h”, })

ecflow course 2018 34

Security

● Designed for collaborative working, so default access is open

● ecflow server can be protected with white list file: ecf.lists

– restricted set of users with read (Script, Output) or read-write access (Edit, Submit)

● We use specific accounts for operations and research

● Communication on fixed port: ECF_PORT

● 4.4.8+: black list file for user authentication to access server, suite, node

● 4.4.8+: Communication may be encrypted: compile with option ENABLE_SSL

● Some jobs are submitted for another user: careful with

– job-file owner, output file owner, ssh settings, queueing system permissions

● Never run as root!

● Really: Do not even think about running as root!

ecflow course 2018 35

Files locations – ECF_HOME ECF_FILES ECF_INCLUDE

ecflow course 2018 36

Files locations - ECF_HOME ECF_OUT

Direct disk access

Or access through server (preferences)

Remote job: sometimes job file and

output file must be separated

(e.g. /tmp)

SERVER:
/suite:ECF_HOME

Job+Output

GUI

JOB

SERVER:
/suite:ECF_HOME

Job file

GUI

remote JOB
/suite:ECF_OUT

Output location

ecflow course 2018 37

Files locations - distributed suite

direct access: best case

all directories are visibles on each host

global/local Preferences

To force network access

(15k lines)

Remote job, disk not shared:

Access through server after job

completion (scp)

SERVER:
/suite:ECF_HOME

Job+Output

GUI

JOB

SERVER:
/suite:ECF_HOME

Job file

/suite:ECF_OUT

Output

GUI

JOB

ecflow course 2018 38

Files locations - distributed suite

Direct output access from GUI,

need scp

Normal case: use log-server to access live ouput,

scp at completion

nohup start_logserver

-d <dir>

-m <dir>:<dir>

SERVER:
/:suite:ECF_HOME

Job file
/suite:ECF_OUT

Remote output

GUI

JOB

SERVER:
/suite:ECF_HOME

/suite:ECF_OUT

/SUITE:ECF_LOGHOST

/suite:ECF_LOGPORT

GUI

JOB

LOGSERVER

ecflow course 2018 39

Handling multiple platforms: ECF_JOB_CMD,
ECF_KILL_CMD, ECF_STATUS_CMD, ECF_CHECK_CMD

● In course we generally submit jobs directly

● Can use a script to submit, to kill, get status behaviour depending on system:

edit ECF_JOB_CMD “SUBMISSION_SCRIPT %USER% %HOST% %ECF_JOB% %ECF_JOBOUT%"

• if (PBS) then qsub … qdel … qstat

• If (SLURM) then sbatch … scancel … squeue

● Can also use generic queuing commands

– #QSUB -q emos

– For PBS becomes #PBS -q emos

– For SLURM #SBATCH –qos=emos

– For SGE “# $” !!! beware a comment can lead to an error

ecflow course 2018 40

ecflow 4.8.1

● Text based checkpoint files

● Native python API update

● %include %VARIABLE% - variable in include

● %includeonce

● Repeat: additional variables to simplify trigger expressions

● Trigger: cal::date_to_julian(), late can be used in trigger expression

● ecflow_client --alter add (limit, inlimit, label) change (trigger, complete):

– Beware to keep updated the definition file

● Nodes attribute sorting: limits, variables, events, meters, labels

● ecflowUI updates

● ECF_HOST (was ECF_NODE)

ecflow course 2018 41

ecflow 5.0.0 – Future Release

● GUI and server not compatible with 4.x.x

● archive(migrate), restore attribute to get lighter server and GUI

● A new attribute: queue (worker-queue pattern)

● Family Limit

● Better zombie identification (password, pid, user command)

● Query command (event, meter, non blocking trigger check)

● C++11

● Updated Boost library

● Python3

● Security (password protection, host identification)

● ecflowview decommissioned

ecflow course 2018 42

Python definition file

● The definition may be sequential (like a bash suite definition),

– Starts at the beginning and you follow it through to the end

– Fix/verify a suite before loading?

● Object-oriented design opens more possibilities

– Stream-like design, no temporary variables (Functional Programming)

– Use functions to return a family or a task

– Use a class to store objects to be accessed by multiple members

– Another module may add attributes (Trigger, Late, Variables), delete, replace

– Navigate the suite (tune, verify) before loading it?

