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• A good ensemble forecast system

– Reliability and Sharpness

• The Perfect Storm

– When the going gets tough …

… consult the diagnostics!!

• Extratropical transition of Tropical Cyclone Karl

Challenges and Limits in Ensemble Weather Prediction - Outline
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IFS

What makes a good ensemble forecast system?
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Motivation: Reliability and Sharpness
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In a reliable forecast system, the truth should be statistically 

indistinguishable from the individual ensemble members

Reliability is very useful: an event predicted to occur with 

probability 12% will happen with frequency 12%

Bergen

An easily testable consequence of reliability is that

𝐄𝐫𝐫𝐨𝐫𝟐 = 𝐒𝐩𝐫𝐞𝐚𝐝𝟐

(averaged over many forecast start dates)

“The task of NWP research is to maintain/improve reliability while 

decreasing spread (improving refinement)”

Q. Can we develop diagnostics which efficiently (optimally?) guide 

us in this task?
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Ensemble spread and error
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Annual means N.Hem. (ECMWF)
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Timeseries for Europe at D+6 (TIGGE)

…but we make 

ensemble forecasts to 

represent the day-to-day 

variations in predictability 

and uncertainty. Can we 

evaluate it in our 

forecasts?
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Animation of ECMWF ensemble forecast spread 20170305 12Z D+0 to 6: 𝜎𝑍500
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Uncertainty growing from various sources, is itself 

advected, and becomes large over Europe by D+6



Uncertainty growth-rate along the truth trajectory – Based on EDA background 𝜎𝑃𝑉315
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Control forecast PV315=2, v850 and q|v|850, Ensemble-mean precipitation. 1d running-mean gives 12h-integrated growth rate with any diurnal cycle removed. T21 smoothed

European Centre for Medium-Range Weather Forecasts Mark J Rodwell

Interaction of uncertain features, 

large ENS spread & poor 
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Much uncertainty growth associated 

with moist processes: Warm Conveyor-

Belts, and Meso-Scale Convection

Q: Is sensitivity to moist processes 

real or due to deficiencies in model 

uncertainty representation? TIGGE?

Aim: Evaluate short-range 

synoptic flow-dependent 

representation of uncertainty
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8

Control forecast Z250 (CI=300m) and v850, Ensemble-mean precipitation. 1d running-mean gives 12h-integrated growth rate with any diurnal cycle removed. T21 smoothed

European Centre for Medium-Range Weather Forecasts Mark J Rodwell

Uncertainty growth-rate along the truth trajectory - Based on 12h ENS Z250hPa TIGGE

ECMWF:

EDA(PV315K) ≈ 

ENS(Z250hPa) ≈ 

JMA:

≈ ECMWF

UKMO:

Stronger 

growth-rates 

over 

Europe/Africa 

KMA:

Weaker 

everywhere 

Which is best?
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Reliability in ensemble data assimilation

9

After Rodwell et al, 2015, QJRMS 
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𝐄𝐫𝐫𝐨𝐫𝟐 = 𝐒𝐩𝐫𝐞𝐚𝐝𝟐 ≡ 𝐄𝐧𝐬𝐕𝐚𝐫

(averaged over many forecast start dates) 

If we do not know the truth well-enough to 

calculate the error, use‡

𝐃𝐞𝐩𝐚𝐫𝐭𝐮𝐫𝐞𝟐 = 𝐄𝐧𝐬𝐕𝐚𝐫 + 𝐎𝐛𝐬. 𝐔𝐧𝐜𝟐

Any imbalance in this equation indicates that the 

(initialization of) the ensemble forecast is 

unreliable

‡Assuming the observation error is uncorrelated 

with the error of the ensemble-mean

Truth

Ensemble

member
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Uncertainty growth evaluation. “Rocky trough/CAPE” composite. EDA u200 aircraft obs

Rodwell, Richardson, Parsons 

& Wernli. 2018, BAMS
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54 cases, 12h window

𝐃𝐞𝐩𝐚𝐫𝐭𝐮𝐫𝐞𝟐 𝐄𝐧𝐬𝐕𝐚𝐫 𝐎𝐛𝐬. 𝐔𝐧𝐜𝟐

𝐁𝐢𝐚𝐬𝟐 𝐑𝐞𝐬𝐢𝐝𝐮𝐚𝐥 𝐎𝐛𝐬𝐞𝐫𝐯𝐚𝐭𝐢𝐨𝐧 𝐝𝐞𝐧𝐬𝐢𝐭𝐲 (𝐎𝟖𝟎, 𝟏𝟐𝐡)

𝐃𝐞𝐩𝐚𝐫𝐭𝐮𝐫𝐞𝟐 = 𝐄𝐧𝐬𝐕𝐚𝐫 + 𝐎𝐛𝐬. 𝐔𝐧𝐜𝟐 +𝐁𝐢𝐚𝐬𝟐 + 𝐑𝐞𝐬𝐢𝐝𝐮𝐚𝐥 . Enhanced background variance in Great Lakes / Mississippi River region. Even larger 

Departures. Bias2≈0, but Residual ≫ 0 indicates insufficient background variance (since estimated observation error and density are similar over 

north-western North America where Residual is smaller – i.e. well balanced). Uncertain forecasts for Europe may still be over-confident!

