»
-

wo
9

&

’ L 35 :‘:‘“;‘ ' -?'.,i’ o 44 380 |h ll/ll't"llﬂLn'fl W[,W“ﬂ :Mi AL B34

TS 1 20 1 ¢ h

* 4 SRS 4 , Ay Y
. S 101810 10 (e £ / /u
s e nwwzw
'bu" 3 ¥y A ”w’l 20 11 Il
? h] LU ln./zl/m/g Z /grzg ” Z?’//)
- s B B4 e owr oas ;"‘7 IWW 5 f;/;/f/’g //7’ % :
- ! 2 . ST N e . Z 2
“((‘ ’ - O SN ,//
- . I N NS
4 > . p : y
e & SRR
- o e
-y iy b N a -~
N .y ",/ -
L - " -

na ® Experts in numerical software and
High Performance Computing

Talk Overview

» A Brief History of MPI

» Non-Blocking Collectives

» One-Sided Communication
» Fortran 2008 Bindings

» Other New Features

» Current Implementations and MPI-4.0

nag High Performance Computing Consulting | Numerical Algorithms | Software Engineering Services | www.nag.com

A Brief History of MPI

nag High Performance Computing Consulting | Numerical Algorithms | Software Engineering Services | www.nag.com

A New Hope

» January, 1993 — The MPI Forum first met
» May, 1994 — Version 1.0 of the standard published

» June, 1995 — Version 1.1 corrected and clarified the
above

» July, 1997 — MPI-2 published, specifying extensions to
MPI. Chapter 3 of this document contained
corrections/clarifications to MPI-1.1, hence specifying
MPI-1.2

» MPI standard development then stalled...

nag High Performance Computing Consulting | Numerical Algorithms | Software Engineering Services | www.nag.com

The MPI Strikes Back

» ...to be picked up again a decade later.

» May 2008 — MPI-1.3 published, combining the MPI-1.1
document, the MPI-1.2 chapter of the MPI-2 document
and additional errata

» June 2008 — MPI-2.1 published, combining the MPI-1.3
and MPI-2 documents and adding errata and
clarifications.

» September 2009 — MPI-2.2 published, adding a few
extensions but mostly corrections and clarifications of
MPI-2.1.

nag High Performance Computing Consulting | Numerical Algorithms | Software Engineering Services | www.nag.com

Return of the MPI

» September 2012 — MPI-3.0 published, a major update of
the standard

» June 2015 — MPI-3.1 published, adding some new
functionality but mostly corrections and clarifications of
MPI-3.0. This is the current standard.

» The MPI-4.0 standard is currently under development.

nag High Performance Computing Consulting | Numerical Algorithms | Software Engineering Services | www.nag.com

Changes made at MPI-3

» New functionality

- Non-blocking collectives

- New one-sided communication operations
- Fortran 2008 bindings

- Neighbourhood collectives

- Tools interface

- Plus several minor additions

» Some previously-deprecated functionality now removed
 Including the C++ bindings

nag High Performance Computing Consulting | Numerical Algorithms | Software Engineering Services | www.nag.com

Non-Blocking Collectives

nag High Performance Computing Consulting | Numerical Algorithms | Software Engineering Services | www.nag.com

Non-blocking Collective Operations

» Non-blocking versions of all collective communication
functions have been added.

» As with point-to-point,
- the names are differentiated from the blocking calls by the addition of an I
(for Immediate return) after the MPI _
* e.8.MPI TIbcast, MPI_ Ireduce, MPI Iallgather and, of course, MPI Tbarrier

- the calls return an MPI_Request object, which is later used in a call to
MPI_Wait/MPI_Test to complete the operation.

nag High Performance Computing Consulting | Numerical Algorithms | Software Engineering Services | www.nag.com

A Non-blocking Broadcast

INTEGER, DIMENSION(100) :: arrayl, array?2
INTEGER :: root=0
INTEGER :: req, 1lerr

CALL MPI IBCAST (arrayl, 100, MPI INTEGER, &
root, MPI COMM WORLD, req, ierr)

! Computation that doesn’t require arrayl
CALL compute (array2, 100)
CALL MPI WAIT(req, MPI STATUS IGNORE, 1lierr)

nag High Performance Computing Consulting | Numerical Algorithms | Software Engineering Services | www.nag.com

A Note on the Matching of Collective Operations

» Non-blocking collective operations do not match
blocking collective operations

- unlike point-to-point

nag High Performance Computing Consulting | Numerical Algorithms | Software Engineering Services | www.nag.com

This Example is Wrong!

