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 © The Numerical Algorithms Group Limited, 2018

 All rights reserved. Duplication of this presentation in printed form or by 
electronic means for the private and sole use of the delegate is 
permitted provided that the individual copying the document is not:

• selling or reselling the documentation;

• distributing the documentation to others;

• using it for the purpose of critical review, publication in printed form or any 
electronic publication including the Internet without the prior written permission 
of the copyright owner.

 The copyright owner gives no warranties and makes no representations 
about the contents of this presentation and specifically disclaims any 
implied warranties or merchantability or fitness for any purpose;

Copyright Statement (1)



3

 The copyright owner reserves the right to revise this presentation and to 
make changes from time to time in its contents without notifying any 
person of such revisions or changes.

Copyright Statement (2)
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 Experts in Numerical Computation and High Performance Computing 

 Founded in 1970 as a co-operative project out of academia in UK

 Operates as a commercial, not-for-profit organization

• Funded entirely by customer income

 Worldwide operations

• Oxford & Manchester, UK

• Chicago, US

• Tokyo, Japan

 Over 3,000 customer sites worldwide

 NAG’s code is embedded in many vendor libraries

The Numerical Algorithms Group
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 NAG Library

 NAG Fortran Compiler

 Algorithmic Differentiation

 Bespoke numerical solvers and custom adjoints

 Grid/cloud execution framework

 Code modernization and parallelization

 Technology evaluation and benchmarking

 HPC advice and procurement assistance 

Experts in Numerical Computation and HPC
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 50 years of good practice in scientific computing and HPC to build 
robust, portable and performing numerical code;

 Fortran is the programming language of choice to develop the kernel of 
the NAG Numerical Library;

 NAG develop their own Fortran compiler, led by Malcolm Cohen;

 Malcolm Cohen is also member of the Fortran standards committee and 
developed the first Fortran 90 compiler;

NAG and Fortran (1)



7

 He is the co-author of the famous “Modern Fortran Explained” book;

 NAG Compiler test suite is being used by a number of other compiler 
writers to validate their own software;

 NAG are also contributing to the language through this workshop.

NAG and Fortran (2)
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Programming by Scientists

http://phdcomics.com
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 History of Fortran;
 Source code formatting and naming conventions;
 Source code documentation using comments;
 Memory management and pointers;
 Fortran strings and Fortran modules and submodules;
 Numerical, user defined data types and designing good APIs;
 Refactoring legacy Fortran;
 Makefile. Serial NetCDF, serial HDF5, and PLplot;
 Day one practical;
 Supplementary material at www.nag.co.uk/content/fortran-modernization-

workshop

Day One Agenda

http://www.nag.co.uk/content/fortran-modernization-workshop
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 Fortran or Fortran I contained 32 statements and developed by IBM –
1950;

 Fortran II added procedural features – 1958;

 Fortran III allowed inlining of assembly code but was not portable –
1958;

 Fortran IV become more portable and introduced logical data types –
1965;

 Fortran 66 was the first ANSI standardised version of the language 
which made it portable. It introduced common data types, e.g. integer 
and double precision, block IF and DO statements – 1966;

History of Fortran (1)
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 Fortran 77 was also another major revision. It introduced file I/O and 
character data types – 1977;

 Fortran 90 was a major step towards modernising the language. It 
allowed free form code, array slicing, modules, interfaces and dynamic 
memory amongst other features – 1990;

 Fortran 95 was a minor revision which includes pointers, pure and 
elemental features – 1995;

 Fortran 2003 introduced object oriented programming. Interoperability 
with C, IEEE arithmetic handling – 2003;

History of Fortran (2)
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 Fortran 2008 introduced parallelism using CoArrays and submodules –

2008;

 Fortran 2018 improved the CoArray features by adding collective 
subroutines, teams of images, listing failed images and atomic intrinsic 
subroutines – 2018;

 Most compilers, to date, support Fortran 77 to Fortran 2008. See [1] and 
[2] for further details;

 This workshop will be discussing Fortran 90, 95, 2003, 2008 and 2018 
also known as modern Fortran.

History of Fortran (3)

[1] http://www.fortran.uk/fortran-compiler-comparisons-2015/

[2] http://www.fortranplus.co.uk/resources/fortran_2003_2008_compiler_support.pdf
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 The Fortran Standards Committee members are comprised of industry, 
academia and research laboratories;

 Industry: IBM, Intel, Cray, Numerical Algorithms Group (NAG), Portland 
Group (Nvidia), British Computer Society, Fujitsu;

 Academia: New York University, University of Oregon, George Mason 
University, Cambridge University and Bristol University;

 Research laboratories: NASA, Sandia National Lab, National Center for 
Atmospheric Research, National Propulsion Laboratory, Rutherford 
Appleton Laboratory (STFC)

Fortran Standards Committee
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 Fortran compiler vendors include Intel, PGI (Nvidia), NAG, Cray, GNU, 
Flang, IBM, Lahey, NEC and Arm;

 Fortran compiler vendors then implement the agreed standard;

 Some vendors are quicker than others in implementing the Fortran 
standard; 

 Large choice of compilers, each with their strengths and weaknesses. No 
“best” compiler for all situations, e.g. portability to performance;

 Some have full or partial support of the standard.

Fortran Compilers
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 The compiler is not the language. It is an 
application like any other and has bugs. It is 
more thoroughly tested than other applications;

 How well it implements the language standard 
varies across compilers;

 It uses the Linux linker to create executables and 
requires a runtime system to execute by the 
operating system;

 Runtime systems are supplied by the compiler 
and the operating system;

Compiler Characteristics (1)

Programming 
Language Standard

Compiler

Binary Executable
(ELF Linux Format)

Runtime

Operating System

Linker for libraries 
(ELF Linux Format)

Computer Hardware

system
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 Performance - how well is the code optimised on the target 
architecture;

 Correctness - does it detect violations of the language specification 
ideally at compilation or at runtime? Does it print helpful error 
messages when a violation is detected?

 Features - does it support newer standards, e.g. 2008?

 Compilation speed - related to all the above;

 Additional software development tools bundled with the compiler;

 All the above characteristics should be considered when using a 
compiler and not just one, e.g. performance;

Compiler Characteristics (2)
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 Compiler optimisations are compiler dependent. The Fortran standard 
does not specify how the language should be implemented, e.g. 
whether array operations are vectorised;

 The standard is written so that it allows compilers to optimise the code, 
but performance across compilers can vary considerably;

 There is no guarantee a newer compiler will run your code faster. It 
could run slower;

 Only guarantee that compilers try to give is that it produces the correct 
answer given a valid Fortran code.

Compiler Characteristics (3)
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 As the standard evolves, language features get obsoleted and then 
deleted from the standard;

 When a feature is obsoleted, it is marked for deletion and replacement 
feature is incorporated;

 In one of the next revisions, the feature is permanently deleted;

 Some compilers will continue to support deleted features or might 
completely remove them;

 To ensure your code is fully portable, it is important to keep it up to date 
with the language standard, i.e. modernise your code!

Evolution of the Fortran Standard
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 Some compilers provide extensions to the language which are not part 
of the official language standard, e.g. CUDA Fortran;

 Some are useful in that they provide extra features or improve 
performance;

 However, they are usually unique to that compiler (or a few compilers) 
and there is no guarantee that the compiler vendor will continue to 
support it;

 Or worse, the compiler vendor might no longer exist which will cause 
serious problems when attempting to use another compiler;

Compiler Extensions and the Standard (1)
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 This will pose serious portability issues, so be careful when using 
compiler extensions or just using one compiler;

 To increase portability of your code, strictly adhere to the language 
standard;

 Compiler vendors try to adhere the language standard and they are 
reasonably successful in doing so.

Compiler Extensions and the Standard (2)
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 Modularise your code so that components can be re-used and better 
managed by a team of developers;

 Write code so that it can be tested;

 Use implicit none so that all variables have to be explicitly defined;

 Use whitespace to make your code readable for others and for yourself;

 Use consistent formatting making it easier to read the entire code;

 Agree on a formatting standard for your team so that you can read each 
other’s code in a consistent manner.

Code Structure
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 Use lower case for all your code1, including keywords and intrinsic 
functions. IDEs now highlight such identifiers;

 Capitalise first character of subroutines and functions, and use spaces 
around arguments:
a = VectorNorm( b, c ) ! Or use underscore

a = Vector_norm( b, c )

 Use lower case for arrays and no spaces:
a = matrix(i, j)

 The difference between function and array references are clearer;

Coding Style Suggestions (1)

1Exceptions apply
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 Use two character spaces when indenting blocks of code and increase 
indentation with nested blocks, and name your block statements:
CELLS: do i = 1, MAX_CELLS

EDGE: if ( i == MAX_CELLS ) then

vector(i) = 0.0

else

vector(i) = 1.0

end if EDGE

end do CELLS

 Name large blocks containing sub-blocks as shown above;

Coding Style Suggestions (2)
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 Use spaces around IF statement parentheses:
SCALE: if ( i <= MAX_CELLS ) then

vector(i) = alpha * vector(i)

end if SCALE

 Use symbolic relational operators:

Coding Style Suggestions (3)

Old Fortran New Fortran Description

.GT. > greater than

.GE. >= greater than or equal to

.LT. < less than

.LE. <= less than or equal to

.NE. /= not equal to

.EQ. == equal to
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 Always use the double colon to define variables:
real :: alpha, theta

integer :: i, j, k

 Use square brackets to define arrays and use a digit on each side of the 
decimal point:
vec = (/ 0.0, 1.0, 2.0, 3.0 /)   ! old Fortran

vec = [ 0.0, 1.0, 2.0, 3.0 ]     ! Fortran 2003

 Separate keywords with a space:

Coding Style Suggestions (4)

enddo end do

endif end if

endfunction end function

endmodule end module

selecttype select type
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 Use a character space around mathematical operators and use brackets to 
show precedence - this can also aid compiler optimization:

alpha = vector(i) + ( beta * gamma )

 Always use character spaces after commas:
do j = 1, Nj

do i = 1, Ni

matA(i, j) = matA(i, j) + matB(i, j)

end do

end do

 Remember that Fortran is column-major, i.e. a(i, j), a(i+1, j), 
a(i+2, j) are contiguous;

Coding Style Suggestions (5)
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 Since Fortran is column-major, ensure the contiguous dimension is 
passed to procedures:
call array_calculation( A(:, :, k), alpha )

 This will work, but will be slow:
call array_calculation( A(i, :, :), alpha ) 

 Capitalise names of constants:
integer, parameter :: MAX_CELLS = 1000

Coding Style Suggestions (6)
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 Use comments to describe code that is not obvious;

 Indent comments with block indenting;

 Use comments on the line before the code:
! solve the shock tube problem with UL and UR

call Riemann( UL, UR, max_iter, rtol, dtol )

 Always comment the beginning of the file with: 
a) purpose of code. Include LaTeX code of equation; 

b) author and email address; 

c) date; 

d) application name; 

e) any licensing details. 

Using Comments
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 Use function, subroutine and variables names that are meaningful to 
your scientific discipline;

 The wider the scope a variable has, the more meaningful it should be;

 When using Greek mathematical symbols, use the full name, e.g. use 
alpha instead of a. Good names are self-describing;

 For functions and subroutines, use verbs that describe the operation:
Get_iterations( iter )

Set_tolerance( tol )

Solve_system( A, b, x )

Naming Conventions (1)
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 Avoid generic names like tmp or val even in functions/subroutines that 
have a scope outside more than one block;

 Loops variables such as i, j, k, l, m, n are fine to use as they are 
routinely used to describe mathematical algorithms;

 Reflect the variables as much as possible to the equations being solved; 
so for p = ρRT:

p = rho * R * T

Naming Conventions (2)
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 In functions and subroutines use the intent keyword when defining 
dummy arguments;

 If using subroutines from third-party libraries, capitalise the name, e.g. 
MPI_INIT( ierr )

Naming Conventions (3)



32

 Fortran does not short circuit IF statements:
if ( size( vec ) == 10 .and. vec(10) > eps ) then

! [ ... ]

end if

 The above could result in a segmentation fault caused by array out of bounds 
access. Instead, use:
if ( size( vec ) == 10 ) then

if ( vec(10) > eps ) then

! [ ... ]

end if

end if

Short Circuiting IF Statements
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 Fortran 90 arrays can be defined using:
real, dimension(1:10) :: x, y, z

 Scalar operations can be applied to multi-dimensional data:
x(1:10) = y(1:10) + z(1:10)

 This can be parallelised using OpenMP:
!$omp parallel workshare shared(x,y,z)

x(:) = y(:) + z(:)

!$omp end parallel workshare

 Use lbound( ) and ubound( ) intrinsic functions to get lower and 
upper bound of multi-dimensional arrays;

Fortran 90 Arrays (1)
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 When referring to arrays, use the brackets to indicate the referencing of 
an array, e.g.
result(:) = vec1(:) + vec2(:) 

call Transpose( matrix(:, :) )

 Array operations are usually vectorised by your compiler. Check Intel 
Fortran compiler vectorisation report using the flags: 
-qopt-report-phase=vec,loop -qopt-report-file=stdout

 You can also create HTML reports for continuous integration systems:
-qopt-report-annotate=html 

Fortran 90 Arrays (2)
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 Using do loops for array assignments can create bugs;

 Spot the bug below:

real, dimension(3) :: eng, aero

do i = 1, 3 ! 1 = port, 2 = centre, 3 = starboard

aero = eng(i)

end do

! simplified version. always use brackets to show array

! operations

aero(:) = eng(:)

 Array operations are more likely to vectorise than their loop equivalents;

Fortran 90 Arrays (3)
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 You can also use the array notation in the GNU debugger:
$ gdb vec_test.exe

(gdb) break 1

Breakpoint 1, vec_test () at vec_test.f90:7

7 a(:) = 1.0

(gdb) print a(1:3)

$1 = (1, 1, 1)

(gdb) print a(:)

$2 = (1, 1, 1, 1, 1, 1, 1, 1)

(gdb)

Fortran 90 Arrays (4)
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 Array operations can also be applied to elements that satisfy a 
condition:
where ( uu(:) > 0 ) u(:) = v(:) / uu(:)

where ( val(:) > 0 ) 

res(:) = log( val(:) )

elsewhere

res(:) = abs( val(:) )

end where

Fortran 90 Array Masking (1)
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 The following intrinsic functions also take a mask argument:
all( ), any( ), count( ) maxval( ), minval( ), sum( ), 

product( ), maxloc( ) and minloc( ) 

 For example:
sval = sum( val(:), mask = val(:) > 1.0 )

 Masked array operations can still be vectorised by using the Intel 
Fortran compiler flag -vec-thresholdn where n is between 0 and 100;

Fortran 90 Array Masking (2)
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 If 0, loop gets vectorised always and if 100, compiler heuristics will 
determine level of vectorisation; 

 Use the -align array64byte flag to align double precision arrays on 
vector boundaries;

 Array operations are one of the strengths of the Fortran language which 
modern scripting languages have.

Fortran 90 Array Masking (3)
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 The intrinsic function pack collates array elements:
vec(:) = [ 1, 0, 0, 5, 0 ]

pack( vec(:), vec(:) /= 0 ) != [ 1, 5 ]

 The intrinsic function transpose flips a two-dimensional array:
mat(:, :) = reshape( [ 1, 2, 3, 4 ], shape( mat ) ) 

print *, mat, transpose( mat ) ! prints 1, 2, 3, 4 and 

1, 3, 2, 4

More Array Operations
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do iter = 1, num_iterations

do j = 2, Nj - 1

do i = 2, Ni - 1

A_new(i, j) = outside(i, j) * A(i, j) + inside(i, j) * &  

0.25_DP * (A(i + 1, j) + A(i - 1, j) + &

A(i, j + 1) + A(i, j - 1))       

end do

end do

A(:, :) = A_new(:, :)

end do

Famous Gauss-Seidel Method
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do iter = 1, num_iterations

A_new(:, :) = outside(:, :) * A(:, :) + inside(:, :) * 0.25_DP * &

( cshift(A(:, :), dim = 1, shift = 1 )  + &

cshift(A(:, :), dim = 1, shift = -1 ) + &

cshift(A(:, :), dim = 2, shift = 1 )  + &

cshift(A(:, :), dim = 2, shift = -1 ))

A(:, :) = A_new(:, :)

if ( all( abs( A_new(:, :) - A(:, :)) < epsilon )) exit 

end do 

Array Version of Gauss-Seidel Method
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 When defining derived types, use the t suffix: 
type point_t

real :: x, y, z

end type point_t

type(point_t) :: p1, p2, p3

 For assignment, you can use two methods:
p1 = point_t( 1.0, 1.0, 2.0 ) ! or

p1%x = 1.0

p1%y = 1.0

p1%z = 2.0

Derived Data Type Names (1)
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 For pointers, use the p suffix:
type(point_t), pointer :: centre_p

centre_p => p1

 Can have a type within a type:
type square_t

type(point_t) :: p1

type(point_t) :: p2

end type square_t

type(square_t) :: s1, s2

s1%p1%x = 1.0

Derived Data Type Names (2)



45

type, extends(point_t) :: point4_t

real :: t

end type point4_t

type(point4_t) :: p1

! x = 1.0, y = 2.0, z = 3.0, t = 4.0

p1 = point4_t( 1.0, 2.0, 3.0, 4.0 ) 

Extensible Data Types
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type matrix( k, Ni, Nj )

integer, kind :: k = REAL32 ! default precision

integer, len :: Ni, Nj

real(kind=k), dimension(Ni,Nj) :: matrix

end type matrix

! double precision

type(matrix(k=REAL64,Ni=10,Nj=10)) :: A

type(matrix(Ni=10,Nj=10)) :: B  ! single precision

A%matrix(:, :) = 1.0_REAL64

Parameterised Data Types
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 Derived data types can also written to a file in a single statement:
p1 = point_t( 1.0, 2.0, 3.0 )

p2 = point_t( 2.0, 3.0, 4.0 )

print *, 'Free format output ', p1

print '(A,3F10.2)', 'Formatted output', p2

 Output is:
Free format output    1.0000000   2.0000000   3.0000000

Formatted       2.00      3.00      4.00

Derived Data Type I/O
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type point_t    

real :: x, y, z  

end type point_t  

type(point_t), dimension(1:100) :: points

do i = 1, 100

points(i)%x = 1.0; points(i)%y = 1.0

points(i)%z = 1.0

end do

 The above code will not be vectorised.