54 cases, 12h window



Systematic process error. “Rocky trough/CAPE” composite. EDA control T300
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Rodwell, Richardson, Parsons 

& Wernli. 2018, BAMS

54 cases, 12h window

𝐑𝐚𝐝𝐢𝐚𝐭𝐢𝐨𝐧 𝐂𝐨𝐧𝐯𝐞𝐜𝐭𝐢𝐨𝐧

𝐈𝐧𝐜𝐫𝐞𝐦𝐞𝐧𝐭 𝐄𝐯𝐨𝐥𝐮𝐭𝐢𝐨𝐧

𝐃𝐲𝐧𝐚𝐦𝐢𝐜𝐬

𝐂𝐥𝐨𝐮𝐝

𝐃𝐲𝐧𝐚𝐦𝐢𝐜𝐬 + 𝐑𝐚𝐝𝐢𝐚𝐭𝐢𝐨𝐧 + 𝐂𝐨𝐧𝐯𝐞𝐜𝐭𝐢𝐨𝐧 + 𝐂𝐥𝐨𝐮𝐝 + 𝐈𝐧𝐜𝐫𝐞𝐦𝐞𝐧𝐭 = 𝐄𝐯𝐨𝐥𝐮𝐭𝐢𝐨𝐧. Budget shows how the model represents dynamics and physics of 

MCS. Positive (and statistically significant) analysis increment suggests that the background forecast is too cold near the top of the convection. 

Hence, model bias (as well as model uncertainty) may be an issue.



If we don’t hit the string hard enough, 

the wave in the string will be too weak

If we hit the string at the wrong time, the 

wave will arrive over Europe at the 

wrong time

We do not know when to press the key 

(mesoscale convection itself involves 

chaotic uncertainty)

What we want is that the ensemble 

members generate such convection 

with the “right” uncertainty

The Jetstream and mesoscale convection: “The piano string and hammer”

54 cases
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Physics

u=25ms-1

3Kd-1

Jetstream

MCS

Met3D: Marc Rautenhaus
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wrong time

We do not know when to press the key 

(mesoscale convection itself involves 

chaotic uncertainty)

What we want is that the ensemble 

members generate such convection 

with the “right” uncertainty

The Jetstream and mesoscale convection: “The piano string and hammer”

54 cases
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PV315=2 & v850 from control forecast, precipitation is ensemble-mean. 1d running-mean gives 12h-integrated growth rate with any diurnal cycle removed. T21 smoothed
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Uncertainty growth-rate along truth trajectory – EDA 𝜎𝑃𝑉315 : NAWDEX Case
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Precipitation forecast for Bergen, Norway on 27 Sep 2016 (12-18Z) following TC Karl
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Plot from Linus Magnusson
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Once uncertainties associated with 

the extratropical transition of Karl 

are resolved, the probability for 

strong precipitation firms-up

Note the observation is at the top 

of the last forecast distribution: 

Fine or reflecting issues with 

model representativity of point 

observations?
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Challenges and Limits in Ensemble Weather Prediction
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• Reliability and Sharpness  Skill

– Faithful representation of uncertainty growth-rates (which are flow-dependent) – LIMIT

– Better estimation of observational error – CHALLENGE

… and correlated observation error

– Assimilation of better observational information – CHALLENGE
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• “Perfect storms”

– Large inherent growth-rates – LIMIT

…  downstream deterministic forecast “Busts”
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• Reliability and Sharpness  Skill

– Faithful representation of uncertainty growth-rates (which are flow-dependent) – LIMIT

– Better estimation of observational error – CHALLENGE

… and correlated observation error

– Assimilation of better observational information – CHALLENGE

• “Perfect storms”

– Large inherent growth-rates – LIMIT

…  downstream deterministic forecast “Busts”

– Model physics (and stochastic physics) working near their limits – CHALLENGE

… beyond their limits  Ensemble Jumpiness (& Det. Busts) – CHALLENGE

– Difficulty to observe the truth. Non-linear observation operators – CHALLENGE

… use of targeted observations? – CHALLENGE

• Flow-dependent diagnostics of data assimilation

– DA process tendency budget: mean increment  process bias

– EDA variance budget: mean residual  wrong growth-rate or poor modelling of observation error

Challenges and Limits in Ensemble Weather Prediction
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Thank you
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