
ecflow course 2018 1

ecflow - Python

Axel Bonet

Production Section – Integration Team

ECMWF

ecflow course 2018 2

Python suites

● Python for the definition file

● Python for a passive client: monitor, download server content

● Python for an active client: monitor, upload, alter

● Python for a Job
– ‘pure python job’ v. ‘calling python from a job’, KISS, robust, reproducible!

– Job environment: exceptions, classes, scope by blocks

– Python for child commands: init, complete, abort, event, meter

– Edit({“ECF_EXTN”:”.py”, “ECF_MICRO”:’$’})

– edit micro ^

ecflow course 2018 3

Python suites

● Definition file

– Pep8 style guide (here), python docs (here),

ipython (here)

– Pylint, PyCheck, PyFlake, coverage, pydoc

– No need to print expanded suite definition

– Handle/raise exceptions: detect issues earlier, ex.

missing key in a dictionary

– Typed variables, Local/Block scope for variables

(module, def, class) unless global is specified

– Functional Programming: reduce temporary

variables

– List comprehension for loops, Lambda expression

for anonymous functions

https://www.python.org/dev/peps/pep-0008/
https://docs.python.org/3/
https://ipython.org/

ecflow course 2018 4

Attributes

Attributes Behaviour Context script

Repeat Requeue on
complete,
one per node

Problem with
Cron!
Used in trigger

%YMD%

Edit hide Repeat Used in trigger %VAR:default%

Event Set by Child,
user, batch

Used in trigger
Used to monitor

ecflow_client --
event

Meter Set by Child,
user, batch

Used in trigger
Used to monitor

--meter

Label Monitor only --label

Trigger One per
node

--wait

Limit Used in trigger

Late Flag, pop Used in trigger

Attributes Behaviour

Cron Requeue immediately at complete

Complete One per node, set complete asap

Time 00:00 23:59 01:00

Date 1.*.* good to associate with Time

Today The time of node replace

Day good to associate with Time

Limit Global, local, inherited, “hidden”
Like suspend when set to 0

Inlimit One token for each task, or
One token on active (family inlimit)

Defstatus After begin, requeue, (repeat)

Clock Real, hybrid

ecflow course 2018 5

Python suites
● One script “do-it-all”? mirror.py is an example

– Suite definition, load, replace node

– Create task templates and headers

– It can be a wrapper itself for job definition: pre-process, submit

– Still, it can be called from command line: test, standalone

– Child communication by a dedicated class

– Something missing? YES! ^include <header.py>

– Doc-string for blocs ^manual … ^end ^comment … ^end

● Native API: import ecflow

● Functional Programming API, polymorphism: import ecf

– Trigger/Complete/Late/Inlimit: activate, inhibit with one variable change

– A chance for “No Hardcoded Trigger expressions”: expression generated from python objects

– When playing a suite on a SMS server, variables are translated “on the fly”

ecflow course 2018 6

Python suites - classes – inheritance

ecflow course 2018 7

Python suites - classes – inheritance (inhibit, enhance)

ecflow course 2018 8

Python suites - classes – Composition

ecflow course 2018 9

Python suites – Suite, Family definition

● With a shell suite:

– attribute are added in place

– sequential suite definition!

● With a Python suite: navigate anytime

– Verify/fix a suite before loading a node

– Check job creation, Simulate the suite,

Add/Replace/Delete Attributes

● Module as provider/decorator

– OOP: no “if” anymore, use Class?

– FP: no “temporary objects”?

● iterative family addition with replace

● What’ s wrong with this suite?

ecflow course 2018 10

Python suites – example – suite.py

ecflow course 2018 11

Python script – task template may be executable

● Operational example: sweeper.py

ecflow course 2018 12

Python script – simple client v. complex triggers

ecflow course 2018 13

Python script - sweeper - the elephant chart

ENS models checkpoint

by step 48, 96, 144, 192, 236

ecflow course 2018 14

Python script – task template – Child class

● mirror.py: communication with server handled by one class, Child

ecflow course 2018 15

Python client – example - suite navigator

ecflow course 2018 16

Python for visualisation: Django

● ecflow python client together with

● https://d3js.org/Data-Driven Document

● Django
https://www.djangoproject.com

https://d3js.org/
https://www.djangoproject.com/

ecflow course 2018 17

Python for visualisation: Flask

● Flask web server is lightweight (here)