– Trigger expressions may be computed dynamically from node objects (path)

● Readable code, peer-review, KISS

ecflow course 2018 43

Python definition file

● Create a definition object:

– defs = ecflow.Defs() # create an ecflow definition

● Module script: provide families

● Standalone script:

– if __name__ == "__main__" :

SUITE = TC3Suite(defs, EXPVER) # create an instance of class

SUITE.suite() # and execute its method suite()

● Options: target suite, node to replace, host server, mode SMS/ecflow, expand/print definition

● Class derivation: extend, disable parent class abilities

– class TC3Suite(ic.Seed):

def setup(self,node): pass

def main(self,node): pass

ecflow course 2018 44

Python

● Typed variables:

– if VERSION in (“0001”, 9001, “9001”): print “str OR integer”

– if CYCLE == “00”: print 'ok'

● Object Oriented Programming OOP

– Composition v. inheritance:

• class derivation: operational vs test suite

• Extend a suite (is_a)

• “No more if” ...

– multiple inheritance: separate system and functional aspect of a suite?

– Polymorphism: treat all Attributes as one entity

– Encapsulation: complexity hiding mechanism, restriction mechanism (pyflow)

– classes, instances, methods: e.g. new attributes created from compounded native attributes

ecflow course 2018 45

Python

● raise, catch exceptions

● dynamically typed, aka Duck Typing

– it is then possible to mix types (ecflow-SMS GUI)

● Functional Programming in Python:

– eliminating flow control statements

– Functions as first class objects

– Reduce number of temporary objects

– List comprehension

● embedded, or library extension

● portable, open source

ecflow course 2018 46

Suite design with Python

● python modules:

– No global scope anymore

– Dedicated parameters.py file

– Modules split according to teams domain and interactions

– Makefile: to validate that main suites can be built

● benefit in accessing the ecflow API through a layer module (aka ecf.py):

– Activator variable: enable/disable attributes Trigger, Inlimit, Late

– Maintain the ability to load the suite on SMS (dynamic variable translation)

– Intercept Variables/Triggers to identify where it is created/modified in complex suites

– Add decorators (dedicated Label for operators)

ecflow course 2018 47

Python error handling

● May raise Exceptions

– missing key in dictionary,

– Use assert

● A chance to detect issues earlier

● If your Python is incorrect, the error messages can be helpful for finding where and why it fails

● Navigate, walk, verify, validate the suite tree
– It is not so obvious with shell suite definition

● ecflow has a built-in ‘Job generation checker’ which can be run in advance.

– It detects, for example, if .ecf job wrappers are missing, or if triggers are invalid.

● Suite simulation mode, to verify correct design

ecflow course 2018 48

Python: Code Quality

● PyLint

– Rates code

– Enforces syntax

– warns about large code: too many

members, variables

● pep8 python style, PyChecker,

PyFlackes

● coverage: identify dead code

● documentation: pydoc

● iPython: interactive interpreter, interactive documentation

● beware module dependencies (portability)

ecflow course 2018 49

End Section

ecflow course 2018 50

Migrating scripts to ecflow

For example migrating a cronjob

● Write simple suite with task controlled by “cron” or “time and repeat”

● Write wrapper file

– containing header files and include your script

%include <head.h>

%includenopp <script.ksh>

%include <tail.h>

● Improve by splitting into logical units following guidelines

● Decide on ecflow variables vs included variables

● Separate into families carrying out related activities

● Separate based on criticality

ecflow course 2018 51

Migration from a python script - a

starting point
● An example where

jupyter notebook helps

the transition

http://jupyter.org

ecflow course 2018 52

1) Get data

2) Analysis

3) Model

4) Products

5) Archive data

6) Plots

get

an

model

prodgen

archive

plot

Designing a suite - a simple NWP example

ecflow course 2018 53

Designing an operational suite - considerations

● Critical path - minimise dependencies systems/file systems

● Documentation - man pages for suites/families/tasks

● Rerunnabililty of tasks

● Simplicity - KISS

● Keep runtimes under control

● Keep logfiles for support/optimisation

● Make/rebuild within suite plus admin tasks

● Allow for simple switching of systems

● Clean up

ecflow course 2018 54

Designing an operational suite - critical path

get

an

model

prodgen

archive

plot

get_a get_b get_c

an_1

repeat YMD 20180221

an_2

model

prodgen_1

prodgen_2

prodgen_3

logs

time 15:00

main

time 04:00

ecflow course 2018 55

Designing an operational suite - archiving

archive

repeat YMD 20180121

logs time 13:15 though time trigger not necessary

lag

obs

analysis

forecast

trigger (/suite/main:YMD>lag:YMD) or
(/suite/main:YMD==/suite/lag:YMD and
/suite/main/get==complete)
trigger (/suite/main:YMD>lag:YMD) or
(/suite/main:YMD==/suite/lag:YMD and /suite/main/an==complete)