Array of Derived Data Types
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type point_t    

real, dimension(1:100) :: x, y, z  

end type point_t  

type(point_t) :: points    

points%x(:) = 1.0  

points%y(:) = 1.0  

points%z(:) = 1.0

 The above code will be vectorised.

Derived Data Types With Arrays
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 Always use the intent keyword to precisely define the usage of the 
dummy arguments in functions and subroutines;

 When an argument needs to be read only by a procedure:
subroutine Solve( tol )

real, intent(in) :: tol

end subroutine Solve

 When an argument needs to be written only by a procedure:
real, intent(out) :: tol

Function and Subroutine Arguments (1)
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 For an argument that needs to be read and written by a subroutine or 
function:
real, intent(inout) :: tol

 Note that Fortran arguments are by reference. They are not copied so 
subroutine or function invocations are quicker and use less stack 
memory;

 If arguments are misused, this will be flagged during compilation which 
will help you write correct code;

 Recommendation is to list the intent attribute last.

Function and Subroutine Arguments (2)
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 Recommendation is to list all dummy arguments first followed by local 
variables;

 For pointer arguments, scoping is only relevant to association:
subroutine sub1( x_p, x_t )

real, pointer, intent(in) :: x_p

real, intent(in) :: x_t

x_p = x_t ! valid

x_p => x_t ! invalid

end subroutine sub1

Function and Subroutine Arguments (3)
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type(point_t) :: p1

p1%x = 1.0; p1%y = 2.0

call init( p1 )

! p1%y could be undefined here

subroutine init( p1 )

type(point_t), intent(out) :: p1

p1%x = 2.0 ! p1%y is not being assigned

end subroutine init

Intent of Derived Data Type (1)



54

 Better to use intent(inout) instead of intent(out) as shown below:
subroutine init( p1 )

type(point_t), intent(inout) :: p1

p1%x = 2.0

end subroutine init

Intent of Derived Data Type (2)
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 Fortran 2003 allows the retrieval of command line arguments passed to 
the code:
character(len=60) :: arg

integer :: i, len, ierr

do i = 1, command_argument_count( )

call get_command_argument( i, value = arg, length = &          

len, status = ierr )

write (*,*) i, len, ierr, trim( arg )

end do

Command Line Arguments
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 Go to statements are sometimes useful but they are discouraged because 
they are generally difficult to manage;

 Instead use cycle or exit statements in loops:
OUTER: do i = 1, Ni

INNER: do j = 1, Nj

! cycle will move onto the next j iteration

if ( condition1 ) cycle INNER 

end do INNER

! exit will break out of the OUTER loop

if ( condition2 ) exit OUTER 

end do OUTER

Avoiding Go To Statements
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 Fortran block statements can also be used to avoid go to statements;
subroutine calc( ) 

MAIN1: block

if ( error_condition ) exit MAIN1

return ! return if everything is fine

end block MAIN1

! add exception handling code here

end subroutine calc

Fortran Block Statements
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 Fortran 90 introduced dynamic memory management which allows 
memory to be allocated at run time;

 Use dynamic memory allocation if your problem size will vary and 
specify the start index:
real, dimension(:), allocatable :: vector

character(len=120) :: msg

allocate( vector(1:N), stat = ierr, errmsg = msg )

 Always give the first index. The errmsg argument is Fortran 2008;

 The integer ierr is zero if allocation is successful. If this is non-zero, 
then check the error message variable msg;

Memory Management (1)
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 Then deallocate when not required:
deallocate( vector, stat = ierr )

 Remember to deallocate if using pointers – if not, it could cause memory 
leaks1;

 Instead of using pointers, use the allocate keyword which makes 
variables easier to manage for both the developer and the compiler. The 
Fortran language will automatically deallocate when variable is out of 
scope;

Memory Management (2)

1Use NAG compiler, Valgrind or RougeWave MemoryScape to debug memory problems



60

 Can use the allocated( array ) intrinsic function to check 
whether memory has been allocated;

 You cannot allocate twice (without deallocating) which means you will 
not suffer from memory leaks!

Memory Management (3)
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 Try to use unit stride when referencing memory, e.g. do not use:
mesh(1:N:4)

 Instead refer to contiguous memory:
mesh(1:N) 

 The above unit stride array allows the compiler to vectorise operations 
on arrays;

 In addition, it allows better cache usage, therefore optimising your 
memory access and computation;

 Passing unit stride arrays to subroutines and functions are quicker and 
use less memory.

Memory Optimizations
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subroutine init( vec, arg )

real, intent(out), dimension(100) :: vec ! contiguous

real, intent(in) :: arg

vec(:) = arg

end subroutine init

Array Arguments - Explicit Shape Arrays
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subroutine init( vec, n, arg )

integer, intent(in) :: n

real, intent(out), dimension(n) :: vec ! contiguous

real, intent(in) :: arg

vec(:) = arg

end subroutine init

Array Arguments - Adjustable Arrays
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subroutine init( vec, n, arg )

integer, intent(in) :: n

real, intent(out), dimension(*) :: vec  ! contiguous

real, intent(in) :: arg

vec(1:n) = arg

! vec(:) is illegal. dimension is lost

end subroutine init

Array Arguments - Assumed Size Arrays
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subroutine init( vec, n, arg )

integer, intent(in) :: n

real, dimension(:), allocatable :: vec 

! not contiguous

real, intent(in) :: arg

allocate( vec(1:n) ) ! contiguous

vec(1:n) = arg

end subroutine init

Array Arguments - Allocatable Arrays
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subroutine init( vec, arg )

real, dimension(:), intent(out) :: vec 

! not contiguous

real, intent(in) :: arg

vec(:) = arg

end subroutine init

Array Arguments - Assumed Shaped Arrays
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subroutine init( vec, arg )

real, dimension(:), pointer, intent(in) :: vec 

! not contiguous

real, intent(in) :: arg

if ( associated( vec )) vec(:) = arg

end subroutine init

Array Arguments - Pointer Argument (1)



68

real, dimension(1:100), target :: vec

real, dimension(:), contiguous, pointer :: vec_p

vec_p => vec; call init( vec_p, 1.0 )

subroutine init( vec, arg )

real, dimension(:), pointer, contiguous, intent(in) :: vec 

real, intent(in) :: arg

if ( associated( vec )) vec(:) = arg

end subroutine init

Array Arguments - Pointer Argument (2)
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 Assumed shaped arrays allow Fortran subroutines and functions to 
receive multi-dimensional arrays without their bounds;

 Use lbound() and ubound() to obtain array bounds and use the 
contiguous attribute:
subroutine sub1( vec )

integer :: i

real, dimension(:), contiguous, intent(out) :: vec

do i = lbound( vec, 1 ), ubound( vec, 1 )

! operate on vec(i)

end do

end subroutine sub1

Assumed Shaped Arrays (1)
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 The first dimension is defaulted to 1 and if it is another number, it must be 
specified, e.g.:

real, dimension(0:), contiguous, intent(out) :: vec

 The contiguous keyword (Fortran 2008) tells the compiler that the array has 
unit stride, thus elements are contiguous in memory which helps the compiler 
to vectorise your code. In addition, it avoids expensive copying;

 Assumed shaped arrays make subroutine and function calls cleaner and aid 
better software engineering;

 Assumed shaped arrays (Fortran 90) is a major improvement and shows the 
strength of the Fortran language and its management of arrays.

Assumed Shaped Arrays (2)
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 The automatic array feature allows creation of arrays in subroutines:
subroutine sub1( vec )

real, dimension(:), intent(in) :: vec

real, dimension(size( vec )) :: temp

end subroutine sub1

 When the subroutine sub1 completes the temp array is discarded along 
with all other local variables as they are allocated on the stack;

 If allocating large amounts of memory locally in a function or 
subroutine, increase the stack size in the Linux shell:
ulimit -s unlimited

Automatic Arrays
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 Fortran 95 introduced pointers. Fortran 77 emulated pointers using Cray 
pointers. A pointer is an object that points to another variable which is 
stored in another memory location;

 Pointers can have the following states: undefined, not associated or 
associated;

 Always assign it to null, so it is in a known state:
type(molecule_t), pointer :: m1 

m1 => null( )

m1 => molecules(n)

nullify( m1 )

Fortran Pointers (1)
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 If a pointer will be pointing to a variable, make sure it has the target
attribute:
real, dimension(N), target :: vec

real, dimension(:), pointer :: vec_p

vec_p => vec

 This helps the compiler optimize operations on variables that have the 
target attribute;

 A dangling pointer points to a memory reference which has been deallocated. 
This causes undefined behaviour! The NAG Fortran Compiler can detect 
dangling pointers;

 Avoid declaring arrays as pointers as compilers have difficulties vectorising  
and optimizing operations on them.

Fortran Pointers (2)
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 Use the associated intrinsic function to check if pointers are 
associated with a target:

if ( associated( x_p )) then

! [ ... ]

end if

if ( associated( x_p, x )) then ! if x_p points to x

! [ ... ]

end if

Fortran Pointers (3)



75

 Question: what will happen in this case?
integer, pointer :: p1

if ( associated( p1 )) then

print *, ‘p1 is associated’

else

print *, ‘p1 is not associated’

end if

Fortran Pointers (4)
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 Pointer p1 is undefined, thus the code is invalid Fortran. Pointer should 
be set to null() so it is in a defined state;

 Compilers will arbitrarily set p1 to associated or not associated;

 NAG compiler can catch this bug with the -C=pointer flag during 
runtime:

Runtime Error: pointy_test.f90, line 7: Undefined pointer 

P1 used as argument to intrinsic function ASSOCIATED

Program terminated by fatal error

Fortran Pointers (5)



77

 Fortran 2003 now provides allocatable length strings
character(len=:), allocatable :: str

str = ‘hello’

str = ‘hello world’ ! string length increases

 However, arrays of strings are different:
character(len=:), allocatable :: array(:)

allocate( character(len=100) :: array(20) )

 To adjust, you must allocate and deallocate.

Allocatable Length Strings
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 The pre-processor is a text processing tool which is usually integrated 
into the compiler;

 It is a separate stage and occurs prior to compilation:
#ifdef DEBUG

print *, ‘count is’, counter

#endif

 To assign the macro DEBUG, compile with:
$ nagfor -c -DDEBUG code.F90

Fortran Pre-Processing (1)
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 Preprocessing is sometimes used to compile code for different operating 
systems, e.g. Linux and Windows;

 It is also used to build debug versions of the code which includes 
printing the status of variables.

Fortran Pre-Processing (1)
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 Modern Fortran codes should either use the f90 or F90 file extensions, 
e.g. solver_mod.F90 and this is for all modern Fortran standards;

 Files ending with F90 are pre-processed before being compiled;

 Files ending with f90 are not pre-processed. It is simply compiled;

 Pre-processor takes a code, processes it, and outputs another code 
which is then compiled;

Fortran File Extensions (1)
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 The .f90 file extension usually assumes the latest Fortran standard, 
namely 2008. This can be adjusted with compiler flags;

 Other file extensions are also accepted: .f95, .f03 and .f08. The pre-
processed versions are .F95, .F03 and .F08, respectively. 

Fortran File Extensions (2)



82

 Fypp [1] is a preprocessor and has meta-programming features designed 
for Fortran;

 Meta-programming involves using the Fortran code with Fypp 
constructs as input and producing actual Fortran code;

 It has much more powerful features than standard preprocessors;

 Fypp is written in Python and Fypp constructs can include Python 
expressions;

 Supports iterations, multiline macros and continuation lines;

 Note that preprocessing is not part of the language standard.

Fortran Preprocessing using Fypp

[1] https://github.com/aradi/fypp
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 Line form:
#:if DEBUG > 0

print *, ‘debugging information. alpha = ’, alpha

#:endif

 Inline form:
#{if DEBUG > 0}# print *, ‘opt = ’, opt #{endif}#

Fypp Syntax - Control Directives
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 Line form - can add Python expressions:
$:time.strftime(‘%Y-%m-%d’)

 Inline form:
print *, “Compile date: ${time.strftime(‘%Y-%m-%d’)}$”

character(len=*), parameter :: user = &   

"${os.environ['USER']}$"

Fypp Syntax - Evaluation Directives
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 Line form:
@:mymacro( a < b )

 Inline form:
print *, “test result = ”, @{mymacro( a < b)}@

Fypp Syntax - Direct Call Directives
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#:if DEBUG > 0

print *, “debug information. alpha = ”, alpha

#:endif

#:if defined (‘WITH_MPI’) 

use mpi_f08

#:elif defined (‘WITH_OPENMP’)

use omp_lib

#:else

use serial

#:end if

Fypp Examples (1)
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interface myfunc

#:for dtype in ['real', 'dreal', 'complex', 'dcomplex']

module procedure myfunc_${dtype}$

#:endfor

end interface myfunc

logical, parameter :: hasMpi =#{if defined('MPI')}# .true. 

#{else}# .false. #{endif}#

character(len=*), parameter :: comp_date = &

"${time.strftime('%Y-%m-%d')}$"

Fypp Examples (2)
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 Line continuation:
#:if var1 > var2 &

& or var2 > var4

print *, "Doing something here"

#:endif

 Creating variables:
#:set LOGLEVEL = 2

print *, "LOGLEVEL: ${LOGLEVEL}$"

Fypp Examples (3)
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#:def assertTrue(cond)

#:if DEBUG > 0

if ( .not. ${cond}$ ) then

print *, "Assert failed in file ${_FILE_}$, line 

${_LINE_}$"

error stop

end if

#:endif

#:enddef assertTrue

! Invoked via direct call

@:assertTrue( size(myArray) > 0 )

Defining Macros in Fypp
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 To install Fypp, use:
$ pip install fypp

 To invoke Fypp, use:
$ fypp -m os -m time -DDEBUG=2 code.F90 > code.f90

 The -m flags are required for additional Python modules;

 The -D flag is used to set macros, e.g. DEBUG macro is set to 2;

 The above command can be used in a Makefile.

Invoking Fypp
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 For single and double precision data types, use:
use, intrinsic :: iso_fortran_env

integer, parameter :: SP = REAL32

integer, parameter :: DP = REAL64

integer, parameter :: QP = REAL128

real(kind=DP) :: alpha, gamma

alpha = 2.33_DP ! must postfix with _DP

gamma = 1.45E-10_DP ! otherwise value will be _SP

 Likewise for INT8, INT16, INT32 and INT64

Numerical Kind Types (1)
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 Printing alpha = 1.1 and alpha = 1.1_REAL64 prints:

01 1.1000000238418579 1.1000000000000001

 Printing beta = alpha**2 with single and double precision gives:

02 1.21000003814697266E+00 1.21000000000000019E+00

 The relative error between single and double precision is:

03 3.37583827165774653E-08

Numerical Kind Types (2)
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 Unfortunately, GNU Fortran implements REAL128 as 80 bits (the old Intel 
extended precision);

 To fully ensure portability, use the following kind constants:
integer, parameter :: SP = &

selected_real_kind( p = 6, r = 37 )

integer, parameter :: DP = &

selected_real_kind( p = 15, r = 307 )

integer, parameter :: QP = &

selected_real_kind( p = 33, r = 4931 )

 The above constants forces the required precision (p decimal places) and 
range (r where -10r < value < 10r). The above use the IEEE-754 standard.

Numerical Kind Types (3)
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 The following automatic type conversions occur in Fortran:

integer * real -> real left hand side must be real

integer / real -> real

integer + or - real -> real

real * double -> double left hand side must be double

integer / integer -> integer but truncation occurs! 

integer**(-n)will always be zero for n > 0

Mixed Mode Arithmetic
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 The following code segments have bugs:
real :: a, geom, v, g_p

a = geom * v ** (2/3) ! calculate surface area

g_p = 6.70711E-52

real(kind=REAL64) :: theta 

real :: x 

x = 100.0_REAL64 * cos( theta ) ! mixing of precisions

Precision Bugs (1)
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real(kind=REAL64) :: d 

real :: x, y 

d = sqrt( x**2 + y**2 )

 Compilers are generally not good at spotting precision bugs;

 To avoid precision bugs, you can use the unify precision feature of the 
NAG Fortran Compiler.  

Precision Bugs (2)
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 Use the following intrinsic functions when converting between types:
int( arg_real, [kind] )

real( arg_int, [kind] )

 Use the generic functions for all types:

Type Conversions

Generic Name 

(modern)

Specific Name (old) Argument Type

sqrt csqrt complex

sqrt dsqrt double precision

sqrt sqrt real
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 Modules allow type checking for function/subroutine arguments at 
compile time so errors are quickly identified;

 Fortran module files are pre-compiled header files which means codes 
compile faster than comparable C/C++ codes;

 However, they must be re-create for different compilers and sometimes 
for the same compiler but different versions;

Fortran Module (1)
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module module_mod

use anotherModule_mod

implicit none

private :: ! list private symbols

public :: ! list public symbols

! define variables, constants and types

real, protected :: counter = 0

contains

! define functions and subroutines here   

end module module_mod

Fortran Modules (2)
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 When naming internal modules, use the mod suffix so the name does 
not clash with another symbol:

module matrix_mod

! [ … ]

end module matrix_mod

 Put the above module in a file called matrix_mod.F90 so it is clear 
that it contains the named module only. Only put one module per file;

 Always lower case the filename containing a module. This helps 
pattern matching in GNU makefile.