MPI Request req;

switch (rank) {
case 0:
MPI Talltoall(sbuf, scnt, stype, rbuf,
rcnt, rtype, comm, &req);

MPI Wait(&req, MPI STATUS IGNORE) ;
break;

case 1:
MPI Alltoall (sbuf, scnt, stype, rbuf,
rcnt, rtype, comm) ;
break;

nag High Performance Computing Consulting | Numerical Algorithms | Software Engineering Services | www.nag.com

Non-blocking Collective Operations

» Multiple non-blocking collectives may be outstanding on
a single communicator.

MPI Request reqgs[3];

compute (bufl) ;

MPI Ibcast(bufl, count, type, 0, comm, &reqs[0]);
compute (buf2) ;

MPI Ibcast(buf2, count, type, 0, comm, &reqgs[l]);
compute (buf3) ;

MPI Ibcast(buf3, count, type, 0, comm, &reqs[2]);
MPI Waitall (3, reqs, MPI STATUSES IGNORE) ;

nag High Performance Computing Consulting | Numerical Algorithms | Software Engineering Services | www.nag.com

Non-blocking Collective Operations

» All collective operations (blocking and non-blocking) in a
given communicator must be called in the same order
on all processes.

nag High Performance Computing Consulting | Numerical Algorithms | Software Engineering Services | www.nag.com

This Example is Wrong...

MPI Request req;
switch (rank) {
case O:
MPI Ibarrier (comm, &req);
MPI Bcast (bufl, count, type, 0, comm);
MPI_Wait(&req, MPI_STATUS_IGNORE);
break;
case 1:
MPI Bcast (bufl, count, type, 0, comm);
MPI Ibarrier (comm, &req);
MPI_Wait(&req, MPI_STATUS_IGNORE);
break;

nag High Performance Computing Consulting | Numerical Algorithms | Software Engineering Services | www.nag.com

...but could be re-written if we really wanted to do this.

MPI Request req;
MPI Comm dupcomm;
MPI Comm dup (comm, &dupcomm) ;
switch (rank) {
case O0:
MPI Ibarrier (comm, é&req);
MPI Bcast (bufl, count, type, 0, dupcomm);
MPI Wait (&req, MPI_STATUS IGNORE) ;
break;
case 1:
MPI Bcast (bufl, count, type, 0, dupcomm);
MPI Ibarrier (comm, é&req);
MPI Wait (&req, MPI_STATUS IGNORE) ;
break;

nag High Performance Computing Consulting | Numerical Algorithms | Software Engineering Services | www.nag.com

Overlapping Communicators

» Non-blocking collective operations can be used to
enable simultaneous collective operations on multiple
overlapping communicators.

nag High Performance Computing Consulting | Numerical Algorithms | Software Engineering Services | www.nag.com

Hold on a minute, did you say Non-blocking Barrier?

» Yes, that’s right — a barrier without all that tedious
waiting around! Let’s check what it actually does and
then look at a “real” example.

INTEGER :: req, ierr
CALL MPI IBARRIER(MPI COMM WORLD, req, ierr)

CALL MPI WAIT (req, MPI STATUS IGNORE, ierr)

nag High Performance Computing Consulting | Numerical Algorithms | Software Engineering Services | www.nag.com

A “Real” Example: Dynamic Sparse Data Exchange (DSDE)

» We have an N-body code with the physical domain
distributed across different processes.

» Computation is divided into 2 phases:

- 1) Calculation of forces and 2) movement of particles

» Particles may move from one process to another.

» Only the originating process knows which particles are
leaving and where they are going.

» The destination processes typically won’t know how
much they will receive, if anything, from the other
processes.

nag High Performance Computing Consulting | Numerical Algorithms | Software Engineering Services | www.nag.com

Standard Ways of Implementing DSDE

» The “obvious” solution is to
- First exchange the data sizes with MPI_Alltoall
- And to use these to actually exchange the data in a call toMPI_Alltoallv

» This sends p? data items for a communicator of size p

- Not ideal for sparse communication around the neighbourhood of each
process.