trigger (/suite/main:YMD>lag:YMD) or
(/suite/main:YMD==/suite/lag:YMD and /suite/main/model==complete)

limit:mars 2

limited by /suite/lag/limit:mars

ecflow course 2018 56

Designing an operational suite - plotting

web

repeat YMD 20180121

logs

plot

ref

daily_plots

trigger (/suite/main:YMD>/suite/plot:YMD) or
(/suite/main:YMD == /suite/plot:YMD and ./suite/main/model ==
complete)

limit: workstation 2

limited by ../limits:workstation

event saturday

weekly_plots
trigger ./ref ==complete
complete not ../ref:Saturday and
../ref==complete

combined
trigger (/other_suite/main/model == complete and
/suite/main/model == complete)

ecflow course 2018 57

Writing “operational” scripts -

considerations for critical tasks

● Re-runnability

● Look after critical data - HA systems, backups

● Limit number of languages used

● Be careful with error trapping

● All variables should to be set (use default

values %VAR:1%)

● Use a generic user - identify operations

● Works on multiple systems

– ECF_JOB_CMD

● Design based on constraints

– Staff availability

● Avoid accessing off-line data in critical path

● Avoid NFS mounted files or unsafe file-

systems (SCRATCH)

● Tasks can be serial or parallel

– don’t do serial things in parallel tasks

● Use generic directories to simplify cleaning

and always clean up!

● Check task runtimes

● Keep output and job files

● Always use a CM system and test

– Test ecflow server/suites

ecflow course 2018 58

Monitoring operational suites

● GUI - our operators do not view completed or queued tasks

– Only submitted, active, aborted tasks

● Colours give clear indication of suite status

– Pop up windows

– man pages and output

● Task colours give clear indication of task status (configurable!)

– Submitted for too long can indicate resource problems

● “Late” warnings are useful: submitted, active or complete

● Check tasks are also useful - schedule, tasks running, feeds

ecflow course 2018 59

Implementing suites

● A definition file can hold both operational and test versions of suites

● Use conditional statements in suite definition to modify behaviour

– if SUITE == “oper_suite”: PRODGEN = 1

– elif “test_” in SUITE: PRODGEN = 0

– PRODGEN = not “test_” in SUITE

● Use variables to distinguish versions and behaviour

– if not PRODGEN: task.add(Defstatus(“complete”))

– task.add(If(not PRODGEN, Defstatus(“complete”)))

● Suite can be loaded on a test ecflow server and plugged into an operational server

● One script for suite definition: import suite # suite.py

– suite expansion: defs.save_as(“suite.exp”)

– load: if __name__ == “__main__”: client.load(“suite_name”)

ecflow course 2018 60

Suite design: functional aspects

● group time dependencies in dedicated families + triggers

– easy replacement when schedule changes

– defstatus complete in not-real-time-mode

● group external trigger dependencies in dedicated families (dummy tasks)

– easily replaced if reference suite changes

– can be set defstatus complete in standalone-mode

● 'umbrella triggers' to prevent evaluating multiple triggers all day long

– 80-90 triggers for products generation depending on model meter

ecflow course 2018 61

Similarities to parallel programming (1/2)

• ecflow as a central point:
– Collect-Share information

– Reporting status

– Re-Routing

– Retrieving job information

• ecflow as distributed fleet: inter-server cooperation
– Maintaining work during server and network outages

– Handling of priorities, systems, tests

– Sharing load

– Sync suite: client to mirror status/variables

ecflow course 2018 62

Similarities to parallel programming (2/2)

● ecflow allows you to handle:

– Deadlocks - broken fluidity

– Livelocks - wasting resources

– Mutual exclusion (events as mutex)

– Semaphores (limits, hardware, software)