Fortran Module Names
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 To use a module in your code:
use module_mod

 To use a subset of the procedures from a module:
use module_mod, only : Solve_system, Init_system

 To rename an entity in a module:
use module_mod, Solve_system => Solve_linear_system

 The rename feature might be required to avoid a name clash;

 You can use both:
use module_mod, only : Solve_system => Solve_linear_system

Using Modules
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module vector_mod

interface my_sum

module procedure real_sum

module procedure int_sum

end interface

contains

function real_sum( vec )

real, intent(in) :: vec(:)

end function real_sum

function int_sum( vec )

integer, intent(in) :: vec(:)

end function int_sum

end module vector_mod

Basic Polymorphism in Modules

program main_prog

use vector_mod

implicit none

integer :: veci = [ 1, 2, 3 ]

real :: vecr = [ 1.0, 2.0, 3.0 ]

print *, my_sum( vecr )

print *, my_sum( veci )

end program main_prog
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 Fortran 2008 introduced the submodule feature which allows the 
separation of a) function, subroutine and variable declarations (Fortran 
interfaces) and b) function and subroutine implementations;

 Submodules subsequently speed up the build process in addition 
minimising the number of files that are affected during a change;

 A module is created which includes variable declarations and 
function/subroutine interfaces. Interfaces are declarations of the 
functions/subroutines;

 A submodule contains the implementations of functions and 
subroutines;

Fortran Submodules (1)
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 Current situation: file1.f90, file2.f90 and file3.f90 all use large_mod
and call sub1( ), sub2( ) and sub3( ), respectively;

 A change in sub3 (in large_mod.f90) will trigger the rebuild of all files 
(file1.f90, file2.f90 and file3.f90) which is obviously unnecessary;

Fortran Submodules (2)

file1.f90

call sub1

file2.f90

call sub2

file3.f90

call sub3

large_mod.f90

sub1, sub2, sub3
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 In addition, separating into two files reduces the risk of bugs being 
introduced - further increasing software abstraction;

 To use the submodule feature, function and subroutine interfaces must 
not change. Interfaces very rarely change - it is the implementation that 
changes more often;

 Fortran submodules are supported by the Intel compiler version 16.0.1 
and GNU Fortran 6.0;

Fortran Submodules (3)
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 Firstly, define the module (in file large_mod.f90):
module large_mod

public :: sub1, sub2, sub3

interface

module subroutine sub1( a )

real, intent(inout) :: a

end subroutine sub1

! same for sub2( ) and sub3( )

end interface

end large_mod

 The above module is comparable to a C/C++ header file;

Fortran Submodules (4)
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 Secondly, define the submodule (in file large_smod.f90) with sub1( ):
submodule (large_mod) large_smod

contains

module subroutine sub1( a ) 

real, intent(inout) :: a

a = a**2

end subroutine sub1 ! define sub2( ) and sub3( )

end submodule large_smod

 Compiling the above submodule creates a file large_mod@large_smod.smod
(or module@submodule.smod)

Fortran Submodules (5)
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Fortran Submodules (6)

file1.f90 file2.f90

large_mod.f90

interface sub1, 

sub2, sub3

large_smod.f90

sub1, sub2, sub3 

changed

large_smod.o

sub1, sub2, sub3

file1.o file2.o

prog.exe

(2) re-linking (3) create executable

file3.o

file3.f90

(1) re-compile
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 Always use DO loops with fixed bounds (trip counts) without cycle or 
exit statements if possible:
do i = 1, N

! some code

end do

 There is more chance the compiler can optimize (e.g. vectorise) the 
above loop. Such loops can also be parallelised using OpenMP;

 Use the loop counter as an index for arrays (i in the above example);

 Avoid branching in loops as this prevents compiler optimizations;

Fortran Loops (1)
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Fortran Loops (2)

 While loop structure:

do while ( logical-expression )

! [ .... ]

end do

 Avoid do while loops. If you are, parallelise the block of code within 
the loop;

 While loops are sometimes required, e.g. for iterative algorithms that 
continue until a solution (within error bounds) is achieved;
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 Fortran forall has been obsoleted in the 2018 standard due to 
performance issues (implicit barrier after each statement);

 The do concurrent construct has replaced forall loops:
do concurrent ( i = 1:100 )    

vec(i) = vec1(i) + vec2(i)  

end do

 All iterations are completely independent. The compiler is likely to 
vectorise the above;

 The exit, stop and cycle statements are not permitted and no 
branching outside of it is allowed;

Do Concurrent Loops (1)
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 Can also include masking:
do concurrent ( i = 1:n, j = 1:m, &

i /= j .and. A(i, j) > 1.0 )

C(i, j) = log( A(i, j) )

end do

 Fortran 2018:
do concurrent ( integer(INT64) :: i = 1:n, j = 1:m, &

i /= j .and. A(i, j) > 1.0 )

C(i, j) = log( A(i, j) )

end do

Do Concurrent Loops (2)
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 Fortran 2018 clauses scope the variables in the loop with the aim of 
improving performance, i.e. not serialising the loop:

real :: a(10), x

do concurrent ( i = 1:10 ) local (x) shared(a, b)

if ( a(i) > 0.0 ) then

x = sqrt( a(i) ) 

a(i) = a(i) - x

else

x = a(i)**2

a(i) = a(i) - x

end if

end do

Do Concurrent Loops (3)
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 Operating on floating point data can raise exceptions that can indicate 
an abnormal operation, as defined in the IEEE-754 standard;

 The exception that be raised as defined by IEEE-754 are:

IEEE Floating Point Arithmetic

IEEE Exception (Flag) Description Default Behaviour

IEEE_DIVIDE_BY_ZERO Division by zero Signed ∞

IEEE_INEXACT Number is not exactly represented Rounded to nearest, 

overflow or underflow

IEEE_INVALID Invalid operation such as √-1,  operation 

involving ∞, NaN operand

Quiet NaN (not a number)

IEEE_OVERFLOW Rounded result larger in magnitude than 

largest representable format

+∞ or -∞

IEEE_UNDERFLOW Rounded result smaller than smallest 

representable format

Subnormal or flushed to 

zero
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 Floating point exceptions are usually handled by the compiler, but they 
are not standard;

 The Fortran 2003 provides an API to manage exceptions;

 To determine what exceptions are supported:
use ieee_arithmetic

ieee_support_datatype( 1.0_REAL32 ) ! for single

ieee_support_datatype( 1.0_REAL64 ) ! for double

ieee_support_datatype( 1.0_REAL128) ! for quad

 The above will return Boolean .true. or .false.

IEEE Compiler and System Support
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 To determine what exceptions are support for your data type and 
compiler/system (returns .true. or .false.):
ieee_support_flag( ieee_all(i), 1.0_PREC ) 

where 

ieee_all(1) = ‘IEEE_DEVIDE_BY_ZERO’

ieee_all(2) = ‘IEEE_INEXACT’

ieee_all(3) = ‘IEEE_INVALID’

ieee_all(4) = ‘IEEE_OVERFLOW’

ieee_all(5) = ‘IEEE_UNDERFLOW’

PREC = precision which either REAL32, REAL64 or REAL128.

IEEE Exception Support
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 Exception handling is done via subroutines and is called immediately 
after an operation:
x = … ! floating point operation

call ieee_get_flag( ieee_flag, exception_occurred ) 

where

ieee_flag = IEEE_OVERFLOW, IEEE_UNDERFLOW, IEEE_INEXACT, 

IEEE_DEVIDE_BY_ZERO, IEEE_INVALID

exception_occurred = returns logical .true. or .false. depending on 
whether the exception occurred

IEEE Exceptions (1)
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 To determine if floating point variable is a NaN (not a number), use:
ieee_is_nan( x )

which returns logical .true. or .false.

 To determine if a floating point variable is finite or infinite, use:
ieee_is_finite( x )

which returns logical .true. or .false.

 For rounding modes, use:
call ieee_get_rounding_mode( value )

call ieee_set_rounding_mode( value )

where value is type(ieee_round_type) which can be one of 
ieee_nearest, ieee_to_zero, ieee_up, ieee_down

IEEE Exceptions (2)
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 Testing for IEEE exceptions after every numeric computation will 
completely slow down calculations;

 Check for IEEE exceptions after important calculations;

 Prefix the check with a macro which is enabled when testing:
x = … ! floating point operation

#ifdef DEBUG

call ieee_get_flag( IEEE_OVERFLOW, exception_occurred ) 

#end if

 The -ieee=stop NAG compiler flag will terminate execution of the code 
on floating point overflow, division by zero or invalid operand.

IEEE Exceptions Testing
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 It provides a high level description of the behaviour of the 
implementation, abstracting the implementation into a set of 
subroutines, encapsulating data and functionality;

 Provides the building blocks of an application;

 They have a very long life, so design your API carefully. A change in the 
API will require a change in codes that use the API;

 They are developed independently of application code and can be used 
by multiple applications of different languages;

 The API should be easy to use and difficult to misuse. Always use the 
Fortran intent keyword.

Good API Characteristics
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 If a function/subroutine has a long list of arguments, encapsulate them 
in a user defined data type:
type square_t

real :: x1, y1, x2, y2

end type square_t

subroutine area( sq1 )

type(square_t) :: sq1

end subroutine area

 Use the contiguous (unit stride) attribute for assumed shaped arrays 
which will allow the compiler to optimize code. 

API Design
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 Use optional arguments to prevent code duplication:
subroutine Solve_system( A, b, x, rtol, max_iter )

real, dimension(:,:), intent(in) :: A

real, dimension(:), intent(inout) :: x, 

real, dimension(:), intent(in) :: b

real, intent(in), optional :: rtol, max_iter 

if ( present( rtol )) then

end if

end subroutine Solve_system

call Solve_system( A, b, x, rtol = e, max_iter = n )

Optional Arguments
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subroutine log_entry( message, header )

character(len=*), intent(in) :: message

logical, optional, intent(in) :: header

! incorrect. can you see why?

if ( present( header ) .and. header ) then

print *, ‘This is the header’

end if

print *, message

end subroutine log_entry

Using Optional Arguments Carefully (1)
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subroutine log_entry( message, header )

character(len=*), intent(in) :: message

logical, optional, intent(in) :: header

! correct way of doing it

if ( present( header )) then

if ( header ) then

print *, ‘This is the header’

end if

end if

print *, message

end subroutine log_entry

Using Optional Arguments Carefully (2)
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 You can the result clause when defining functions:
function delta( a, b ) result ( d )

real, intent(in) :: a, b

real :: d ! intent not required. 

! it is defaulted to intent(out)

d = abs( a – b )

end function delta

Fortran Functions
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 It is recommended to list dummy arguments first followed by local 
variables, e.g.

subroutine swap( a, b )

integer, intent(inout) :: a, b ! dummy arguments first

integer :: temp                ! local variables after

temp = a; a = b; b = temp

end subroutine swap

Procedure Variables
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 Subroutines and functions can change arguments through the intent feature 
but this can be unsafe for multi-threaded code;

 When subroutines change arguments, this is known to create side effects
which inhibit parallelisation and/or optimization;

 Declare your function as pure which tells the compiler that the function does 
not have any side effects:
pure function delta( a, b ) result( d )

real, intent(in) :: a, b

real :: d

d = a**2 + b

end function 

Pure Subroutines and Functions
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 Elemental subroutines with scalar arguments are applied to arrays and must 
have the same properties as pure subroutines, i.e. no side effects;

 This allows compilers to vectorise operations on arrays:
elemental function sqr( x, s ) result( y )

!$omp declare simd(sqr) uniform(s) linear(ref(x))

real, intent(in) :: x, s    

real :: y

y = s*x**2

end function sqr

print *, sqr( [ 1.0, 2.0, 3.0 ], 2.0 ) ! print 2.0, 8.0, 18.0 

 Use the -qopenmp-simd Intel compiler flag to vectorise the above code.

Elemental Subroutines and Functions
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 When developing libraries, have a debug option that prints additional 
information for debugging:
if ( debug ) then
print *, 'value of solver option is = ', solver_option

end if

 This will not slow your code down as this will be removed using the compiler's 
dead code elimination optimization (debug = .false.);

 Do not let your library exit the program - return any errors using an integer 
error flag; 

 Zero for success and non-zero for failure. Non-zero value will depend on type 
of failure, e.g. 1 for out of memory, 2 for erroneous parameter, 3 for file not 
found, etc.

Debug Mode
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 When developing a library, ensure subroutines, functions and constants 
are all prefixed with the name of the library;

 For example, when creating a library called HAWK:
use HAWK

call HAWK_Init( ierr )

n = HAWK_MAX_OBJECTS

call HAWK_Finalize( ierr )

 This way, you are not “polluting” the namespace;

 Users know where the subroutine and constants are from.

Library Symbol Namespace
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 Would be better not to know about these statements at all;

 Mostly important for legacy (~ 30+ years old) code developers;

 Very few statements/features have been deleted/made obsolete;

 Tabulated for convenience;

 Obsoleted means a standard has been labelled for deletion and there is 
already a modern structure;

 Deleted means a standard has been removed from the language;

 It is likely that some compilers still support deleted features.

Deleted and Obsolescent
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OBS DEL

Real and double precision DO variables 90 95

Branching to an END IF statement from outside its block 90 95

PAUSE statement 90 95

ASSIGN and assigned GO TO statements and assigned FORMAT specifiers 90 95

H edit descriptor 90 95

Arithmetic IF 90 18

Shared DO termination and termination on a statement other than END DO or CONTINUE 90 18

Deleted Features
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do x = 0.1, 0.8, 0.2
...
print *, x
...

end do

Real and double precision DO variables

▪ Deleted ▪ Alternative

do x = 1, 8, 2
...
print *, real(x)/10.0
...

end do

• Use integers
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go to 100
...
if (scalar-logical-expr) then
...

100 end if

Branching to an END IF statement from outside its block

▪ Deleted ▪ Alternative

go to 100
...
if (scalar-logical-expr) then
...

end if
100 continue

• Branch to the statement following the END IF statement or 
insert a CONTINUE statement immediately after the END IF 
statement

• DISCLAIMER:

try to avoid GO TOs
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• Suspends execution

pause [stop-code]

PAUSE statement

▪ Deleted ▪ Alternative

write (*,*) [stop-code]
read (*,*)
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• Hollerith edit descriptor

print "(12Hprinted text)"

H edit descriptor

▪ Deleted ▪ Alternative

print "('printed text')"

• Use characters
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• IF (scalar-numeric-expr) rather than IF (scalar-logical-expr)

if (x) 100, 200, 300
100 continue !x negative

block 100
200 continue !x zero

block 200
300 continue !x positive

block 300

Arithmetic IF

▪ Deleted ▪ Alternative

if (x < 0) then
block 100
block 200
block 300

else if (x > 0) then
block 300

else
block 200
block 300

end if

• Use IF or SELECT CASE construct or IF statement
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do 100 i = 1, n
...
do 100 j = 1, m

...
100 k = k + i + j

Shared DO termination and termination on a statement 
other than END DO or CONTINUE

▪ Deleted ▪ Alternative

do i = 1, n
...
do j = 1, m
...
k = k + i + j

end do
end do

• Use END DO
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DO 100 i = 1, 100

a(i) = REAL( i )

100 b(i) = 2. * c(i)

! or

DO 200 i = 1, 100

a(i) = REAL( i )

b(i) = 2. * c(i)

200 continue

DO Loops

▪ Obsolescent ▪ Alternative

do i = 1, 100

a(i) = real( i )

b(i) = 2.0 * c(i)

end do
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OBS DEL

Alternate return 90+ -

Computed GO TO statement 95+ -

Statement functions 95+ -

DATA statements amongst executable statements 95+ -

Assumed length character functions 95+ -

Fixed form source 95+ -

CHARACTER* form of CHARACTER declaration 95+ -

ENTRY statements 08+ -

Label form of DO statement 18+ -

COMMON and EQUIVALENCE statements and BLOCK DATA program unit 18+ -

Specific names for intrinsic functions 18+ -

FORALL construct and statement 18+ -

Obsolescent Features



141

call sub (x, *100, *200, y)
block A

100 continue
block 100

200 continue
block 200

Alternate return

▪ Obsolescent ▪ Alternative

call sub(x, r, y)
select case (r)
case (1)
block 100
block 200

case (2)
block 200

case default
block A
block 100
block 200

end select

• Use integer return with IF or 

SELECT CASE construct

subroutine sub (a, s, b)
...
s = 2
...

end subroutine sub

subroutine sub (a, *, *, b)
...
return 2
...

end subroutine sub
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go to (100, 200) x
block A

100 continue
block 100

200 continue
block 200

Computed GO TO statement

▪ Obsolescent ▪ Alternative

select case (x)
case (1)
block 100
block 200

case (2)
block 200

case default
block A
block 100
block 200

end select

• Use SELECT CASE (preferable) or IF construct
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real :: axpy, a, x, y
...
axpy (a, x, y) = a*x+y
...
mad = axpy (p, s, t)
...