» An alternative approach would be to use
MPI_Reduce scatter so that each process knows how
many messages it has to receive, and then to receive
them using MPI_Probe with MPI_ANY SOURCE.

- Still communicating p? items of metadata.

nag High Performance Computing Consulting | Numerical Algorithms | Software Engineering Services | www.nag.com

DSDE with Non-blocking Barrier

Each process sends each of its messages using
MPI Issend

barrier active = barrier completed = 0

While ('barrier completed)
Check for incoming data using MPI Iprobe with MPI ANY SOURCE
If there is any incoming data, then receive it
If (!'barrier active)
Call MPI_Testall with the request handles from the MPI_Issend calls
If all the MPI Issend messages have completed,
then call MPI Ibarrier and set barrier active =1

Else
Call MPI Test with the request handle returned by MPI Ibarrier

If completed, set barrier completed =1

nag High Performance Computing Consulting | Numerical Algorithms | Software Engineering Services | www.nag.com

One-Sided Communication

nag High Performance Computing Consulting | Numerical Algorithms | Software Engineering Services | www.nag.com

One-Sided Communication at MPI-2

» One-sided communication was introduced at MPI-2 with
the aim of decoupling data transfer and process
synchronisation.

» Each process would expose part of its memory, called a
window, to other processes in the communicator via a
calltoMPI Win create.

» Routines were specified for controlling when windows
can be accessed, epochs.

» Three routines were defined for transferring data
- MPI_Put,MPI_ Get and MPI_Accumulate

nag High Performance Computing Consulting | Numerical Algorithms | Software Engineering Services | www.nag.com

Additions at MPI-3

» New window creation routines
» New atomic read-modify-write operations
» New request-based RMA operations

IH

» A new “unified memory mode

nag High Performance Computing Consulting | Numerical Algorithms | Software Engineering Services | www.nag.com

New Window Creation Routines

> MPI_Win_allocate

MPI allocates the memory associated with the window
Instead of the user passing allocated memory

» MPI Win create dynamic
Creates a window without memory attached

- The user can dynamically attach and detach memory to/from the window by
callingMPI_Win attachandMPI_Win detach

» MPI Win allocate shared

Creates a window of shared memory (within a node) that can be accessed
by direct load/store accesses as well as RMA operations.

nag High Performance Computing Consulting | Numerical Algorithms | Software Engineering Services | www.nag.com

New Atomic Read-Modify-Write Operations

» MP I_Ge t_accumulate

- The remote data is returned to the caller before the sent data is
accumulated into the remote data.

» MPI Fetch and op

Performs an MPI_Get_accumulate operation on single elements of data.
This allows for a faster implementation.

» MPI compare and swap

- A single value at the origin is compared to a value at the target. The value at
the target is replaced by a third value if the values at the origin and target
are equal. The original value at the target is returned.

nag High Performance Computing Consulting | Numerical Algorithms | Software Engineering Services | www.nag.com

Request-based RMA Communication Operations

» MPI_Rput, MPI Rget, MPI Raccumulate and
MPI Rget accumulate

» These routines return a request handle, which can later
be used in one of the MPI_Test/MPI_Wait family of
routines to test/wait for completion.

» Only valid within a passive target epoch.

- i.e. only the origin process is explicitly involved in the transfer

nag High Performance Computing Consulting | Numerical Algorithms | Software Engineering Services | www.nag.com

The Unified Memory Model

» A new “unified memory model” had been added, in
addition to the model assumed at MPI-2, now referred
to as the “separate memory model”.

» The unified memory model assumes coherent memory
(i.e. caches and explicit communication buffers) and the
separate memory model does not.

- Hence, the unified memory model allows the user to omit some
synchronisation calls and potentially improve performance.