● Allows profiling with timeline

● Works in “soft” real-time (ECF_INTERVAL is 60 seconds)

ecflow course 2018 63

ECMWF Projects: Background

● ECMWF code runs on multiple platforms

● Software installation should be simultaneous across them all

– Need ability to quickly revert changes if problems

● Need automated routine maintenance

● Need to handle both operational and non-operational tasks

● Numerous housekeeping tasks

ecflow course 2018 64

Operational Systems

● Operationally we will run dozens of suites, tens of thousands of tasks

● Number of servers reflecting criticality

– ode: tests and design mode

– od3: official e-suites monitored by Operators, special projects

– od2: higher criticality, seasonal suites

– od: operational suites looping daily

● Servers hosted on linux workstation in Ops-room (with UPS), VM, or WS

● Access controlled

● Heterogeneous: tasks run on HPC, Linux Clusters, locally

● Suite structure separated by criticality: main-crit-lag-pop families

● Operators monitoring

● Watchdog tasks both internal and external to suites

– Operators/Analysts “like” red boxes

ecflow course 2018 65

Operational System: SMS/ecflow server

● Server is target agnostic:

– ECF_JOB_CMD (submit)

– ECF_KILL_CMD (kill)

– ECF_STATUS_CMD (query)

● Variable to locate wrapper files:

– ECF_FILES

● Variable to locate header files:

– ECF_INCLUDE

● Checkpoint files:

– Written /2min, back /4min

– Duplicated /10min,

– stored /30min

● Cluster, host, storage host switch

cca ccb

SAPPA
od od2 od3

eode

ecflow course 2018 66

Operational System: Servers/suites

ecflow course 2018 67

Contact Points:

● Axel BONET axel.bonet@ecmwf.int

● John HODKINSON john.hodkinson@ecmwf.int

● Avi BAHRA avi.bahra@ecmwf.int

● Blazej KRZEMINSKI blazej.krzeminski@ecmwf.int

● Problems/Requests:

– ECMWF Software Support software.support@ecmwf.int

mailto:software.support@ecmwf.int

ecflow course 2018 68

End Section

ecflow course 2018 69

ecflowUI

● interface based on Qt rather than Motif

– allows for faster development of features

tabbed interface, multiple windows allowed

– each can have different servers and can have any node as its root (e.g. a suite or

family)

● tree view will be familiar to existing users, but more accessible to

new users

● table-based view provides a flat representation of the tree

– enables sorting, e.g. by status

● client/server communication is thread-based

– user interface should not hang when waiting for a server response

ecflow course 2018 70

Practical Sessions

● URL: https://software.ecmwf.int/wiki/display/ecflow/Introduction

https://software.ecmwf.int/wiki/display/ecflow/Introduction

ecflow course 2018 71

Additional slides

ecflow course 2018 72

Debugging: an overview

● When playing definition file

– Check first on test server, Python debugger pdb

● When submitting look at ecflow log (or history via GUI) for info

● Can you see the script in ecFlow_ui?

– No - unknown file location ECF_FILES (Python has job checking option)

● Can you edit and pre-process the script?

– Cannot find includes (ECF_INCLUDE)

– Missing variable (check log or history) or misleading use of ECF_MICRO %

● Script stays submitted/active? Syntax error, trapping issue.

– Submission problem, child process access or header problem. Try submitting job from
command line with NOECF=1? Output directory does not exist (ECF_HOME,
ECF_OUT), queuing system holding job

ecflow course 2018 73

Debugging

● Task aborts?

– Script problem, check output

● No output after task aborts

– Mount point not available, ECF_OUT wrong, log server problem

● Task remains active

– Error is not trapped

– Internal ssh call

– Remote system crash

ecflow course 2018 74

Server Configuration

● Server configuration variables:

ECF_HOME # server admin directory

ECF_PORT # port number

ECF_CHECK # checkpoint file name

ECF_CHECKOLD # backup checkpoint file name

ECF_LOG # server log file name

ECF_CHECKINTERVAL # [120], 600 sec

ECF_LISTS # white list file name

ECF_DEBUG_SERVER # turn on debug mode

● Server log file:

– Can be handled by client command

– ecflow_client --port 3141 --log=new # [new|clear|flush]

ecflow course 2018 75

Key ecflow variables

● ECF_HOME, ECF_FILES, ECF_INCLUDE : input scripts

● ECF_HOME (ECF_OUT): job files, (remote) output

● Mandatory variables for jobs
ECF_HOST # server hostname

ECF_PORT # server port

ECF_NAME # task path

ECF_PASS # pseudorandom unique identifier

● Useful variable for jobs
ECF_TRYNO # job occurrence number

ECF_HOSTFILE # alternative host server list (server recovery)

ECF_RID # job remote id (queuing id)

ECF_TIMEOUT # interval between two attempts

ECF_DENIED # to enable job exit with error before 24h

NO_ECF # standalone mode (set to use)

ecflow course 2018 76

Similarities with SMS

● Functionality is very similar

– Suites, Family, Task, Variables, Trigger, Time, Date, Late, etc

– Child commands: init, complete, event, meter, label, wait, abort

– Variable inheritance

● Scripts are similar

– file name extension: .sms -> .ecf (ECF_EXTN)