Statement functions

▪ Obsolescent ▪ Alternative

mad = axpy (p, s, t)
...
contains
real function axpy (a, x, y) result (r)
implicit none
real, intent (in) :: a, x, y
r = a*x+y

end function axpy

• Use internal function
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character*11 :: x

CHARACTER* form of CHARACTER declaration

▪ Obsolescent ▪ Alternative

character([len=]11) :: x
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PROGRAM COMMON_STATEMENT

integer i

real r

COMMON / comm1 / i, r

call sub1

contains

SUBROUTINE sub1

integer i1

real r1

COMMON / comm1 / i1, r1

END SUBROUTINE sub1

END PROGRAM

Common Blocks

▪ Obsolescent ▪ Alternative
program module_statement
use comm1_mod
call sub1

contains
subroutine sub1
use comm1_mod

end subroutine sub1
end program

module comm1_mod
integer :: i
real :: r

end module comm1_mod
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INTEGER SIZE

PARAMETER ( SIZE = 100 )

! or 

DATA SIZE /100/

PARAMETER Statements

▪ Obsolescent ▪ Alternative

integer, parameter :: size = 100
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REAL r1(10), r2(10)

EQUIVALENCE ( r1, r2 )

EQUIVALENCE Statements

▪ Obsolescent ▪ Alternative

real, target :: r1(10)

real, pointer :: r2(:)

r2 => r1
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 Info - informational message, highlighting an aspect of the code in 
which the user may be interested in;

 Warning - the source appears to have an error and worth investigating;

 Questionable - some questionable aspect has been found in the code;

 Extension - some non-standard conforming code has been detected;

 Obsolescent - obsoleted feature has been used in the code. It is 
recommended to replace it with a more modern feature;

 Deleted - a deleted feature has been used. You should definitely replace 
it with a more modern feature;

NAG Fortran Compilation Messages (1)
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 The compiler can be used to detect obsoleted and deleted Fortran 
features and modernisation efforts can be subsequently made;

 Language extensions can also be replaced with standard Fortran for the 
purpose of portability;

 Questionable and warning messages can also be used for error 
detection;

 Diagnostic messages are much more comprehensive than other 
compilers; 

 Runtime checks can also be carried out by the NAG compiler - to be 
presented.

NAG Fortran Compilation Messages (2)
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 The NAG compiler has some refactoring features;
$ nagfor =polish [options] code.f90 -o code.f90_polished

where the options can be one of:

 -alter_comments - enable options to alter comments;

 -array_constructor_brackets=X - specify the form to use for array 
constructor delimiters, where X is one of {Asis,Square,ParenSlash}; 

 -idcase=X and -kwcase=X - set the case to use for identifiers (variables) and 
keywords. X must be {C,L,U};

 -margin=N - set the left margin (initial indent) to N (usually 0); 

NAG Fortran Compiler Polish (1)



151

 -indent=N - indent statements within a construct by N spaces from the 
current indentation level;

 -indent_comment_marker - when indenting comments, the comment 
character should be indented to the indentation level;

 -indent_comments - indent comments;

 -indent_continuation=N - indent continuation lines by an additional 
N spaces;

 -kind_keyword=X - specifies how to handle the KIND= specifier in 
declarations. X must be one of {Asis,Insert,Remove}, e.g. 
real(REAL64) :: alpha becomes real(KIND=REAL64) :: alpha

NAG Fortran Compiler Polish (2)
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 -relational=X - specifies the form to use for relational operators, X 
must be either F77- (use .EQ., .LE., etc.) or F90+ (use ==, <=, 
etc.)

 -dcolon_in_decls=Insert - add double colons after variable 
declarations, e.g. integer i becomes integer :: i

 -character_decl=Keywords - change old-style character declarations 
to new-style, e.g. character*11 :: str to character(len=11) :: 
str

NAG Fortran Compiler Polish (3)
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program new_fortran

implicit none

integer :: i

real :: vec(100), result(100)

do i = 1, 100

vec(i) = 1.0

result(i) = vec(i)**2

end do

end program new_fortran

NAG Fortran Compiler Polish Example (1)

PROGRAM OLD_FORTRAN

IMPLICIT NONE

INTEGER i

REAL VEC(100), RESULT(100)

DO 100 I = 1, 100

VEC(I) = 1.0

RESULT(I) = VEC(I)**2

100 CONTINUE

END PROGRAM OLD_FORTRAN
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 Command used in previous example is:
$ nagfor =polish -margin=0 -indent=2 -kwcase=L -idcase=L \

-dcolon_in_decls=Insert old_fortran.f90 \

-o new_fortran.f90

NAG Fortran Compiler Polish Example (2)
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 Can convert fixed format (FORTRAN 77) to free format modern Fortran;

 Code cannot have any compilation errors;

 Can add keywords to actual arguments in procedure references;

 Compiler command: 
$ nagfor =epolish src.f –o src.f90

 Creates modern Fortran code src.f90 from the legacy FORTRAN 77 
code src.f

Enhanced Polisher
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Enhanced Polisher Example

DOUBLE PRECISION DX(*)

*     .. Local Scalars ..

DOUBLE PRECISION DTEMP

INTEGER I,M,MP1,NINCX

*     .. Intrinsic Functions ..

INTRINSIC DABS,MOD

DASUM = 0.0d0

DTEMP = 0.0d0

IF (N.LE.0 .OR. INCX.LE.0) 

RETURN

IF (INCX.EQ.1) THEN

Fixed form FORTRAN 77 Free form modern Fortran
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 When compiling the file matrix_mod.F90 the compiler creates two 
files;

 The first file is matrix_mod.mod which is the Fortran header module 
file. Notice that the filename is in lowercase and this file does not 
contain any subroutine or function symbols. This header module file is 
required for compilation only;

 The second file is matrix_mod.o which is the Linux object file which 
contains the subroutine and function symbols. This object file is required 
for linking only.

Compiling Fortran Modules
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Building of Codes

code.F90 code.o code.exe

libdep.adep.mod

preprocessed

compiling

object file binary executable

linking

libraryheader module

code.f90

preprocessor
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 Source code is compiled and header modules (*.mod) are included:
$ nagfor -c -I/path/to/depmod code.F90

 The header modules resolve constant symbols, e.g. π or e;

 This will create object file code.o which needs to be linked to static or 
shared libraries:

$ nagfor code.o -L/path/to/libdep -ldep -o code.exe

which will link libdep.a (static) or libdep.so (shared). This will       
resolve function or subroutine symbols. The Linux linker will default to 
shared library;

Build Commands (1)
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 Static link will bundle code into final executable whereas shared link will 
load shared library at run time;

 Path to shared library must be specified via the LD_LIBRARY_PATH
environment variable and multiple paths are colon separated.

 If both static and shared libraries exist in the same directory, then the 
Linux linker will select the shared library by default;

Build Commands (2)
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 To determine which shared libraries are required:
$ ldd workshare.exe 

linux-vdso.so.1 =>  (0x00007ffc6ebdf000)

libgfortran.so.3 => /lib64/libgfortran.so.3 

(0x00002b046d5d2000)

libm.so.6 => /lib64/libm.so.6 (0x00002b046d8fa000)

 Statically linking reduces the time the executable code gets loaded into 
memory. Subsequently, static libraries do not need to exist on the target 
system;

 For performance at large number MPI of ranks, it is recommended to 
statically link even though your binary executable will become larger;

Build Commands (3)
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 However, static linking will only bundle in procedures (symbols) that are 
actually being called and not the entire static library;

 When linking with the compiler, it actually calls the Linux linker ld but it 
is good practice to use the compiler because it automatically links with 
the compiler’s runtime library.

Build Commands (4)



163

 When linking multiple libraries with dependencies, the order of the 
libraries during linking is crucial;

 Otherwise you will get the dreaded “undefined symbol” errors;
$ nagfor code.o -L/usr/lib/netcdf-4.0 -lnetcdff -lnetcdf \

-o code.exe

 The netcdff library (Fortran bindings) calls subroutines from the 
netcdf library (C implementation) so it must be listed in the above 
order.

Ordering Libraries During Linking
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 Linking with a large number of object files from Fortran modules can be 
tedious especially when they need to be correctly ordered;

 Create a single library which contains all object files by using the Linux 
ar command:

$ ar rc libfmw.a obj1.o obj2.o obj3.o obj4.o

 Prefix the name of library with lib followed by name of library (fwm in 
this example) and with the .a extension;

 When the main code needs to link with libfmw.a use the link flags:
$ nagfor main.o -L/path/to/fmw -lfmw -o main.exe

Creating Libraries
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 Executables, static object files, shared object files and core dumps are 
stored in the Linux Executable and Linking Format (ELF);

 ELF tools include nm, readelf and objdump which can be used to 
examine object files for subroutines;

 Fortran module header (.mod) files are compiler specific and will only 
work with the compiler it was created with. Sometimes the module 
header files change between different versions of the same compiler, 
e.g. GNU Fortran 6.0 and 7.0;

 Therefore, it is always best to recompile from source for compatibility 
and performance reasons.

File Formats
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 The NAG Fortran Compiler is one of the most comprehensive code 
checking compilers;

 It checks for possible errors in code and rigorously checks for standards 
conformance to ensure portability;

 Has unique features which aid good software development;

 Was the first compiler to implement the Fortran 90 standard which was 
the biggest revision to modernise the language;

 NAG compiler documentation can be found at [1].

NAG Fortran Compiler

[1] https://www.nag.co.uk/nag-compiler
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 Usage syntax is:
$ nagfor [mode] [options] fortran_source_file.f90

where [mode] is one of:

=compiler - this is the default mode;

=depend - analyses module dependencies in specified files;

=interfaces - produces a module interface for subroutines in a file;

=polish - polishes up the code (already discussed);

=unifyprecision - Unify the precision of floating-point and complex entities 
in Fortran files. 

NAG Fortran Compiler Usage
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 The NAG dependency analyser takes a set of Fortran files and produces 
module dependency information:
$ nagfor =depend -otype=type *.f90

where type is one of:

blist - the filenames as an ordered build list

dfile - the dependencies in Makefile format, written to separate 
file.d files

info - the dependencies as English descriptions

make - the dependencies in Makefile format

NAG Fortran Compiler Dependency Analyser
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 Interfaces can be generated for source files that contain Fortran 
subroutines. Interfaces allow argument checking at compile time:
$ nagfor =interfaces -module=blas_mod *.f

 The above will create blas_mod.f90 which will contain interfaces for all 
Fortran 77 files in current working directory;

 The output is a Fortran 90 module file which can be included in a 
Fortran 90 code via the use blas_mod statement;

 Remember to include the path to blas_mod.mod at compiler time:
$ nagfor -I/path/to/blas_mod -c code.f90

NAG Fortran Compiler Interface Generator
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 This feature unifies the precision in Fortran files to a specified kind 
parameter in a module:
$ nagfor =unifyprecision -pp_name=DP \

-pp_module=types_mod code.f90 -o code.f90_prs

 The above will create file code.f90_prs that forces real types to be of 
kind DP, e.g.
use types_mod, only : DP

real(kind=DP) :: tol, err

NAG Fortran Compiler Unify Precision
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-f95, -f2003, -f2008 - checks the code is Fortran 95, 2003 and 2008  
(default) standards compliant, respectively;

-gline - this flag will do a subroutine trace call when a runtime error has 
occurred; 

-mtrace - trace memory allocation and deallocation. Useful for detecting 
memory leaks;

-C=check - where check can be array for array out of bounds checking, 
dangling for dangling pointers, do for zero trip counts in do loops, 
intovf for integer overflow and pointer for pointer references;

NAG Fortran Compiler Code Checking (1)
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 For simplicity, use the following flags to do all the checks:
$ nagfor -C=all -C=undefined -info -g -gline

 The NAG compiler is able to spot 91% of errors [1]:

 The NAG Fortran Compiler can catch errors at either compile time, e.g. 
non-standard conforming code, or it can catch errors at run time with a 
helpful error message compared to “segmentation fault”.

NAG Fortran Compiler Code Checking (2)

[1] http://www.fortran.uk/fortran-compiler-comparisons-2015/intellinux-fortran-compiler-diagnostic-capabilities/
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 Forcheck is a static analysis tool which analyses Fortran code without 
executing them;

 Locates bugs early on in development, potentially saving you a lot of 
time compared to finding bugs during runtime;

 Much more comprehensive checking than compilers. Some compilers 
tend to emphasise on performance rather than correctness.

Forcheck - Static Analysis Tool
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 Fortran code:
subroutine foo( a, b )

real :: a

real, optional :: b

a = b**2 ! not checking to see if b is present

end subroutine foo

 Analysis output:
(file: arg_test.f90, line: 14)

B

**[610 E] optional dummy argument unconditionally used

Forcheck Dummy Argument Checking
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 Dummy arguments should always be scoped with the intent keyword;

 Command: 
$ forchk -intent arg_test.f90

 Analysis output:

B

**[870 I] dummy argument has no INTENT attribute

(INTENT(IN) could be specified)

Forcheck Dummy Argument Intent Checking
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 Fortran code:
call foo( 1.0, b )

 Analysis output:
7 call foo( 1.0, b )

(file: arg_test.f90, line: 7)

FOO, dummy argument no 1 (A)

**[602 E] invalid modification: actual argument is constant 

or expression

Forcheck Actual Argument Checking
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 Fortran code:
real(kind=REAL64) :: d  

real(kind=REAL32) :: s

s = d**2 ! will also be detected by GNU Fortran

d = s**2 ! will not be detected by GNU Fortran

 Analysis output - possible truncation:
(file: precision.f90, line: 11)  

s = d**2

**[345 I] implicit conversion to less accurate type

Forcheck Precision Checking (1)
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 Analysis output - subtle precision bug:
(file: precision.f90, line: 12)  

d = s**2

**[698 I] implicit conversion to more accurate type

Forcheck Precision Checking (2)
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 Static analysis checks are easy ways to detect obvious bugs but they are 
ultimately very conservative. When they say there is a bug, they are 
correct;

 Static analysis tools are limited in what they can achieve particularly for 
large codes where there can be variables that are defined in complex IF 
statements;

 This requires runtime checks to ultimately check for potential bugs with 
a comprehensive error checking compiler such as the NAG Fortran 
Compiler;

 The NAG Fortran Compiler also prints helpful error messages to help 
locate sources of bugs instead of the dreaded “segmentation fault”.

Runtime Checking
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 Compile command (if Forcheck cannot detect this):
$ nagfor -C=present arg_test.f90 -o arg_test.exe

 Fortran code:
call foo( a )

subroutine foo( a, b )

real, intent(out) :: a

real, intent(in), optional :: b

a = b**2

end subroutine foo

 Helpful runtime error message and not just segmentation fault:
Runtime Error: arg_test.f90, line 14: Reference to OPTIONAL 
argument B which is not PRESENT

NAG Compiler Optional Argument Detection
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 Build command: 
$ nagfor -C=dangling p_check.f90 -o p_check.exe

 Fortran code:
real, dimension(:), allocatable, target :: vec

real, dimension(:), pointer :: vec_p

allocate( vec(1:100) ) 

vec_p => vec; deallocate( vec )

print *, vec_p(:)

 Runtime output - NAG compiler is the only Fortran compiler that can check this:
Runtime Error: p_check.f90, line 12: Reference to dangling 
pointer VEC_P

Target was DEALLOCATEd at line 10 of pointer_check.f90

NAG Compiler Dangling Pointer Detection



182

 Compile command:
$ nagfor -C=undefined undef_test.f90 -o undef_test.exe

 Fortran code:
real, dimension(1:11) :: array

array(1:10) = 1.0

print *, array(1:11)

Runtime output:

Runtime Error: undef_test.f90, line 7: Reference to undefined 

variable ARRAY(1:11)

Program terminated by fatal error

NAG Compiler Undefined Variable Detection



183

 Compile command:
$ nagfor -C=calls sub1.f90 -o sub1.exe

 Fortran code:
integer, parameter :: x = 12

call sub_test( x )

subroutine sub_test( x )

integer :: x

x = 10

end subroutine sub_test

 Runtime output:
Runtime Error: sub1.f90, line 13: Dummy argument X is 
associated with an expression - cannot assign

NAG Compiler Procedure Argument Detection
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 Compile command:
$ nagfor -C=intovf ovf_test.f90 -o ovf_test.exe

 Fortran code:
integer :: i, j, k

j = 12312312; k = 12312312

i = 12312312 * j * k

 Runtime output:
Runtime Error: ovf_test.f90, line 7: INTEGER(int32) overflow 

for 12312312 * 12312312

Program terminated by fatal error

NAG Compiler Integer Overflow Detection



185

 Compiler command:
$ nagfor -C=pointer ptr_test.f90

 Fortran code:
integer, pointer :: p(:)

integer, target :: i_array(10) = 1

if ( size( i_array ) == 11 ) then

p => i_array

else

p => null()

end if

print *, p ! p will be null

NAG Compiler Pointer Reference Check (1)
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 Runtime output:
Runtime Error: ptr_test.f90, line 15: Reference to 

disassociated POINTER P

Program terminated by fatal error

NAG Compiler Pointer Reference Check (2)
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 Compile command:
$ nagfor -c -kind=unique mix_kind.f90 

 Fortran code:
real(kind=REAL64), intent(inout) :: x, y

real(kind=INT32) :: t

t = x; x = y; y = t

 Compilation error:
Error: mix_kind.f90, line 24: KIND value (103) does not 

specify a valid representation method

NAG Compiler Mixed Kind Detection
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 Performance focused compilers do less error and standards compliance 
checking;

 Using just one compiler can lock you into that single compiler and could 
potentially make your code less portable [1];

 The NAG compiler does extensive error and standards checking so you 
can use it in combination with a more performant compiler.

Performance Portable Code Workflow

Fortran 

standards 

compliance

Error 

checking 

(compile and 

runtime)

Performance 

optimization

Fast and 

correct 

code

NAG compiler
Intel/IBM/Cray

[1] “Write Portable Code”, B. Hook. No Starch Press, 2005

Static 

verification

CamFort, Forcheck
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 GNU make is a Linux tool for building Fortran codes in an automated 
manner. It only rebuilds codes if any dependencies have changed;

 It builds a dependency tree to decide what to rebuild, e.g. if source code 
is newer than the object file/executable, then the target will be rebuilt;

 Code dependencies are specified by the developer;

 It has the ability to build dependencies in parallel resulting in quicker 
builds. It is used to build the Linux kernel;

 Create a Makefile in the same directory as the source code and type 
the make command to build your code. This will build the first target and 
all dependencies.

GNU Makefile
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 Makefiles consist of explicit rules which tell it how to build a target;

 A target can be a code executable, library or module header;
target: dependencies

build commands

 Note that the tab character must precede the build commands;

 A rule has dependencies and the commands will build the target;

 Compilation and link flags are specified in the Makefile to ensure 
consistent building of codes;

 Different flags can result in slightly different results in numerical codes, 
particularly optimization flags.