» The memory model of a window can be determined by
accessing the attribute MPI_WIN MODEL.

nag High Performance Computing Consulting | Numerical Algorithms | Software Engineering Services | www.nag.com

Fortran 2008 Bindings

nag High Performance Computing Consulting | Numerical Algorithms | Software Engineering Services | www.nag.com

Fortran 2008 Bindings

» An additional set of Fortran bindings

» Supports full and better quality argument checking with
individual handles

» Support for choice arguments

- Similarto (void *) inC

» Enables passing array subsections to non-blocking
functions

» Optional ierror argument

» Fixes many issues with existing Fortran bindings

nag High Performance Computing Consulting | Numerical Algorithms | Software Engineering Services | www.nag.com

Fortran 2008 Bindings

» There are now three methods of Fortran support

- USE mpi_£08 — the only method consistent with the Fortran standard
(Fortran 2008 + TS29113; or Fortran 2018)

- USE mpi — the standard states “its use is not recommended”
INCLUDE ‘mpif.h’ —its useis “strongly discouraged”

nag High Performance Computing Consulting | Numerical Algorithms | Software Engineering Services | www.nag.com

Err, remind me what TS29113 is?

» Technical Specification on “Further Interoperability of
Fortran and C”

. https://wg5-fortran.org/N1901-N1950/N1942.pdf
- Now incorporated into the Fortran 2018 standard.

» The relevant additional language features are assumed-
type, assumed-rank and an extension to the
ASYNCHRONOUS attribute.

- An assumed-type object is declared as TYPE (*)
- An assumed-rank object is declared with DIMENSION(. .)

- ASYNCHRONOUS attribute extended to apply to variables used for
asynchronous communication

nag High Performance Computing Consulting | Numerical Algorithms | Software Engineering Services | www.nag.com

https://wg5-fortran.org/N1901-N1950/N1942.pdf
https://wg5-fortran.org/N1901-N1950/N1942.pdf

How does that affect the bindings?

» In the original Fortran binding, we have

MPI_ISEND (BUF, COUNT, DATATYPE, DEST, TAG, COMM, REQUEST, IERROR)
<type> BUF (*)

INTEGER COUNT, DATATYPE, DEST, TAG, COMM, REQUEST, IERROR

» In the shiny new Fortran 2008 binding, we have

MPI Isend(buf, count, datatype, dest, tag, comm, request, ierror)
TYPE (*) , DIMENSION(..), INTENT (IN), ASYNCHRONOUS :: buf

INTEGER, INTENT(IN) :: count, dest, tag

TYPE (MPI_Datatype), INTENT (IN) :: datatype

TYPE(MPI_Comm), INTENT (IN) :: comm

TYPE (MPI_Request), INTENT (OUT) :: request

INTEGER, OPTIONAL, INTENT(OUT) :: ierror

nag High Performance Computing Consulting | Numerical Algorithms | Software Engineering Services | www.nag.com

Other New Features

nag High Performance Computing Consulting | Numerical Algorithms | Software Engineering Services | www.nag.com

Neighbourhood Collectives

» Neighbourhood collectives perform collective
communication between nearest neighbours in an MPI
Cartesian, Graph or Distributed Graph topology.

- Useful for stencil computations that require nearest-neighbour exchanges

» The new routines are:

- MPI Neighbor allgather and MPI_ Neighbor allgatherv

- MPI Neighbor alltoall,MPI Neighbor alltoallvand
MPI Neighbor alltoallw

- And the non-blocking counterparts to the above routines.

nag High Performance Computing Consulting | Numerical Algorithms | Software Engineering Services | www.nag.com

The MPI Tool Information Interface

» Beyond the PMPI profiling interface

» An extensive interface to allow tools (debuggers,
performance analysers, etc) to extract information
about MPI processes

» Note that each implementation defines its own
performance and control variables; MPI| does not define
them.

nag High Performance Computing Consulting | Numerical Algorithms | Software Engineering Services | www.nag.com

MPI Comm split type

» Splits the group associated with an existing
communicator into subgroups of the same split_type
and associates a new communicator with each.

» The split_type MPI_COMM TYPE SHARED is predefined.

|
MPI_COMM_WORLD

MPI_Co mm_split_typel(COM M_TYPE_SHARED)

{ J\ JAN J
| Y Y
Shared memory Shared memory Shared memory
communicator communicator communicator
J’ MPI_Win_allocate_shared ¢ ¢
\ J\ J\ J
Y Y Y
Shared memory Shared memory Shared memory
window window window

nag High Performance Computing Consulting | Numerical Algorithms | Software Engineering Services | www.nag.com

Matching Probe and Recv

» MPI_Probe and MPI_Iprobe check for incoming
messages without receiving them but since the list of
incoming messages is global amongst the threads of an
MPI process, these calls can be problematic in
multithreaded environments.