– SMS variables replaced with ECF, i.e. SMSHOME -> ECF_HOME

● GUI: ecflowview was ported from XCdp to facilitate transition,

– About to be changed

ecflow course 2018 77

Differences with SMS (1)

● Maintenance and enhancement of Client/Server easier

– Built from the ground up in C++

– Design Patterns, Observer, Template, Singleton, etc

– Test Driven, large set of regression tests

● SMS provided a custom scripting language, ecflow provides Python

integration, that allows:

– Building of the suite definition

– Client-Server communication

● Not restricted to Python, can use shell level interface

● Published format, any language for generating the suite definition

ecflow course 2018 78

Differences with SMS (2)

● Improved Error Checking for:

– Trigger Expressions

– Validation of externs in Trigger expression

– Earlier checking for job generation

– Checks for recursive includes

– Simulation with out the need for scripts or server

● Customisable handling of zombies

● When a task is aborted, a reason can be provided

● No explicit login

ecflow course 2018 79

Migration from SMS to ecflow

● Definition files

● Header files

● Script wrappers

● Queuing system directives

– # QSUB -o <output file>

● Associated scripts

– ecf_submit, ecf_kill, ecf_status

– trimurti

● Embedded dependency in applications

– IFS (meter), mars (label and events)

ecflow course 2018 80

Migration of definition files

● In CDP

get
show /suite >suite.exp”

● Outputs an expanded definition file

suite test

edit SMSHOME “$HOME/course”

edit SMSINCLUDE “$HOME/course/include”

edit SMSFILES “$HOME/course/smsfiles”

task t1

……

endsuite

ecflow course 2018 81

Migration of definition files

● Convert variables to produce text based ecflow suite (see Key ecflow

variables)

sed -f ~map/bin/sms2ecf/sms2ecf-min.sed < suite.def > ecflow.def

suite test

edit ECF_HOME $HOME/course

edit ECF_INCLUDE $HOME/course/include

edit ECF_FILES $HOME/course/smsfiles

task t1

……

endsuite

http://ppt/slides/slide69.xml

ecflow course 2018 82

Migration of definition files

● This could be all you require, especially for small simple suites

● However….

● For more complex suites we recommend you use this as target for generation of a python suite

– Easier to maintain

– Testable

– Much easier to debug

ecflow course 2018 83

Migration of header files

● trap.h, endt.h

– smsinit, smsabort, smscomplete replaced with ecflow_client commands

– SMS variables replaced with ECF_ variables

● qsub.h (ECMWF specific generic queuing commands)

– queuing system directive replaced before job submission,

– ecf_submit (ECF_JOB_CMD)

● smsmeter, smsevent, smslabel:

– replace with ecflow_client commands

ecflow course 2018 84

Migration: explicit CDP calls

● Replace with ecflow_client commands

cdp <<EOF

set SMS_PROG $SMS_PROG; login -t 60 $SMSNODE $USER 1

if (rc eq 0) then; exit 1; endif

alter -V $SMSNAME:BASEDATE $BASEDATE

force set $SMSNAME:1

force complete $SMSNAME

exit 0

EOF

● Becomes
ecflow_client --alter change variable BASEDATE $BASEDATE $ECF_NAME

ecflow_client --alter change event 1 set $ECF_NAME

ecfow_client --force complete $ECF_NAME

ecflow course 2018 85

Migration: wrapper files

● Replace occurrences of %SMS% variables

– %SMSTRYNO%, %SMSJOBOUT%

● Replace cdp calls with ecflow_client equivalents

or

● suite design can remove some embedded CDP

– cdp call to force complete

– replace with event /complete combination in the definition file

● Migrate child commands

ecflow course 2018 86

End Section

ecflow course 2018 87

Interface design

● nodes: Client, Defs, Suite, Family, Task, Alias

● states

● attributes
– Autocancel Defstatus Late

– Repeat Edit Event Meter Label Limit Inlimit

– Trigger Complete Date Time Cron Today

● actions
– server: Check History Suites 'Time line' Variables Zombies Options

● nodes
– script Manual Job Output Edit

– info Messages 'Time line' Triggers Variables Why?

– check Jobstatus Execute Requeue Force

ecflow course 2018 88

Operation System: servers -

suites

ecflow course 2018 89

Relationship between .def, .ecf and .job

files