Makefile Rules
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 When compiling mesh_mod.F90 which contains a Fortran module called 
mesh_mod, two files are created;

 mesh_mod.mod which is a pre-compiled header module file which 
contains Fortran variables and interfaces;

 The path to header module file is specified with -I during compilation 
only, e.g. -I/usr/library/include

 mesh_mod.o which is an object file which contains all functions and 
subroutines as symbols for linking;

Compiling a Fortran Module (1)
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 A number of object files can be bundled into a single library, e.g. 
libdep.a, which is created using the Linux ar tool;

 The path to the library is specified using the -L flag with -l followed by 
the name of the library, e.g. -L/home/miahw/dep/lib -ldep

Compiling a Fortran Module (2)
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 The variable $@ is the target of the rule;

 The variable $^ contains the names of all prerequisites;

 The variable $< contains only the first prerequisite;

 The variable $? contain all the prerequisites that are newer than the 
target;

 To see what commands make will execute without executing them, 
which is useful for debugging:
$ make -n

Automatic Makefile Variables
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 Pattern matching - will compile all files:
%.o: %.f90

nagfor -c -I. $<

 However, dependencies between files must be explicitly specified;

 Can include additional files:
include variables.mk

 Set variables that contain all source files that end in _mod.f90 and 
corresponding object files:

SOURCES := $(sort $(wildcard *_mod.f90))

OBJECTS := $(SOURCES:.f90=.o)

More Makefile Features
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FFLAGS = -O2 -I.                       # add any other compilation flag

LDFLAGS = -L. -L/usr/local/hawk/lib -lhawk # add any other link flag

main.exe: main.o dep1.o dep2.o

nagfor $^ $(LDFLAGS) -o $@     # (3)

main.o: main.F90 dep1_mod.o dep2_mod.o

nagfor $(FFLAGS) -I. -c $<     # (2) requires dep1.mod and dep2.mod

dep1_mod.o: dep1_mod.F90 

nagfor $(FFLAGS) -c $<         # (1) also creates dep1.mod

Dep2_mod.o: dep2_mod.F90

nagfor $(FFLAGS) -c $<         # (1) also creates dep2.mod

.PHONY: clean

clean:

rm -rf *.o *.mod main.exe

Example Makefile
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 Typing just make will build main.exe which is the first and default 
target;

 Separate targets can be built using make <target-name>, e.g. make 
dep1.o;

 Makefile variables are enclosed in brackets, e.g. ${VAR1}. This can also 
include Linux environment variables;

 Can you see a problem with this Makefile? This is related to Fortran 
modules.

Example Makefile (2)
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 The previous Makefile does not take into account .mod files created 
when modules are compiled;

 If a .mod file is deleted, it will not be recreated. Thus, compilation of a 
Fortran code that uses that module will not compile;

 Two rules are required - output from NAG compiler:
$ nagfor =depend -otype=make types_mod.f90

types_mod.mod:  types_mod.f90

types_mod.o:    types_mod.f90

Makefile and Fortran Modules (1)



198

 Solution is to set up make variables:
SOURCES := $(sort $(wildcard *_mod.f90))

OBJECTS := $(SOURCES:.f90=.o)

 The variable SOURCES contains all Fortran module files that end in 
_mod.f90;

 The OBJECTS variable contains all object files from module files;

Makefile and Fortran Modules (2)
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 Use the NAG compiler dependency tool to create module dependency 
files which gets created at every make invocation:

%.P: %.f90

nagfor =depend -otype=make $< -o $@.tmp

grep -vi -E '(netcdf|plplot)' $@.tmp > $@

 Second command filters any external library dependencies;

 Create a variable that stores all the module dependencies:
DEPS := $(SOURCES:.f90=.P) main_code.P

Makefile and Fortran Modules (3)
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 Create a single file that contains all the dependencies:
Depends: $(DEPS)

cat $^ > $@

 And then finally include this file in the Makefile:
include Depends

 Then apply the following rule to compile in the correct order:
%.o %.mod: %.f90

nagfor -c $(FFLAGS) $<

 If the Depends file is static, then just created it once.

Makefile and Fortran Modules (3)
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 When writing Makefiles, dependencies must obviously be correctly 
specified;

 If they are not, you will get link errors resulting in “undefined symbol” 
messages;

 In addition, parallel builds depend on rule dependencies being correctly 
defined and only then can you use parallelise builds;

 To parallelise a build with k processes, use the command:
$ make -j k

Parallel Builds Using Makefile
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Data Management

http://phdcomics.com
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 Computational codes are producing petabytes of data from multiple 
simulations creating a large number of data sets;

 Data is stored for two reasons: checkpoint/restart for fault resiliency 
and, visualisation and analysis. If used for visualisation, consider using 
single precision as this will halve the size of your data set;

 Efficient access to single or multiple variables required, e.g. velocity, 
pressure, temperature;

 The volume of data generated by simulations is proportional to: 1) the 
FLOPS of the HPC system 2) the memory on the system 3) the 
underlying computational model used in the code. 

Data From Simulations
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Research Data Lifecycle

Plan and 

Design

Collect and 

Capture

Interpret and 

Analyse
Publish

Old Model New Model

“Data Management for Researchers”, K. Briney. Pelagic Publishing, 2015
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 Huge number of data sets stored in separate files;

 Sharing datasets with collaborators is difficult due to lack of meta data;

 Large size of data sets and loss of numerical precision due to storing 
data in incorrect format, e.g. CSV;

 Searching data sets for parameters is difficult also due to lack of meta 
data;

 Solution: use a self-describing file format such as NetCDF or HDF5;

 Python and R bindings are available for NetCDF and HDF5 for data 
analysis and visualisation;

Challenges of Data Management (1)
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 Parallel (MPI) implementations of NetCDF and HDF5 exist;

 Parallel visualisation packages such as VisIt [1] and Paraview [2] are able 
to read NetCDF and HDF5. 

Challenges of Data Management (2)

[1] http://visit.llnl.gov

[2] http://www.paraview.org



207

 Stores data in the form of multi-dimensional arrays;

 Underlying storage is abstracted away from user applications;

 Is portable across many different architectures, hence allows 
collaboration. It can be read by codes in other programming languages;

 Uses a highly optimized indexing system so data access is direct rather 
than sequential;

 Applies compression techniques to minimise file sizes;

NetCDF File Format (1)
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 Uses the IEEE-754 floating point standard for data representation;

 Can store meta-data inside data files so others can understand the data 
and makes it easier to retrieve at a later date.

NetCDF File Format (2)
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 NetCDF dataset contains dimensions, variables and attributes. They are 
all referred to by a unique integer ID value in a Fortran code;

 A dimension has a name and length, e.g. latitude, x dimension. A 
dimension can have a fixed value or be unlimited, e.g. time varying;

 A variable has a name and is used to store the data, e.g. pressure;

 An attribute is data used to describe the variable, e.g. Kelvin, N/m2;

 Use the attributes to your advantage to describe your experiment and 
variables. This will help you share your data and avoid repeating the 
same simulation;

 Every NetCDF function should return NF90_NOERR constant.

Components of NetCDF
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netcdf dataset1 {

dimensions: 

x = 3, y = 3, time = unlimited;

variables:

float p(time,x,y);

p:long_name = “pressure”;

p:units = “N/m^2”;

data:

p = 0.1, 0.2, 0.3,

1.2, 3.4, 3.2,

3.2, 2.0, 1.9;

}

Common Data Form Language (CDL) Example

dataset
ncID

dimensions
dimIDs

variables
varIDs

attributes
attIDs

global 

attributes
gattIDs
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NF90_CREATE      ! create dataset. enter define mode

NF90_DEF_DIM  ! define dimensions

NF90_DEF_VAR  ! define variables

NF90_PUT_ATT  ! define attributes

NF90_ENDDEF      ! end define mode. enter data mode

NF90_PUT_VAR  ! write your data 

NF90_CLOSE       ! close your data set

Creating a NetCDF Dataset
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NF90_OPEN          ! open data set. enter data mode

NF90_INQ_DIMID  ! enquire to obtain dimension IDs

NF90_INQ_VARID  ! enquire to obtain variable IDs

NF90_GET_ATT    ! get variable attributes

NF90_GET_VAR    ! get variable data

NF90_CLOSE         ! close data set

Reading a NetCDF Dataset
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function NF90_CREATE( path, cmode, ncid )

 path to dataset including filename, e.g. /home/miahw/data.nc;

 cmode is either NF90_CLOBBER or NF90_NOCLOBBER. Former will 
overwrite any existing file and latter will return an error;

 ncid is a unique ID for dataset. Any dataset related operations should 
use this integer.

 To close a data set, simply invoke:
function NF90_CLOSE( ncid )

Creating a NetCDF Dataset
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function NF90_OPEN( path, omode, ncid )

 path to dataset including filename, e.g. /home/miahw/data.nc;

 omode is NF90_NOWRITE by default or NF90_WRITE. Former will read an 
existing file and latter allows appending to a file;

 ncid is a unique ID for dataset. Any dataset related operations should 
use this integer.

Opening a NetCDF Dataset
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 Dimensions are created when in defined mode and have a name and a 
unique identifier;

 They can be constant, e.g. number of cells in x-direction;

 Or they can be NF90_UNLIMITED, e.g. time steps.
function NF90_DEF_DIM( ncid, name, len, dimid )

 ncid - ID of dataset;

 name - name of dimension;

 len - length of dimension;

 dimid - the returned ID of the identifier which is assigned by the 
function.

Creating a NetCDF Dimension
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 Variables are created when in defined mode and have a name and a unique 
identifier;

 They can be a scalar or a multi-dimensional array. The dimension IDs are used 
to define the number and length of dimensions.

function NF90_DEF_VAR( ncid, name, xtype, dimids, varid )

 ncid - ID of dataset;

 name - name of variable;

 xtype - type of variable;

 dimids - the IDs of created dimensions, e.g. [ dimid1, dimid2 ]

 varid - the returned ID of the variable;

Creating a NetCDF Variable (1)
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 The data type xtype may be one of the listed mnemonics:

Creating a NetCDF Variable (2)

Fortran Mnemonic Bits

NF90_BYTE 8

NF90_CHAR 8

NF90_SHORT 16

NF90_INT 32

NF90_FLOAT or NF90_REAL4 32

NF90_DOUBLE or NF90_REAL8 64
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 An attribute is data about data, i.e. metadata, and is used to describe 
the data;

 It has a name and a value.
function NF90_PUT_ATT( ncid, varid, name, value )

 ncid - ID of dataset;

 varid - ID of variable;

 name - name of attribute which is a string;

 value - value of attribute which is a string;

Creating a NetCDF Attribute (1)
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 Typical attributes stored for variables: units, long_name, valid_min, 
valid_max, FORTRAN_format;

 Use any attribute that is useful for describing the variable;

 Global attributes for dataset can also be stored by providing varid = 
NF90_GLOBAL;

 Typical global attributes: title, source_of_data, history (array of 
strings), env_modules, doi;

 Use any attribute that is useful for describing the dataset as this will 
increase data sharing and collaboration!

 Further metadata can be included in the file name.

Creating a NetCDF Attribute (2)
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 Once the IDs have been set up, the data can then be written;
function NF90_PUT_VAR( ncid, varid, values, start, count )

 ncid - ID of dataset;

 varid - variable ID

 values - the values to write and can be any rank;

 start - array of start values and size( start ) = rank( values )

 count - array of count values and size( count ) = rank( values )

 Last two arguments are optional;

 The read function NF90_GET_VAR has the same argument set.

Writing and Reading NetCDF Data
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integer, dimension(NX,NY) :: data

integer :: ierr, ncid, x_dimid, y_dimid, varid

ierr = NF90_CREATE( "example.nc", NF90_CLOBBER, ncid )

data(:, :) = 1 ! entering define mode

ierr = NF90_DEF_DIM( ncid, "x", NX, x_dimid )

ierr = NF90_DEF_DIM( ncid, "y", NY, y_dimid )

ierr = NF90_DEF_VAR( ncid, "data", NF90_INT, [ x_dimid, y_dimid ], &

&               varid )

ierr = NF90_ENDDEF( ncid ) ! end define mode and enter data mode

ierr = NF90_PUT_VAR( ncid, varid, data ) ! write data

ierr = NF90_CLOSE( ncid )

NetCDF Write Example
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 ncdump - reads a binary NetCDF file and prints the CDL (textual 
representation) to standard out;

 ncgen - reads the CDL and generates a binary NetCDF file;

 ncdiff - Calculates the difference between NetCDF files;

 ncks - ability to read subsets of data much like in SQL. Very powerful 
tool for data extraction;

 ncap2 - arithmetic processing of NetCDF files;

 ncatted - NetCDF attribute editor. Can append, create, delete, modify 
and overwrite attributes. 

NCO - NetCDF Commands (1)
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 ncrename - renames dimensions, variables and attributes in a NetCDF 
file;

 ncra - averages record variables in arbitrary number of input files;

 ncwa - averages variables in a single file over an arbitrary set of 
dimensions with options to specify scaling factors, masks and 
normalisations;

 nccopy - converts a NetCDF file, e.g. version 3 to version 4. It can also 
compress data or changing the chunk size of the data.

NCO - NetCDF Commands (2)
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 HDF5 is a data model and file format, and provides an API to use within 
application codes;

 It is similar to NetCDF in that it allows binary data to be stored and is 
fully portable to other architectures and programming languages;

 Datasets can be arranged in a hierarchical manner;

 Self-describing data format and allows metadata to be stored;

 Efficiently stores data and allows direct access to data;

 Has been developed for over 25 years and widely used by the scientific 
community;

 More complicated that NetCDF.

HDF5 File Format
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 File: contains all groups and datasets, and at least one group - root /

 Dataset: multi-dimensional data array;

 Group: a set of links to datasets or other groups;

 Link: reference to a dataset or group;

 Attribute: metadata for dataset or group;

HDF5 Data Model
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<dataset> ::= 

DATASET "<dataset_name>" { 

<datatype>

<dataspace>

<data>

<dataset_attribute>* 

}

<datatype> ::= DATATYPE { <atomic_type> }

<dataspace> ::= DATASPACE { 

SIMPLE <current_dims> / <max_dims> }

<dataset_attribute> ::= <attribute>

HDF5 Dataset Definition Language

/
fileID

dataspace
dspaceID

dataset
dsetID

dsetID <-

data(:,:)

attspace
aspaceID

attribute
attrID

attrID <-

attrdata(:,:)
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H5OPEN_F                ! initialise HDF5

H5FCREATE_F           ! create file

H5SCREATE_SIMPLE_F    ! create dataspace

H5DCREATE_F           ! create dataset

H5DWRITE_F            ! write data

H5DCLOSE_F            ! close dataset

H5SCLOSE_F ! close dataspace

H5FCLOSE_F ! close file

H5CLOSE_F ! finalise HDF5

Creating a HDF5 Dataset
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H5OPEN_F ! initialise HDF5

H5FOPEN_F ! open file

H5DOPEN_F ! open dataset

H5DREAD_F ! read dataset

H5DCLOSE_F ! close dataset

H5FCLOSE_F ! close file

H5CLOSE_F ! finalise HDF5

Reading a HDF5 Dataset
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integer(kind = HID_T) :: file_id, dset_id, dspace_id, rank = 2

integer(kind = HSIZE_T), dimension(1:2) :: dims = [ 4, 6 ]

call H5OPEN_F( ierr )

call H5FCREATE_F( “dsetf.h5”, H5F_ACC_TRUNC_F, file_id, ierr )

call H5SCREATE_SIMPLE_F( rank, dims, dspace_id, ierr )

call H5DCREATE_F( file_id, “dset”, H5T_NATIVE_INTEGER, dspace_id, &

&            dset_id, ierr )

call H5DWRITE_F( dset_id, H5T_NATIVE_INTEGER, dset_data, dims, ierr )

call H5DCLOSE_F( dset_id, ierr ); call H5SCLOSE_F( dspace_id, ierr )

call H5FCLOSE_F( file_id, ierr )

call H5CLOSE_F( ierr )

HDF5 Write Example
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 In-memory visualisation can visualise the data whilst it is in memory and 
does not require the data to be stored on disk;

 This subsequently saves disk space and time as data reading/writing is 
prevented, thus avoiding the I/O bottleneck;

 PLplot [1] is a scientific graphics library with bindings for Fortran 90;

 It can create standard x-y plots, semi-log plots, log-log plots, contour 
plots, 3D surface plots, mesh plots, bar charts and pie charts;

 Formats supported are: GIF, JPEG, LaTeX, PDF, PNG, PostScript, SVG and 
Xfig;

In-Memory Visualisation with PLplot (1)

[1] http://plplot.sourceforge.net/
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 Visualisation is done within the Fortran code and does not require an 
additional script. Quicker to produce quality graphs which can be used 
for publication;

 It is also used to test your models and configurations whilst the 
simulation is executing;

 If your solution does not converge or produces unphysical effects then 
the simulation job can be terminated, thus saving days or weeks of 
simulation time;

 It is not meant to compete with any of the other major visualisation 
packages such as GNUPlot or Matplotlib.

In-Memory Visualisation with PLplot (2)
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 Load the Plplot Fortran module:
use plplot

 The output format needs to be specified [2]: 
call PLSDEV( ‘pngcairo’ )

 The image file name needs to be specified:
call PLSFNAM( ‘output.png’ )

 The library needs to be initialised:
call PLINIT( )

 Specify the ranges, axes control and drawing of the box:
call PLENV( xmin, xmax, ymin, ymax, justify, axis )

PLplot Subroutines (1)

[2] Other formats supported are: pdfcairo pscairo epscairo svgcairo
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 Specify the x- and y-labels and title:
call PLLAB( ‘x’, ‘y’, ‘plot title’)

 Draw line plot from one-dimensional arrays:
call PLLINE( x, y )

 Finalise PLplot:
call PLEND( )

 To compile and link:
$ nagfor -c -I/plplot/modules graph.F90

$ nagfor graph.o -L/plplot/lib -lplplotfortran -lplplot \

-o graph.exe

PLplot Subroutines (2)
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 FFMPEG is a utility to convert between audio and video formats;

 In this workshop, it will be used to create a movie file from a list of 
images which were created by PLplot;

 To create an MP4 movie from a list of images, e.g. image_01.png, 
image_02.png, use:
$ ffmpeg -framerate 1/1 -f image2 -i image_%*.png video.mp4

 FFMPEG has many options and has a collection of codecs;

 Movies can then be embedded into presentations.