» The new calls MPI_Mprobe and MPI_Improbe, used with
the new matched receive calls, MPI_Mrecv and
MPI_Imrecv avoid this problem.

- The matched probe calls return a handle to the message, which can then be
used in the matched receive call to actually receive that message.

nag High Performance Computing Consulting | Numerical Algorithms | Software Engineering Services | www.nag.com

“const” correct C bindings

» For example, the C binding for MPI_Send is now

int MPI Send(const void* buf, int count,

MPI Datatype datatype, int dest, int tag, MPI_Comm comm)

nag High Performance Computing Consulting | Numerical Algorithms | Software Engineering Services | www.nag.com

Other new features

» Non-collective communicator creation routine

» Non-blocking MPI_Comm dup

» MPI_Type create hindexed block routine

nag High Performance Computing Consulting | Numerical Algorithms | Software Engineering Services | www.nag.com

Current Implementations and MPI 4.0

nag High Performance Computing Consulting | Numerical Algorithms | Software Engineering Services | www.nag.com

Status of MPI-3.1 Implementations at June 2018

Cray
Tianhe
Intel MPI
1BM
HPE
Fujitsu
MS
MPC
NEC
Sunway
RIKEN
AMPI

MPICH
MVAPICH
Open MPI

BG/Q
(legacy)
PE
(legacy) ?

< | Spectrum

v i v ‘v i v v v v o+ |SlideUpdated 11/6/2018

NBC A N T A A * A~ 4

Nbr. Coll. R Y Y Y S Y Y .
..... Release dates are estimated
. - . - V . . V .

)| and are subject to change
Shr. mem viv ivivivIiv v v IvIivIvIivIvIiv S a’[any’[ime

...

MPI_T A Y T T B Y v SV Y N e LT L _
: 3 2 3 ; : : : ; ; : : : : ; ; X indicates no publicly

o : 3 : 2 . g : : announced plan to
Sisbety : P : 5 : : Pl P A I R implement/support that
..... forneend b featirg

Fo08
Bindings

New Dtypes T T e A Y T A R R Ve A S 74

Large

MProbe viviviviviIivi v v IV IivIvVvivIivIivVvIivivi v Thanks to

NBC 1/0 S " S S S I S T S SV I S S B o V. [

Pavan
Balaji

! Open Source but unsupported 2No MPI_T variables exposed * Under development (*) Partly done

nag High Performance Computing Consulting | Numerical Algorithms | Software Engineering Services | www.nag.com

» Extensions to better support hybrid programming
models

- Each thread would have its own “rank”, which would make MPI messages
from multiple threads faster.

» Support for fault tolerance in MPI applications
» Persistent collectives

» Performance assertions and hints

nag High Performance Computing Consulting | Numerical Algorithms | Software Engineering Services | www.nag.com

Want a say in the future of MPI?

» Please complete this short international survey of MPI
users for the MPI Forum by 15t April, 2019:

https://docs.google.com/forms/d/e/1FAlpQLSd1bDppVODc8nBOB;l
XdgSCO MuEuNAAbBixl4onTchwSQFwg/viewform

nag High Performance Computing Consulting | Numerical Algorithms | Software Engineering Services | www.nag.com

https://docs.google.com/forms/d/e/1FAIpQLSd1bDppVODc8nB0BjIXdqSCO_MuEuNAAbBixl4onTchwSQFwg/viewform
https://docs.google.com/forms/d/e/1FAIpQLSd1bDppVODc8nB0BjIXdqSCO_MuEuNAAbBixl4onTchwSQFwg/viewform
https://docs.google.com/forms/d/e/1FAIpQLSd1bDppVODc8nB0BjIXdqSCO_MuEuNAAbBixl4onTchwSQFwg/viewform

Any questions?

I DON'T ALWAYS RUN IN
_+PARALLEL

3

BUT WHENT'DO, 1 USE
MPI-3

memegenerator net

nag High Performance Computing Consulting | Numerical Algorithms | Software Engineering Services | www.nag.com