http://flask.pocoo.org/

ecflow course 2018 18

Python for visualisation: Fuse

● ecflow python client may mount suite
content as a UNIX file system

● ls, find, mc, baobab for suite navigation

● Passive and/or active: suspend resume

● Fuse file access leads to server
command: job, output, ping, history

ecflow course 2018 19

ecflow – Elements for suites

ecflow course 2018 20

Attributes: Trigger, Complete with Date,Time, Limit, Cron

● Limit: Limit({‘mutex’:1,’semaphore’:5})

● Date, Time: attached

– To the same node (‘and then’) or not (‘and’)

– To dummy task, referred by a Trigger

– Goes down under suspended node!

● Trigger expression can refer to

– State, Event, Meter, Variable

– ECF_DATE, TIME, DOW, DOY, DD, MM, YY

• real-time suites, it holds under suspend!

– Limit: use eq, ne, lt, le, gt, ge operators!

– Beware: Trigger to a Cron Task

– Livelock? ecflow_client --wait %CONDITION%

ecflow course 2018 21

Attributes: Trigger, Complete with Date, Time, Cron

● group time dependencies in dedicated families + triggers

– easy replacement when schedule changes

– defstatus complete in not-real-time-mode

● group external trigger dependencies in dedicated families (dummy tasks)

– easily replaced if reference suite changes

– can be set defstatus complete in standalone-mode

● 'umbrella triggers' to prevent evaluating multiple triggers all day long

– 80-90 triggers for products generation depending on model meter

ecflow course 2018 22

Attributes: Trigger, Complete with Repeat

● Mixing Repeat, Trigger, Date,Time

– Can lead to a deadlock!

– A chance to use Simulate!

● Multiple Repeat following each other

– Not to delay the lead Family

– Leads to long Trigger expressions!

• It can be simplified using dummy node

memorising “ok to go”

– mars stage? Data size? IO? Swap?

ecflow course 2018 23

Attributes: Trigger with Repeat and Limit, Producer Consumer

● Producer-Consumer

– from one to multiple tasks

– Balance number of jobs with Limit

– Time constraints

– Available CPUs

ecflow course 2018 24

Jobs - use cases - 1

● Classic: wrapper, header, job, submit

● Dummy tasks: no wrapper, no job

– Handle complex triggers, external

dependencies, facilitate date/time update

– Edit(ECF_DUMMY_TASK=1), Trigger(“1==0”)

● No task wrapper?

– edit ECF_NO_SCRIPT 1

● No job, only submit, one-liners:

– edit ECF_JOB_CMD “$do”

– ECF_HOST ECF_PORT ECF_NAME, ECF_PASS

● Preprocessing only, no submit

ecflow course 2018 25

Jobs - use cases - 2

● Same wrapper, headers for all tasks?

– Suite variables make the difference

– Variables for Job, manual, output

● Too many jobs to submit at once?

– Monitor mode

– Jobs started independently

– child commands for status change:

ECF_HOST, ECF_PORT, ECF_NAME,

ECF_PASS=FREE

– defstatus suspended # sh-def

– edit ECF_PASS FREE # sh-def

ecflow course 2018 26

Jobs – use case - 3
● ecflow as a central point

– Collect-Share information

– Reporting status

– Re-Routing

– Retrieving job information

– Allows profiling with timeline

● ecflow as distributed fleet: Inter-server cooperation

– Maintaining work during server and network outages

– Handling of priorities, systems, tests

– Sharing load

– Sync suite: client to mirror status/variables

● Works in “soft” real-time (ECF_INTERVAL is 60 seconds): sleep %SLEEP:60%

ecflow course 2018 27

Shell environment for suites?
● Suite definition

– ecflowrc: suite definition keywords as shell commands

– suite.sh: expanded suite definition file .exp is generated (for node replace)

– small standalone suite (maintenance!), global scope!