FFMPEG
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 Exercise code is at fmw_exercises/src/fd1d_heat_explicit.f90

 Presentation can be found at - also copy over to your laptop/desktop 
fmw_exercises/FortranModernisationWorkshop.pdf 

 To copy in Linux, type (in one line):
$ scp

username@training.nag.co.uk:~/fmw_exercises/exercises.pdf .

 Replace username with the provided user name.

End of Day 1 - Start Exercises
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 Introduction to parallelisation in MPI, OpenMP, Global Arrays and 
CoArrays. GPU programming using CUDA Fortran and OpenACC;

 Parallel I/O using HDF5 and NetCDF;

 Introduction to the NAG numerical library;

 Fortran interoperability with R, Python and C.

Day Two Agenda
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 Fortran syntax checkers also exists for traditional Linux editors such as 
vim and Emacs which checks syntax as you type;

 Idea is to identify syntax violations as quickly as possible instead of 
waiting for a build failure;

 Syntax checkers increase the productivity of users by providing a quick 
feedback on Fortran language violations;

 For Emacs users, the Flycheck syntax checker is available at [1];

 For vim users, the Syntastic plugin is available [2].

Fortran Syntax Checkers for Linux Editors

[1] http://www.flycheck.org/

[2] https://github.com/scrooloose/syntastic
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 In your ~/.emacs file, include the following configuration:
(setq flycheck-gfortran-language-standard "f2008")

(setq flycheck-gfortran-warnings '("all" "unused"))

(setq flycheck-gfortran-args '("-Wunderflow" "-Wextra"))

(setq flycheck-gfortran-include-path '("../include"))

 Flycheck uses the installed GNU Fortran compiler for syntax checking 
with the above flags. 

Flycheck for Fortran (1)
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 Dark red arrows and underline show compilation errors;

 Orange arrows and underline shows compiler warnings.

Flycheck for Fortran (2)
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 The following settings are required in the ~/.emacs file:
(setq f90-do-indent 2)

(setq f90-if-indent 2)

(setq f90-type-indent 2)

(setq f90-program-indent 2)

(setq f90-continuation-indent 4)

(setq f90-comment-region "!!$")

(setq f90-indented-comment-re "!")

Fortran 90 Emacs Settings
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CTRL-c CTRL-n Move to the beginning of the next statement;

CTRL-c CTRL-p Move to the beginning of the previous statement;

CTRL-c CTRL-e Move point forward to the start of the next code block;

CTRL-c CTRL-a Move point backward to the previous block;

CTRL-ALT-n Move to the end of the current block

CTRL-ALT-p Move to the start of the current code block

Emacs Fortran Navigation
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 In your ~/.vimrc file, add the following settings:

let g:syntastic_fortran_compiler = 'gfortran’ (or ifort)
let g:syntastic_fortran_compiler_options = ‘-Wall -Wextra’

let g:syntastic_fortran_include_dirs = [ ‘/moddir1’, 

‘/moddir2’]

 Syntastic only checks the syntax once you have saved the file.

Syntastic for VIM (1)
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Syntastic for VIM (2)
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 ALE [1] is another checker for VIM which checks syntax on the fly;

 Add the following lines in your ~/.vimrc file:
let g:ale_fortran_gcc_use_free_form = 1

let g:ale_fortran_gcc_executable = ‘gfortran’

let g:ale_fortran_gcc_options = ‘-Wall –Wextra’

Asynchronous Lint Engine (ALE)

[1] https://github.com/w0rp/ale
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Asynchronous Lint Engine Screenshot
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 Fortran JSON [1] offer a convenient way to read configuration files for 
scientific simulations;

 Do not use JSON for storing data - use either NetCDF or HDF5. Its 
purpose here is only for simulation configuration parameters;

 JSON format was popularised by JavaScript and is used by many 
programming languages;

 It is a popular format to exchange data and is beginning to replace XML 
and is human readable;

 It is strongly recommended to store simulation configuration 
parameters as the simulation can be reproduced. 

Fortran JSON

[1] https://github.com/jacobwilliams/json-fortran
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{

“config1": 

{"major": 2,

"string": "2.2.1",

"tol": 3.2E-8,

"max": 34.23}

}

Example JSON file (config.json)
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use json_module  

use, intrinsic :: iso_fortran_env  

implicit none    

type(json_file) :: json  

logical :: found  

integer :: i  

real(kind=REAL64) :: tol, max  

character(kind=json_CK, len=:), allocatable :: str

Reading JSON File in Fortran (1)
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call JSON%INITIALIZE( ) 

call JSON%LOAD_FILE(filename = ‘config.json' )

call JSON%GET( ‘config1.major', i, found )

call JSON%GET( ‘config1.string', str, found )

call JSON%GET( ‘config1.tol', tol, found )

call JSON%GET( ‘config1.max', max, found )

call JSON%DESTROY( )

Reading JSON File in Fortran (2)
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 The Fortran command line arguments parser (FLAP) [1] allows command 
line arguments to be processed;

 It is similar to the Python argparse command line parser and is more 
elegant than the get_command_argument( ) intrinsic subroutine;

use flap  

implicit none

type(command_line_interface) :: cli 

integer                      :: ierr, i

real                         :: tol

Fortran Command Line Arguments Parser (1)

[1] https://github.com/szaghi/FLAP
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call CLI%INIT(description = 'minimal FLAP example')

call CLI%ADD( switch = '--int', switch_ab = '-i', &

help = 'an integer (number of intervals)', &                

required = .true., act = 'store', error = ierr )

call CLI%ADD( switch = '--tol', switch_ab = '-t', & 

help = 'a real (tolerance)', required = .true., &

act = 'store', error = ierr )

call CLI%GET( switch = '-i', val = i, error = ierr )

call CLI%GET( switch = '-t', val = tol, error = ierr )

Fortran Command Line Arguments Parser (2)
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 FORTRAN 77 was a simple standard which compilers could exploit to 
create optimised code;

 Modern Fortran is likely to cause some slowdown as it provides newer 
features;

 To offset this slowdown in your code, you can parallelise;

 Computational codes usually take a long time to complete, hence the 
need for parallelism;

 In addition, problem sizes are increasing, hence the need for more 
memory;

Parallel Programming in Fortran (1)
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 There are a number of ways to parallelise:

• Shared memory (OpenMP)

• Distributed memory (CoArray Fortran, GA, MPI)

• GPU (OpenACC, CUDA Fortran)

• Vectorization

Parallel Programming in Fortran (2)
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 OpenMP (Open Multi-Processing)

 Parallel across cores within node (better to limit to NUMA node)

 Spawns threads and joins them again

 Surround code blocks with directives

Shared Memory (1)

www.openmp.org
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01 use omp_lib

02 !$omp parallel default(shared), private(threadN)

03 !$omp single

04 nThreads = omp_get_num_threads()

05 !$omp end single

06 threadN = omp_get_thread_num()

07 print *, “I am thread”, threadN, “of”, nThreads

08 !$omp end parallel

Shared Memory (2)
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01 !$omp parallel default(none), shared(n, a, X, Y, Z), private(i)

02 !$omp do

03 do i = 1, n

04 Z(i) = a * X(i) + Y(i)

05 end do

06 !$omp end do

07 !$omp end parallel

Shared Memory (3)
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Shared Memory (4)

01 !$omp parallel default(none), shared(a, X, Y, Z)

02 !$omp workshare

03 Z(:) = a * X(:) + Y(:)

04 !$omp end workshare

05 !$omp end parallel
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 OpenMP parallel schedule and data decomposition can also be 
controlled by the schedule clause:

!$omp do schedule( type[, chunk_size ] )

where type is static (default), dynamic, guided, auto or runtime, and 
chunk_size is the number of iterations each thread will execute;

 The OpenMP do construct has much better support than the workshare 
construct, thus may be beneficial to use Fortran do loops rather than 
array operations.

OpenMP Do Construct
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 Single Program Multiple Data (SPMD);

 Parallel across nodes and/or cores within node;

 Each process has its unique memory space and there is no sharing of 
memory between processes;

 Data must be explicitly communicated with other processes via send 
and receive calls;

Distributed memory
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 MPI (Message Passing Interface) [1]

 PGAS (Partitioned Global Address Space) [2]:

• CoArray Fortran and GA (Global Arrays) - similar to Unified Parallel C (UPC)

node 1 node 2 node 3 node 4

node 1 node 2 node 3 node 4

[1] www.mpi-forum.org

[2] www.pgas.org
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01 subroutine axpy(n, a, X, Y, Z)

02 implicit none

03 integer :: n

04 real :: a

05 real :: X(*), Y(*), Z(*)

06 integer :: I

07 do i = 1, n

08 Z(i) = a * X(i) + Y(i)

09 end do

10 end subroutine axpy

Detour: Example Code
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 Shared and distributed memory modes (compile time dependent);

 Each process is called an image and communication between images is 
single sided and asynchronous;

 An image accesses remote data using CoArrays;

 Fortran is the only language that provides distributed memory 
parallelism as part of the standard (Fortran 2008);

 Supposed to be interoperable with MPI;

 Coarrays have corank, cobounds, coextent and coshape. Indices used in 
coarrays are known as cosubscripts which maps to an image index.

CoArrays
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01 real, dimension(4), codimension[*] :: mat

$ aprun -n 4 ./caf_matrix.exe

 Coshape of coarray is mat(:)[1:m] where m is the number of images 
which is specified at runtime. In this example, it is 4; 

CoArray Declaration (1)
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01 real, dimension(4), codimension[2, *] :: mat

$ aprun -n 4 ./caf_matrix.exe

CoArray Declaration (2)
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01 real, dimension(4, 4), codimension[2, *] :: bmat

$ aprun -n 4 ./caf_bmatrix.exe

CoArray Declaration (3)
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01 real :: a_I[*]
02 real, allocatable :: X_I(:)[:], Y_I(:)[:], Z_I(:)[:]
03 integer :: n_I
04 n_I = n / num_images()
05 allocate( X_I(n_I) ); allocate( Y_I(n_I) ); allocate( Z_I(n_I) )
06 if ( this_image() == 1 ) then
07 do i = 1, num_images()
08 a_I[i] = a
09 X_I(:)[i] = X((i-1)*n_I+1:i*n_I)
10 Y_I(:)[i] = Y((i-1)*n_I+1:i*n_I)
11 end do
12 end if
13 sync all
14 call axpy(n_I, a_I, X_I, Y_I, Z_I)
15 if ( this_image() == 1 ) then
16 do i = 1, num_images()
17 Z((i-1)*n_I+1:i*n_I) = Z_I(:)[i]
18 end do
19 end if

CoArray AXPY Example
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 New collective subroutines:
co_max( A [, result_image, stat, errmsg ] )

co_min( A [, result_image, stat, errmsg ] )

co_sum( A [, result_image, stat, errmsg ] )

 The above are collective calls and A must be the same shape and type;

 If result_image is supplied, it is returned to the specified image. It is 
undefined on all other images;

 stat and errmsg are returned and contain the status of the call;

Fortran 2018 Collectives (1)
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 Broadcasts a from image source_image to all other images:
co_broadcast( a, source_image[, stat, errmsg ] )

 Reduction operation where operation is a pure function with exactly 
two arguments and the result is the same type as A:

co_reduce( a, operation[, result_image, stat, errmsg ] )

 If an image has failed, stat=ierr will be STAT_FAILED_IMAGE

Fortran 2018 Collectives (2)
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 Create new teams:
form team ( team_num, team_variable )

 team_num is an integer and team_variable is of team_type;

 To change to another team:
change team ( new_team )

! statements executed with the new_team

end team

 Get the team number use team_number( [ team ] )

CoArray Teams (1)
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 Below is an example taken from the 2018 standards document:
change team (team_surface_type)

select case (team_number( ))

case (LAND) ! compute fluxes over land surface

call compute_fluxes_land(flux_mom, flux_sens, flux_lat)

case (SEA) ! compute fluxes over sea surface

call compute_fluxes_sea(flux_mom, flux_sens, flux_lat)

case (ICE) ! compute fluxes over ice surface

call compute_fluxes_ice(flux_mom, flux_sens, flux_lat)

end select

end team

CoArray Teams (2)
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 More intrinsic functions:

this_image( team ) - returns the image index from team

this_image( corray[, team] ) - returns a rank-one integer array 
holding the sequence of cosubscript values for coarray

this_image( coarray, dim[, team] ) - returns the value of 
cosubscript dim in the sequence of cosubscript values for coarray that 
would specify an executing image, i.e. this_image(coarray)[dim]

num_images( team ) - returns the number of images of team

num_images( team_number ) - returns the number of images of 
team_number

CoArray Teams (3)
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 Returns a list of images (integers of KIND type) that have failed or 
stopped:

failed_images( [ team, kind ] )

stopped_images( [ team, kind ] )

 The developer has to manually deal with image failures, e.g. read from 
the previous checkpoint and restart calculations;

 The argument team is of team_type;

 Returns STAT_FAILED_IMAGE or STAT_STOPPED_IMAGE:
image_status( image[, team] ) 

Fortran 2018 Fault Tolerance
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 Supports critical sections which can also be labelled:
UPDATE: critical

i[1] = i[1] + 1

end critical UPDATE

 Supports locking to protect shared variables:
use iso_fortran_env

type(lock_type) :: lock_var[*]

lock( lock_var[1] )

i[1] = i[1] + 1

unlock( lock_var[1] )

CoArrays Locks and Critical (1)



274

 Can check to see if lock was acquired:
logical :: gotit

lock( lock_var[1], acquired_lock = gotit )

if ( gotit ) then

! I have the lock

else

! I do not have the lock - another image does

end if

CoArrays Locks and Critical (2)
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CoArray IFS Example

[1] “A PGAS Implementation of the ECMWF Integrated Forecasting System (IFS) 

NWP Model”, George Mozdzynski
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 PGAS programming model;

 Shared and distributed memory modes (compile time dependent)

 Interoperable with MPI;

 Use the NGA_CREATE( ) subroutine to create a global array;

 Use NGA_PUT( ) and NGA_GET( ) subroutines to get and put memory 
from global array into local memory and vice versa;

 A collection of collective subroutines;

 Only has FORTRAN 77 bindings and code must be preprocessed as 
header files are required using the #include directive.

Global Arrays (1)
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Global Arrays (2)

Global Array

local 

memory

local 

memory

Node 1 Node 2

nga_get() nga_get()nga_put() nga_put()
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01 use mpi
02 implicit none
03 #include "mafdecls.fh"
04 #include "global.fh"
05 call mpi_init( ierr ) 
06 call ga_initialize()
07 nProcs = ga_nNodes()
08 procN = ga_nodeId()
09 print *, “I am process”, procN, “of”, nProcs
10 call ga_terminate()
11 call mpi_finalize( ierr )

Global Arrays (3)
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 The Message Passing Interface, is a standardised and portable message 
passing specification for distributed memory systems;

 It spawns processes which are finalised when program ends;

 Processes can communicate point-to-point: a single sending process and 
a single receiving process

 One-to-many: a single sending process and multiple receiving processes

 Many-to-one: many sending processes and one receiving process

 Many-to-many: multiple sending processes and multiple receiving 
processes

MPI (1)

www.mpi-forum.org
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 Each process is also called a rank and has its own memory space;

 A process must explicitly communicate with another process;

 “More complicated” than OpenMP, Coarray and Global Arrays

MPI (2)
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01 use mpi
02 real :: a_P
03 real, allocatable :: X_P(:), Y_P(:), Z_P(:)
04 integer :: n_P
05 integer :: nProcs, procN, err
06 call mpi_init(err)
07 call mpi_comm_size(mpi_comm_world, nProcs, err)
08 call mpi_comm_rank(mpi_comm_world, procN, err)
09 n_P = n / nProcs
10 allocate(X_P(n_P)); allocate(Y_P(n_P)); allocate(Z_P(n_P))
11 call mpi_bcast(a_P, 1, mpi_real, 0, mpi_comm_world, err)
12 call mpi_scatter(X, n_P, mpi_real, X_P, n_P, &

mpi_real, 0, mpi_comm_world, err)
13 call mpi_scatter(Y, n_P, mpi_real, Y_P, n_P, &

mpi_real, 0, mpi_comm_world, err)
14 call axpy(n_P, a_P, X_P, Y_P, Z_P)
15 call mpi_gather(Z_P, n_P, mpi_real, Z, n_P, &

mpi_real, 0, mpi_comm_world, err)
16 call mpi_finalize(err)

MPI (3)
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 PGI and Cray compilers fully support OpenACC for Fortran and partial 
support from GNU Fortran;

 It is similar to OpenMP in that the developer annotates their code for 
execution on the GPU, thus is much simpler than CUDA Fortran;

 Supports both Nvidia and AMD GPUs.

OpenACC (1)

www.openacc.org

devblogs.nvidia.com/parallelforall/
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OpenACC (2)

01 !$acc kernels

02 do i = 1, n

03 Z(i) = a * X(i) + Y(i)

04 end do

05 !$acc end kernels
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 CUDA Fortran is the Fortran version of CUDA C and is only supported by 
the PGI [1] and IBM compilers;

 CUDA provides a low level interface to Nvidia GPU cards is more difficult 
than OpenACC but provides more flexibility and opportunities for 
optimization;

 CUDA Fortran provides language extensions and are not part of the 
Fortran standard;

 Example CUDA Fortran codes for materials scientists can be found at [2];

CUDA Fortran (1)

[1] www.pgroup.com [2] https://github.com/RSE-Cambridge/2017-cuda-fortran-material

http://www.pgroup.com/
https://github.com/RSE-Cambridge/2017-cuda-fortran-material
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01 attributes(global) subroutine axpy(n, a, X, Y, Z)
02 integer, value :: n
03 real, value :: a
04 i = threadIdx%x + (blockIdx%x - 1) * blockDim%x
05 if (i <= n) Z(i) = a * X(i) + Y(i) 

06 use cudafor
07 real, allocatable, device :: X_D(:), Y_D(:), Z_D(:)
08 type(dim3) :: block, grid
09 allocate(X_D(n)); allocate(Y_D(n)); allocate(Z_D(n))
10 err = cudaMemCpy(X_D, X, n, cudaMemCpyHostToDevice)
11 err = cudaMemCpy(Y_D, Y, n)
12 block = dim3(128, 1, 1); grid = dim3(n / block%x, 1, 1)
13 call axpy<<<grid, block>>>(%val(n), %val(a), X_D, Y_D, Z_D)
14 Z(:) = Z_D(:)

CUDA Fortran (2)
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 You can only operate on device memory:

01 !$cuf kernel do(2) <<< *, * >>>

02 do j=1, ny

03 do i = 1, nx

04 a_d(i, j) = b_d(i, j) + c_d(i, j)

05 end do

06 end do

CUDA Fortran for DO Loops (1)
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 Reduction is automatically generated:

01 rsum = 0.0

02 !$cuf kernel do <<<*, *>>>

03 do i = 1, nx

04 rsum = rsum + a_d(i)

05 end do

CUDA Fortran for DO Loops (2)
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 Parallelism within single CPU core;

 Executes Single Instruction on Multiple Data (SIMD);

 General advice is to let the compiler do the work for you;

 Fortran array operations usually vectorised by compiler (check compiler 
feedback);

 If compiler is unable to vectorise and you know it is safe to do so, you 
can force vectorisation.

Vectorization (1)

www.nersc.gov/users/computational-systems/edison/programming/vectorization/
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01 do i = 1, n

02 Z(i) = a * X(i) + Y(i)

03 end do

Vectorization (2)

01 Z(1:n) = a * X(1:n) + Y(1:n)

01 do i = 1, n, 4

02 Z(i)   = a * X(i)   + Y(i)

03 Z(i+1) = a * X(i+1) + Y(i+1)

04 Z(i+2) = a * X(i+2) + Y(i+2)

05 Z(i+3) = a * X(i+3) + Y(i+3)

06 end do
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01 do i = 1, n, 4

02 <load X(i), X(i+1), X(i+2), X(i+3) into X_v>

03 <load Y(i), Y(i+1), Y(i+2), Y(i+3) into Y_v>

04 Z_v = a * X_v + Y_v

05 <store Z_v into Z(i), Z(i+1), Z(i+2), Z(i+3)>

06 end do

Vectorization (3)

01 do i = 1, n, 4

02 Z(i)   = a * X(i)   + Y(i)

03 Z(i+1) = a * X(i+1) + Y(i+1)

04 Z(i+2) = a * X(i+2) + Y(i+2)

05 Z(i+3) = a * X(i+3) + Y(i+3)

06 end do
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01 !$omp simd

02 do i = 1, n

03 Z(i) = a * X(i) + Y(i)

04 end do

05 !$omp end simd

Vectorization (4)
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 OpenMP is easy to use and test. OpenMP can be switched on/off simply 
by using a compiler flag;

 However, OpenMP is limited to a single memory space node and can 
suffer limited scalability. Race conditions can also occur which are 
difficult to debug;

 MPI offers higher scalability and can run on multiple server nodes, thus 
offering larger memory space;

 However, MPI is more difficult to use and requires code rewrite if 
parallelising sequential code;

Summary of Parallel Models (1)
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 MPI can suffer from process deadlocks, and race conditions when doing 
parallel I/O;

 CoArray is simple to use and runs across a number of server nodes. Easy 
to partition data across images.

 However, race conditions can easily occur and the developer is solely 
responsible for preventing them;

 Global Arrays is simpler to use than MPI and easy to partition data 
across processes. It is fully compatible with MPI;

 Like CoArray, race conditions can easily occur and must be managed.

Summary of Each Parallel Models (2)
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 PGAS parallel models are beneficial if you have irregular communication 
in your code. Implementing irregular communication in MPI is more 
difficult;

 CoArray offers convenient way to parallelise code using language syntax 
and is also beneficial for irregular communication;

 Performance of different parallel models, e.g. MPI and coarray, will vary 
depending on how the runtime system is implemented. You must 
benchmark to determine performance;

 One-sided communication in MPI is more difficult.

Summary of Each Parallel Models (3)
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 GPUs can provide high levels of performance assuming that your code is 
highly parallelisable and need not be cache efficient;

 High memory bandwidth of GPU memory;

 Multi-GPU executions on a single server node and multiple server 
nodes;

 Disadvantage is that codes must have high levels of parallelism;

 High memory latency between the CPU and GPU, thus a large amount of 
data must be moved to the GPU in a single transfer;

 The GPU must do sufficient amount of computation to offset cost of 
data transfer.

Summary of Each Parallel Models (3)



296

Parallel I/O using HDF5 
and NetCDF
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Parallel I/O

▪ I/O is often the most under-considered part of a program.

▪ At the end of a job, data needs to be stored for follow-on runs or post-
processing.

 The time spent doing I/O is often ignored as a “necessary evil”.

 It can in reality be very expensive.

 It may also be repeated at various points in the code execution, making its effect 
more significant.

▪ Parallel I/O aims to allow the user to read and write from a single file 
using any number of processes.
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Parallel I/O

▪ On parallel machines, I/O can become a major bottleneck.

▪ Ken Batcher, professor of computer science at Kent State University, coined the 
definition that
 “A supercomputer is a device for turning compute-bound problems into I/O bound problems.”

▪ Any code which uses a single process to perform I/O on behalf of all processes will 
serialise that part of the application.

▪ Running the I/O in parallel on a parallel file system should allow potential benefits in 
terms of the scalability of the whole code.
 If the I/O is not parallelised, it will hit scalability problems, as shown by Amdahl’s Law.

 A parallel I/O file system is required for much improvement in I/O throughput. 
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Common I/O Strategies

▪ Use one process to do all input and output.

 Collects data from other processes and outputs to disk.

 Serialises the output.

▪ Each process outputs one file.

 Parallelises output.

 Limits ability to change number of processes.

▪ Combination of above two strategies.

 One process outputs data on behalf of a few processes.
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Parallel I/O Libraries

▪ There are several I/O libraries which can enable parallel access to files.

▪ Two popular libraries, presented yesterday, are NetCDF and HDF5.
 NetCDF is Networked Common Data Format and HDF5 stands for Hierarchical Data Format (version 

5).

 Both allow architecture neutral files to be created.

 Both have parallel versions of the serial libraries.

▪ The parallel features of these libraries are built on top of MPI-IO.
 You need to know aspects of MPI-IO to effectively use these parallel libraries.
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Parallel HDF

▪ Parallel HDF5 (PHDF5) is a library for parallel I/O in the HDF format.

▪ It has C and Fortran interfaces.

▪ The files are compatible with serial HDF5 files and sharable between serial and 
parallel platforms. 

▪ PHDF5 is designed to have a single file image to all processes. 

▪ PHDF5 supports MPI programming but not shared memory programming. It is built 
on MPI-IO.



302

Parallel HDF

▪ In PHDF5 you open a parallel file within an MPI communicator. 

▪ All processes are required to participate. Most of the PHDF5 calls in the API are 
collective. Different files can be opened using different communicators. 

▪ With the Parallel HDF5 collective API you can create, open and close objects. 

▪ Reading and writing to datasets can be done non-collectively.

▪ Once a file is opened by the processes of a communicator: 
 All parts of the file and objects are accessible by all processes. 

 Multiple processes can write to the same dataset, or their own. 
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Creating and Accessing Files

▪ The programming model for creating and accessing a file is as follows: 
1. Set up an access template object to control the file access mechanism. 

2. Open the file. 

3. Close the file. 

▪ Each process of the MPI communicator creates an access template. This is done with 
the H5Pcreate / _f call to obtain the file access property list and the 
H5Pset_fapl_mpio / _f call to set up parallel I/O access. 

▪ An example code follows for creating an access template in PHDF5:
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Parallel HDF Fortran Example

PROGRAM FILE_CREATE

USE HDF5 ! This module contains all necessary modules

USE MPI

IMPLICIT NONE

CHARACTER(LEN=10), PARAMETER :: filename = "sds.h5"  ! File name

INTEGER(HID_T) :: file_id ! File identifier

INTEGER(HID_T) :: plist_id ! Property list identifier

INTEGER        :: error

INTEGER :: mpierror ! MPI error flag

INTEGER :: comm, info

INTEGER :: mpi_size, mpi_rank

comm = MPI_COMM_WORLD

info = MPI_INFO_NULL

CALL MPI_INIT(mpierror)

CALL MPI_COMM_SIZE(comm, mpi_size, mpierror)

CALL MPI_COMM_RANK(comm, mpi_rank, mpierror)

! Initialize FORTRAN predefined datatypes

CALL h5open_f(error)
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Parallel HDF Fortran Example

! Setup file access property list with parallel I/O access.

CALL h5pcreate_f(H5P_FILE_ACCESS_F, plist_id, error)

CALL h5pset_fapl_mpio_f(plist_id, comm, info, error)

! Create the file collectively.

CALL h5fcreate_f(filename, H5F_ACC_TRUNC_F, file_id, error, & 

access_prp = plist_id)

! Close property list and the file.

CALL h5pclose_f(plist_id, error)

CALL h5fclose_f(file_id, error)

! Close FORTRAN interface

CALL h5close_f(error)

CALL MPI_FINALIZE(mpierror)

END PROGRAM FILE_CREATE

MPI communicator
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Creating and Accessing Datasets

▪ The programming model for accessing a dataset with Parallel HDF5 is:

1. Set up file access property list with parallel I/O access 

2. Create a new file collectively

3. Create the dataspace for the dataset

4. Create the dataset

5. Create property list for the parallel dataset write

6. Write to the dataset

7. Close and release any resources

▪ For example:
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PHDF5 Dataset Example Fortran

! Initialize FORTRAN interface

CALL h5open_f(error)

! Setup file access property list with parallel I/O access.

CALL h5pcreate_f(H5P_FILE_ACCESS_F, plist_id, error)

CALL h5pset_fapl_mpio_f(plist_id, comm, info, error)

! Create the file collectively.

CALL h5fcreate_f(filename, H5F_ACC_TRUNC_F, file_id, error, access_prp = plist_id)

CALL h5pclose_f(plist_id, error)

! Create the data space for the dataset.

CALL h5screate_simple_f(rank, dimsf, filespace, error)

! Create the dataset with default properties.

CALL h5dcreate_f(file_id, dsetname, H5T_NATIVE_INTEGER, filespace, &

dset_id, error)
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PHDF5 Dataset Example Fortran

! Create property list for collective dataset write

CALL h5pcreate_f(H5P_DATASET_XFER_F, plist_id, error)

CALL h5pset_dxpl_mpio_f(plist_id, H5FD_MPIO_COLLECTIVE_F, error)

! For independent write use H5FD_MPIO_INDEPENDENT_F

! Write the dataset collectively.

CALL h5dwrite_f(dset_id, H5T_NATIVE_INTEGER, data, dimsfi, error, &

xfer_prp = plist_id)

! Deallocate data buffer.

DEALLOCATE(data)

! Close resources.

CALL h5sclose_f(filespace, error)

CALL h5dclose_f(dset_id, error)

CALL h5pclose_f(plist_id, error)

CALL h5fclose_f(file_id, error)

! Close FORTRAN interface

CALL h5close_f(error)

Create a data 

transfer property list 

and set to collective 

data transfer
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Creating and Accessing Dataset

▪ All processes that have opened a dataset may do collective I/O. 

▪ Each process may do an independent and arbitrary number of data I/O access calls 
by setting h5pset_dxpl_mpio / _F appropriately.

▪ If a dataset is unlimited, you can extend it with a collective call to H5Dextend / 
h5dextend_f 
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Writing Hyperslabs

▪ Each process defines the memory and file hyperslabs.

▪ Each process executes a partial write/read call which is either collective or 
independent.

▪ The memory and file hyperslabs in the first step are defined with the 
H5Sselect_hyperslab / h5sselect_hyperslab_f. 

▪ The start (or offset), count, stride and block parameters define the portion of the 
dataset to write to. 

▪ By changing the values of these parameters you can write hyperslabs by contiguous 
hyperslab, regularly spaced data in a column/row, pattern or chunk. 
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Writing Hyperslabs

▪ Contiguous hyperslab in Fortran
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! Each process defines dataset in memory and writes it to the hyperslab

! in the file.

count(1) = dimsf(1)

count(2) = dimsf(2)/mpi_size

offset(1) = 0

offset(2) = mpi_rank * count(2)

CALL h5screate_simple_f(rank, count, memspace, error)

! Select hyperslab in the file.

CALL h5dget_space_f(dset_id, filespace, error)

CALL h5sselect_hyperslab_f (filespace, H5S_SELECT_SET_F, offset, count, error)

! Create property list for collective dataset write

CALL h5pcreate_f(H5P_DATASET_XFER_F, plist_id, error)

CALL h5pset_dxpl_mpio_f(plist_id, H5FD_MPIO_COLLECTIVE_F, error)

! Write the dataset collectively.

CALL h5dwrite_f(dset_id, H5T_NATIVE_INTEGER, data, dimsfi, error, &

file_space_id = filespace, mem_space_id = memspace, xfer_prp = plist_id)

Writing Hyperslabs

memory datatype,

memory dataspace,

file dataspace,

transfer property list
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Writing Hyperslabs

 Regularly spaced data in Fortran
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Writing Hyperslabs

▪ By pattern

▪ By chunk
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Parallel I/O with NetCDF

▪ For parallel I/O, we require NetCDF-4.

▪ NetCDF-4 uses the parallel I/O features of HDF5. 

 Allowing many processes to read/write NetCDF data at the same time.

 This requires an implementation of MPI-2. 
 MPICH and OpenMPI are free implementations that can be used and supercomputers often 

have a proprietary implementation of MPI-2. 

 Other methods of parallelism are not supported by NetCDF. 
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Some History: The pNetCDF Package

▪ The pnetcdf package from Argonne and Northwestern can be used for parallel I/O 
with classic netCDF data (i.e. pre-NetCDF-4). 
 For classic and 64-bit offset formats, parallel I/O can be obtained with pnetcdf, the parallel 

netCDF package from Argonne and Northwestern. 

 pnetCDF is well-tested and maintained. See https://parallel-netcdf.github.io/ for info. 

 pNetCDF uses MPI-IO to perform parallel I/O. It is a complete rewrite of the core C library using 
MPI-IO instead of POSIX. 

 Unfortunately, the pnetCDF package implements a different API from the netCDF API, making 
portability with other netCDF codes a problem.

 Probably best to use NetCDF-4 nowadays.

https://parallel-netcdf.github.io/
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Opening NetCDF-4 Files in Parallel

▪ In Fortran
 Simply provide the optional parameters comm and info for nf90_create or 

nf90_open.

mode_flag = nf90_netcdf4

call handle_err(nf90_create(FILE_NAME, mode_flag, ncid, &

comm = MPI_COMM_WORLD, info = MPI_INFO_NULL))
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Collective and Independent Operations

▪ netCDF operations may be collective (must be done by all processes at 
the same time) or independent (can be done by any process at any 
time). 

 All netCDF metadata writing operations are collective. That is, all creation of 
groups, types, variables, dimensions or attributes. 