● Client-server interaction: ecflowrc for useful aliases,
– export ECF_PORT ECF_HOST

● Shell as job environment: Ksh/Bash usually

– trap, set –eux, PS4 variable for time stamps

● One script is enough? command line call/test, suite definition, task wrapper
– edit ECF_EXTN .sh; edit ECF_MICRO ^; # sh-def

– ^include <file.man> ^manual …^end ^comment …^end (?) cat >

/dev/null <<@@ … @@ # .ecf

– operational example: monitor.sh

ecflow course 2018 28

Shell suites definition - ecflowrc

ecflow course 2018 29

Shell Suite – example – suite.def

ecflow course 2018 30

Python Suite – example – suite.py

ecflow course 2018 31

Suite loader – Shell - Python

ecflow course 2018 32

Suite - Visualise – If block – reuse wrapper?

ecflow course 2018 33

Suite - Visualise – If block

ecflow course 2018 34

Suite - Visualise – for block

ecflow course 2018 35

Suite - Visualise – for block

ecflow course 2018 36

Suite - Visualise – case block – exclusive call?

ecflow course 2018 37

Suite - Visualise – case block

ecflow course 2018 38

Suite - Visualise – Operators

ecflow course 2018 39

ECMWF Projects: Background

● ECMWF code runs on multiple platforms

● Software installation should be simultaneous across them all

– Need ability to quickly revert changes if problems

● Need automated routine maintenance

● Need to handle both operational and non-operational tasks

● Numerous housekeeping tasks

ecflow course 2018 40

Operational Systems

● Operationally we will run dozens of suites, tens of thousands of tasks

● Number of servers reflecting criticality

– ode: tests and design mode

– eod3: official e-suites monitored by Operators, special projects

– eod2: higher criticality, seasonal suites

– od: operational suites looping daily

● Servers hosted on linux workstation in Ops-room (with UPS), VM, or WS

● Access controlled

● Heterogeneous: tasks run on HPC, Linux Clusters, locally

● Suite structure separated by criticality: main-crit-lag-pop families

● Operators monitoring

● Watchdog tasks both internal and external to suites

ecflow course 2018 41

Operation System: ecflow server

● Server is target agnostic:

– ECF_JOB_CMD (submit)

– ECF_KILL_CMD (kill)

– ECF_STATUS_CMD (query)

● Variable to locate wrapper files:

– ECF_FILES

● Variable to locate header files:

– ECF_INCLUDE

● Checkpoint files:

– Written /2min, back /4min

– Duplicated /10min, stored /30min

● Cluster switch, host switch,
storage host

cca ccb

SAPPA

eod eod2 eod3

eode

ecflow course 2018 42

Operation System: servers - suites

ecflow course 2018 43

Additional content

● Elearning

– elearning git repository

● Github, Docker, GUI with docker
● notebook

https://www.ecmwf.int/en/learning/education-material/elearning-online-resources
https://software.ecmwf.int/stash/projects/ECFLOW/repos/elearning/browse
https://github.com/morianemo/alpine-ecflow
https://hub.docker.com/r/eowyn/debian-ecflow/
https://hub.docker.com/r/eowyn/debian-ecflowui/
https://github.com/morianemo/debian-ecflow/blob/master/notebook/ecFlow.ipynb

ecflow course 2018 44

End Section

ecflow course 2018 45

Server Configuration

● Server configuration variables:

ECF_HOME # server admin directory

ECF_PORT # port number

ECF_CHECK # checkpoint file name

ECF_CHECKOLD # backup checkpoint file name

ECF_LOG # server log file name

ECF_CHECKINTERVAL # [120], 600 sec

ECF_LISTS # white list file name

ECF_DEBUG_SERVER # turn on debug mode

● Server log file:

– Can be handled by client command

– ecflow_client --port 3141 --log=new # [new|clear|flush]

ecflow course 2018 46

Key ecflow variables

● ECF_HOME, ECF_FILES, ECF_INCLUDE: input scripts

● ECF_HOME, ECF_OUT: job files, output

● Mandatory variables for jobs
ECF_HOST # server hostname
ECF_PORT # server port
ECF_NAME # task path
ECF_PASS # pseudo-random unique identifier

● Useful variable for jobs
ECF_TRYNO # job occurrence number
ECF_HOSTFILE # alternative host server list (server recovery)
ECF_RID # job remote id (queuing id)
ECF_TIMEOUT # interval between two attempts
ECF_DENIED # to enable job exit with error before 24h
NO_ECF # standalone mode (set to use)