 Data reads and writes may be independent (the default) or collective. To make 
writes to a variable collective, call the nf90_var_par_access function.
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Parallel I/O Example

stat = NF90_CREATE(FILE_NAME, NF90_NETCDF4, ncid, comm=MPI_COMM_WORLD, &

info=MPI_INFO_NULL)

stat = NF90_DEF_DIM(ncid, "x", np, x_dimid)

stat = NF90_DEF_DIM(ncid, "y", np, y_dimid)

dimids = [ y_dimid, x_dimid ]

stat = NF90_DEF_VAR(ncid, "data", NF90_INT, dimids, varid)

stat = NF90_ENDDEF(ncid)

starts = [ 1, my_rank+1 ]

counts = [ np, 1 ]

stat = NF90_PUT_VAR(ncid, varid, data_out, start=starts, count=counts)

stat = NF90_CLOSE(ncid)
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Fortran Interoperability 
with C
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 C is another major programming language in computational science and 
Fortran 2003 provides an interface to it;

 It uses the iso_c_binding intrinsic Fortran module;

 If passing two-dimensional arrays between C and Fortran, remember to 
transpose the array;

 Only assumed sized arrays are supported in 2008. Assumed shaped 
arrays are only supported in Fortran 2018;

Fortran Interoperability with C

Fortran Kind Type Equivalent C Type

C_INT int

C_FLOAT float

C_DOUBLE double
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/* sum_c.c */

#include <stdio.h>

float sum_f( float *, int * );

int main( int argc, char *argv[] ) {

float x[4] = { 1.0, 2.0, 3.0, 4.0 };

int n = 4;

float res;

res = sum_f( x, &n );

}

Calling Fortran from C (1)

! sum_f.f90

function sum_f( x, n ) result ( res ) &

bind( C, name = 'sum_f' )

use iso_c_binding

implicit none

real(kind=C_FLOAT), intent(in) :: x(*)

integer(kind=C_INT), intent(in) :: n

real(kind=C_FLOAT) :: res

res = sum( x(1:n) )

end function sum_f
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 Compile both files:
$ gfortran -c sum_f.f90

$ gcc -c sum_c.c

 The bind attribute removes the leading underscore in the symbol table:
$ nm sum_f.o

0000000000000000 T sum_f

 Then do the final link - object files must be listed in this order:
$ gcc sum_c.o sum_f.o -o sum_c.exe

Calling Fortran from C (2)
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! sum_f.f90

program sum_f

use iso_c_binding

interface

function sum_c( x, n ) bind( C, name = 'sum_c' )

use iso_c_binding

real(kind=C_FLOAT) :: sum_c

real(kind=C_FLOAT) :: x(*)

integer(kind=C_INT), value :: n

end function sum_c

end interface

integer(kind=C_INT), parameter :: n = 4

real(kind=C_FLOAT) :: x(n) = [ 1.0, 2.0, 3.0, 4.0 ]

print *, sum_c( x, n )

end program sum_f

Calling C from Fortran (1)

/* sum_c.c */

float sum_c( float *x, int n ) 

{

float sum = 0.0f;

int i;

for ( i = 0; i < n; i++ ) {

sum = sum + x[i];

}

return sum;

}
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 Compile both files:
$ gcc -c sum_c.c

$ gfortran -c sum_f.f90

 The bind attribute tells the interface to call the function sum_c which is 
listed in the symbol table:
$ nm sum_c.o

0000000000000000 T sum_c

 Then do the final link - object files must be listed in this order:
$ gfortran sum_f.o sum_c.o -o sum_f.exe

Calling C from Fortran (2)
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 Optional dummy arguments - optional attribute;

 Assumed-length character dummy arguments - character(len=*), 
intent(in) :: header

 Assumed shaped arrays - real, intent(in) :: vec(:)

 Allocatable dummy arguments - real, allocatable, intent(out) 
:: table(:, :)

 Pointer dummy arguments - real, pointer, intent(in) :: 
vec(:)

Fortran 2018 Interoperability with C
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 The optional argument is passed as a pointer to C. If the dummy 
argument is a NULL pointer, then it is not present;

subroutine print_header( debug )

use iso_c_binding

integer(C_INT), optional :: debug

if ( present( debug )) then

print ‘(I0,1X,A)’, debug, ‘Error found’

else

print ‘(1X,A)’, ‘Error found’

end if

end subroutine

Optional Dummy Arguments (1)
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 To call with the optional argument in the C code:
int debug = 4;

print_header( &debug );

 To call without the optional argument:
print_header ( (int *)0 );

Optional Dummy Arguments (2)
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 Fortran calling C print function using descriptors:
interface

subroutine print_header( msg ) bind(C)

use iso_c_binding

character(len=*,kind=c_char) , intent(in) :: msg

end subroutine print_header

end interface

Assumed-Length Character Dummy Arguments (1)
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#include <stdio.h>

#include “iso_fortran_binding.h”

void print_header( CFI_cdesc_t *msg ) {

int ind; 

char *p = msg->base_addr;

for ( ind = 0; ind < msg->elem_len; ind++ ) 

putc( p[ind], stdout );

putc( ‘\n’, stdout );

}

Assumed-Length Character Dummy Arguments (2)
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 A C descriptor (CFI_cdesc_t) is a C structure with the following 
members:

void *base_addr - the address of the object. For unallocatable or 
disassociated pointers, it is NULL;

size_t elem_len - storage size in bytes;

int version - version number of the descriptor;

CFI_attribute_t attribute - whether the object is allocatable
(CFI_attribute_allocatable), pointer (CFI_attribute_pointer) or 
neither (CFI_attribute_other). 

CFI_rank_t rank - rank of the object and zero if a scalar;

C Descriptors (1)
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CFI_type_t type - data type of this object. Macro can be 
CFI_type_int, CFI_type_float, CFI_type_double, 
CFI_double_Complex, and many other macros;

CFI_dim_t dim[] - describing the shape, bounds and memory layout of 
the array object;

CFI_index_t lower_bound - the lower bound of array. Zero for  

everything else (member of dim);

CFI_index_t extent - size of the dimension (member of dim);

CFI_index_t sm - memory stride (member of dim).

C Descriptors (2)
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void abs_array( CFI_cdesc_t *array )

size_t i, nel = 1;

for ( i = 0; i < array->rank; i++) 

nel = nel * array->dim[i].extent;

if ( array->type == CFI_type_float ) {

float *f = array->base_addr;

for ( i = 0; i < nel; i++) f[i] = fabs( f[i] );

} /* and for other real types */

}

C Example
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 Fortran subroutines and functions can be called from Python;

 Take advantage of the speed of Fortran with the ease of Python;

 Computationally intensive functions are implemented in Fortran to 
provide the speed and efficiency;

 Python is a widely supported scripting language with a huge number of 
well supported libraries, e.g. NumPy, SciPy, Matplotlib;

 Extend the concept of reusable code to other programming languages;

 Python already calls many Fortran subroutines, e.g. in BLAS and LAPACK 
is called in SciPy.

Fortran Interoperability with Python



335

module sum_mod

contains  

subroutine sumpy( array_f, result_f )    

real, dimension(:), intent(in) :: array_f

real, intent(out) :: result_f        

result_f = sum( array_f )  

end subroutine sumpy  

function fumpy( array_f ) result( result_f )    

real, dimension(:), intent(in) :: array_f    

real :: result_f    

result_f = sum( array_f )  

end function fumpy  

end module sum_mod

Example Fortran Module
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 To compile the previous example:
$ f2py -c --fcompiler=gnu95 -m sum_mod sum_mod.F90 

 For list of other supported compilers:
$ f2py -c --help-fcompiler

 Will create the shared object library sum_mod.so which is imported:
from sum_mod import sum_mod;

import numpy;

a = sum_mod.sumpy( [ 1.0, 2.0 ] );

b = sum_mod.fumpy( [ 1.0, 2.0 ] );

c = sum_mod.sumpy( numpy.array( [ 1.0, 2.0 ] ) );

 The F90WRAP [1] tool is a better tool for calling Fortran from Python.

Calling Fortran from Python

[1] https://github.com/jameskermode/f90wrap
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 The statistical language R can only use Fortran subroutines;
module sums_mod

contains

subroutine rsum( array_f, len, result_f ) &

bind(C, name = "sums_mod_rsum_")

integer, intent(in) :: len

real(kind=DP), dimension(0:len - 1),intent(in) :: array_f

real(kind=DP), intent(out) :: result_f

result_f = sum( array_f(0:len - 1) )

end subroutine rsum

end module sums_mod

Fortran Interoperability with R (1)
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 Build a dynamic library (shared object):
$ gfortran -c sums_mod.F90 
$ gfortran -shared sums_mod.o -o sums_mod.so

 Then load it in R:
> dyn.load( “sums_mod.so” )

> .Fortran( “sums_mod_rsum”, array_f = as.double( 1:4 ), 

len = length( 1:4 ), c = as.double( 0 ))
$array_f
[1] 1 2 3 4
$len
[1] 4
$c
[1] 10

Fortran Interoperability with R (2)
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Don‘t try to reinvent the wheel

 Would you reimplement tools like Git, Valgrind, etc.?

 Are you paid for writing numerical components?

 Numerical Library is a tool and a building block to help you develop your 
scientific applications.

Why do you need Numerical Libraries?
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 Model your code at a higher level

• Use numerical algorithm instead of implementing them (e.g. optimizers)

 Concentrate on your task and core expertise

 Reduce development time

 Reduce maintenance time 

 Use external expertise

• choice of algorithms, support, speed

Why do you need Numerical Libraries?
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 Reliable components

• Stable numerical algorithms

 Coverage and availability of alternative algorithms

 Portability

• Different operating systems, languages, etc.

 Maintenance

• Bugfixes and regular updates

 Documentation and support

 Parallelization (OpenMP shared memory)

Desired Properties of Numerical Libraries
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 Hundreds of routines devoted to numerical analysis and statistics, the 
NAG Library helps users build applications for many different industries 
and fields.

 For your current and future programming environments

• NAG Library routines are available for Fortran, C, C++, Python, .NET, Java, 
MATLAB and others

• NAG Library routines can be called many computer languages/environments such 
as Visual Basic, Octave, Scilab, R, etc. 

• Assists migration of applications to different environments

The NAG Library
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 Root Finding 

 Summation of Series 

 Quadrature

 Ordinary Differential Equations

 Partial Differential Equations 

 Numerical Differentiation 

 Integral Equations 

 Mesh Generation

 Interpolation 

 Curve and Surface Fitting 

 Optimization

 Approximations of Special
Functions

NAG Library Full Contents

▪ Dense Linear Algebra

▪ Sparse Linear Algebra

▪ Correlation & Regression Analysis

▪ Multivariate Methods

▪ Analysis of Variance

▪ Random Number Generators

▪ Univariate Estimation 

▪ Nonparametric Statistics 

▪ Smoothing in Statistics 

▪ Contingency Table Analysis 

▪ Survival Analysis

▪ Time Series Analysis 

▪ Operations Research 
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 Global reputation for quality – accuracy, reliability and robustness… 

 Extensively tested, supported and maintained code

 Reduces development time

 Allows concentration on your key areas

 Components

• Fit into your environment

• Simple interfaces to your favourite packages

 Regular performance improvements! 

 Give “qualified error” messages e.g. tolerances of answers

Why use NAG Libraries and Toolboxes?
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 Supporting Wide Range of Operating systems…

• Windows, Linux, Mac, …

 and a number of interfaces

• C, C++

• Fortran

• VB, Excel & VBA

• C#, F#, VB.NET

• Java

• Python

• Julia

NAG Library - Ease of integration

• Excel

• MATLAB 

• Hadoop / Apache Spark 

• LabVIEW

• R, S-Plus 

• Mathematica

• Scilab, Octave
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 First priority: accuracy

 Second priority: performance

 Algorithms chosen for

• usefulness

• robustness

• accuracy

• stability

• speed

NAG development philosophy
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 Single point of contact: dedicated technical desk

 Highly knowledgeable team

• Support from the subroutine developers

Advice on a wide range of areas including
• functionality

• diagnosis of user problems

• work around to assist users ahead of standard updates

• product availability for specific operating systems

• advice on the best functionality for your application needs

• wide range of documentation and technical reports

 Updates and access to new releases

NAG Technical Support Service
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 Long history of collaboration with the world’s leading scientists and 
engineers across academia, government research and industry 

 Examples of ongoing collaboration are:

• work with mathematicians and statisticians across the globe to produce the best 
/ most competitive algorithms for the NAG Library and bespoke solutions;

• in accelerator computing / HPC (many core, GPU,…), working closely with: 
▪ the main hardware vendors (AMD, ARM, Intel and NVIDA) 

▪ relevant leading academics (inc. Professors Mike Giles, William Shaw, Nick Higham, Jack 
Dongarra);

• innovating by working with RWTH Aachen University to deliver Algorithmic 
Differentiation solutions (Prof. Uwe Naumann et al).

NAG Technology Innovation
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 The NAG Library is divided into chapters, each devoted to a branch of 
maths or statistics. Each has a 3-character name and a title, e.g., F03 –
Determinants.

 Exceptionally, Chapters H and S have one-character names.

 All routines in the Fortran Library have six-character names, beginning 
with the characters of the chapter name, e.g. d01ajf (last character 
stands for Fortran). 

 There are also “long names” that aim to be more descriptive.

NAG Library
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 Library has complete documentation

• Distributed in environment appropriate formats including PDF, HTML and 
MathML formats

• Chapter introductions
▪ technical background to the area

▪ assistance in choosing the appropriate routine

• Routine Documentation
▪ description of method

▪ specification of each parameter

▪ explanation of error exits

▪ example programs

▪ remarks on accuracy

NAG Library Documentation (1)

file:///C:/Program Files/NAG/Mark 26-1 Manual/nagdoc_cl26/html/frontmatter/manconts.html
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 All documentation is available online
▪ https://www.nag.co.uk/numeric/fl/nagdoc_latest/html/frontmatter/manconts.html

NAG Library Documentation (2)
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 A detailed implementation specific description on how to compile and 
run the examples is given in User’s Note

▪ https://www.nag.co.uk/numeric/fl/nagdoc_latest/html/genint/usersnote.html

 The easiest way to start

• On Windows 
▪ use nag_example_*.bat batch files located in [INSTALL_DIR]/batch

▪ you might need to run the envvars.bat batch file first to set the environment variables

• On Linux
▪ use nag_example_* scripts located in [INSTALL_DIR]/scripts

First Steps with the NAG Library

https://www.nag.co.uk/numeric/fl/nagdoc_latest/html/genint/usersnote.html
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 The routine has detected a warning or an error if the  value of argument 
IFAIL (or, in chapters F07 and F08 INFO) is non-zero on exit

 For details about how to interpret this value the user should consult the 
Error Indicators and Warnings section of the document for the particular 
routine

Errors and Warnings
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 IFAIL argument

• allow you to specify what action the Library routine should take if an error is 
detected

• to inform you of the outcome of the call of the routine

 On input if IFAIL=

• 0: Hard fail. The execution of the program will terminate if the routine detects 
an error

• 1: Soft fail with silent exit. Returns control to the calling program without 
output of the error message

• -1 :   Soft fail with noisy exit. Outputs an error message before the control is 
returned to the calling program

Don’t forget to test the value of IFAIL in soft fail mode!

Errors and Warnings
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 NAG Fortran Library provides static and shared libraries that use 
different implementations of BLAS and LAPACK routines

• Intel MKL (should be used for best performance)
▪ Multithreaded 

▪ libnag_mkl.a (Linux), nag_mkl_M*.lib (Windows)

▪ libnag_mkl.so (Linux), FLW6I26DE_mkl.lib/FLW6I26DE_mkl.dll 

(Windows)

• NAG
▪ libnag_nag.a (Linux), nag_nag_M*.lib (Windows)

▪ libnag_nag.so (Linux), FLW6I26DE_nag.lib/FLW6I26DE_nag.dll 

(Windows)

Different Implementations of BLAS and LAPACK
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 Interface blocks for all user callable routines

• Interface blocks are separated by chapters

 Different levels of parallelization

• Using multithreaded version of Intel MKL 
▪ BLAS and LAPACK

• Using NAG Fortran library for SMP & Multicore

Interface blocks and Parallelism
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 Interoperability with C/C++ 

• C Headers

• NAG C library

 Interoperability with Python

• Full set of bindings available for NAG C library – for Windows, Linux and Mac

• Access to NAG routines from Python for quick prototyping

• Same high quality NAG routines used in production system (C, Fortran, .NET, Java, 
…) as used under Python prototype

• Supported by white papers for calling NAG Fortran or C Library from Python
▪ https://www.nag.co.uk/nag-library-python

NAG Library Interoperability with C/C++ and Python

https://www.nag.co.uk/nag-library-python
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The NAG Library provides:
 Standard and advanced routines

• hundreds of numerical routines

 Reliability

• all routines vigorously tested

• extensive experience of implementing numerical code

 Portability

• accessible from many software environments

• constantly being implemented for new architectures

 Support

• directly supported by the team that creates the code

Conclusions – NAG solutions
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 Have you found this workshop useful? 

 What tools, libraries, and techniques will you now use for your code 
development?

 What aspects of the workshop were not useful?

 What could be improved?

 Do you feel more confident after attending this workshop?

End of Workshop - Discussion for 10 minutes
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 Please complete workshop feedback at:
http://www.nag.co.uk/content/fortran-modernization-

workshop-feedback

 For question “where did you attend this workshop?”, please put the 
name of the city. Many thanks!

Workshop Feedback
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End of Day Two - Exercises 2



362

 “Modern Fortran in Practice”, A. Markus. Cambridge University Press, 
2012;

 “Modern Fortran”, N. Clerman and W. Spector. Cambridge University 
Press, 2012;

 “Modern Fortran Explained: Incorporating Fortran 2018”, M. Metcalf, J. 
Reid and M. Cohen. Oxford University Press, 2018;

 “Git Pocket Guide”, R. Silverman. O’Reilly, 2013;

 "Why Programs Fail", A. Zeller. Morgan Kaufmann, 2009.

References (1)



363

 “CUDA Fortran for Scientists and Engineers”, G. Ruetsch and M. Fatica. 
Morgan Kaufmann, 2013;

 “Managing Projects with GNU Make”, R. Mecklenburg. O'Reilly, 2004;

 “Introduction to Programming with Fortran”, I. Chivers and J. 
Sleightholme. Springer, 2015;

 “Scientific Software Development in Fortran”, Drew McCormack. Lulu, 
2010.

 “Numerical Computing with Modern Fortran”, R. Hanson, SIAM. 2014.

 “Guide to Fortran 2008 Programming”, W. Brainerd. Springer. 2015.

References (2)



364

 “A Guidebook to Fortran on Supercomputers”, J. Levesque and J. 
Williamson. Academic Press, 1989.

 “Programming Models for Parallel Computing”, P. Balaji. MIT Press, 
2015.

 “High Performance Computing: Problem Solving with Parallel and Vector 
Architectures”, G. Sabot. Addison Wesley, 1995.

 Fortran Standards Web site, https://wg5-fortran.org

 “Fortran For Scientists and Engineers”, S. Chapman. McGraw-Hill, 2017;

 Fortran 90 guide, http://www.fortran90.org/

References (3)

https://wg5-fortran.org/
http://www.fortran90.org/


365

 “Introduction to Computational Economics using Fortran”, H. Fehr and F. 
Kindermann. OUP, 2018;

 “Parallel Programming with Co-Arrays”, R. Numrich. CRC Press, 2018;

 Fortran Wiki, http://fortranwiki.org

 “Modern Fortran”, Milan Curcic. Manning Publications, 2019;

 “Scientific Software Design: The Object-Oriented Way”, D. Rouson. 
Cambridge University Press, 2014;

References (4)

http://fortranwiki.org/


Experts in numerical algorithms and HPC 
services

Let’s Link Up
Ways to connect with us

Twitter: 
www.twitter.com/NAGTalk

Blog: 
http://www.nag.co.uk/blog

LinkedIn: 
http://www.linkedin.com/e/v
gh/2707514/


