A Review of the Structure and Variability of African Easterly Waves including their relationship with Tropical Cyclones

Chris Thorncroft
Department of Atmospheric and Environmental Sciences
University at Albany

Special Acknowledgements to:
Yuan Ming Chen (UAlbany), Alan Brammer (ClimaCell),
Matt Janiga (NRL) and George Kiladis (NOAA)

Funded by: NSF and NASA
Introduction

(1) Background
(2) Two types of AEW behaviour
(3) Recent work on AEW-TC relationships
(4) Summary
1. Background

Key features of the WAM Climate System during Boreal summer

- **SAL**
- **Heat Low**
- **AEJ**
- **ITCZ**
- **Cold Tongue**
1. Background

North-South Section along the Greenwich Meridian
1. Background

West African and Tropical Atlantic Weather Systems
1. Background (Annual Cycle of Rainfall)

Data: GPCP (Global Precipitation Climatological Project).
Resolution: pentad on a 2.5\degree grid.
Averaged from 10\degree W to 10\degree E over 23 years (1979-2001).
1. Background (Previous Work)

- **Carlson (1969)** was the first study to document the tilted structure of AEWs over the continent.
- **Burpee (1972)** described how this was related to the instability of the basic state.

![Diagram of atmospheric flow patterns](image)

- Low-Level Flow
- Mid-Level Flow
- African Easterly Jet (AEJ)
- Northern Low-level Vortex
- Mid-Level Vortex
1. Background (Previous Work)

The GATE Experiment (1974) provided additional details on the structure of AEWs, their relationship with rainfall, and their energetics (Norquist et al. 1977; Reed et al. 1977; Thompson et al. 1979).
OLR and 850 hPa Flow Regressed against TD-filtered OLR (scaled -20 W m\(^2\)) at 10°N, 10°W for June-September 1979-1993

Day 0

Streamfunction (contours 1 \(\times\) 10\(^5\) m\(^2\) s\(^{-1}\))

Wind (vectors, largest around 2 m s\(^{-1}\))

OLR (shading starts at +/- 6 W s\(^{-2}\)), negative blue

Kiladis, Thorncroft, Hall (2006)
OLR and 850 hPa Flow Regressed against TD-filtered OLR (scaled -20 W m2) at 10°N, 10°W for June-September 1979-1993

Day-4
Streamfunction (contours 1 X 105 m2 s$^{-1}$)
Wind (vectors, largest around 2 m s$^{-1}$)
OLR (shading starts at +/- 6 W s$^{-2}$), negative blue
OLR and 850 hPa Flow Regressed against TD-filtered OLR (scaled -20 W m^2) at 10°N, 10°W for June-September 1979-1993

Day-3

Streamfunction (contours 1 X 10^5 m^2 s^-1)

Wind (vectors, largest around 2 m s^-1)

OLR (shading starts at +/- 6 W s^-2), negative blue
OLR and 850 hPa Flow Regressed against TD-filtered OLR (scaled -20 W m²) at 10°N, 10°W for June-September 1979-1993

Day-2
Streamfunction (contours 1 X 10⁵ m² s⁻¹)
Wind (vectors, largest around 2 m s⁻¹)
OLR (shading starts at +/- 6 W s⁻²), negative blue
OLR and 850 hPa Flow Regressed against TD-filtered OLR (scaled -20 W m2) at 10°N, 10°W for June-September 1979-1993

Day-1
Streamfunction (contours 1 X 105 m2 s$^{-1}$)
Wind (vectors, largest around 2 m s$^{-1}$)
OLR (shading starts at +/- 6 W s$^{-2}$), negative blue
OLR and 850 hPa Flow Regressed against TD-filtered OLR (scaled -20 W m2) at 10°N, 10°W for June-September 1979-1993

Day 0
Streamfunction (contours 1 X 105 m2 s$^{-1}$)
Wind (vectors, largest around 2 m s$^{-1}$)
OLR (shading starts at +/- 6 W s$^{-2}$), negative blue
OLR and 850 hPa Flow Regressed against TD-filtered OLR (scaled -20 W m\(^2\)) at 10°N, 10°W for June-September 1979-1993

Day+1
Streamfunction (contours 1 X 10\(^5\) m\(^2\) s\(^{-1}\))
Wind (vectors, largest around 2 m s\(^{-1}\))
OLR (shading starts at +/- 6 W s\(^{-2}\)), negative blue
OLR and 850 hPa Flow Regressed against TD-filtered OLR (scaled -20 W m2) at 10°N, 10°W for June-September 1979-1993

Day+2
Streamfunction (contours 1 X 105 m2 s$^{-1}$)
Wind (vectors, largest around 2 m s$^{-1}$)
OLR (shading starts at +/- 6 W s$^{-2}$), negative blue
Objectively diagnosed troughs (solid lines), African Easterly Jet (dashed), with PV (315K) and IR from METEOSAT

Conceptual framework for Baroclinic growth.
PV-theta analysis of AEWs – Scale Interactions

Synoptic-Mesoscale Interactions
PV-theta analysis of AEWs – Scale Interactions

Synoptic-Mesoscale Interactions
PV-theta analysis of AEWs – Scale Interactions

From a PV-theta perspective, the heating rate profiles are crucial to know and understand.
PV-theta analysis of AEWs – Scale Interactions

Synoptic-Mesoscale Interactions

From a PV-theta perspective, the heating rate profiles are crucial to know and understand.

Mesoscale-Microscale Interactions

Ultimately these profiles are influenced by the nature of the microphysics!
We know little about variability of the AEWs.

2. Two Types of AEW Behavior (Cheng et al, 2019)

700-hPa PV (shadings, 10^{-1} PVU), 700-hPa wind and streamfunction (10^5 \text{ m}^2 \text{s}^{-2})

- **Small zonal wavelength**
 - Aug 30 2006 0600Z
 - Aug 23 2006 0600Z

- **Large zonal wavelength**
 - Sep 7 2006 0600Z
 - Jul 27 2006 0600Z

- **Interaction with mid-latitude trough**
 - Strong circulation close to the EQ
• Empirical Orthogonal Functions (EOFs)
 – highlight the dominant wave structure

Methodology
• **Empirical Orthogonal Functions (EOFs)**
 – highlight the dominant wave structure

<table>
<thead>
<tr>
<th>ECMWF Interim</th>
<th>Claus Brightness Temperature (T_b)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Spatial resolution</td>
<td>2.5 × 2.5</td>
</tr>
<tr>
<td>Temporal resolution</td>
<td>6 hour</td>
</tr>
<tr>
<td>Period</td>
<td>JAS of 1984-2013</td>
</tr>
</tbody>
</table>
Three Kinds of EOFs

<table>
<thead>
<tr>
<th>EOF Name</th>
<th>Variable</th>
<th>Domain</th>
</tr>
</thead>
<tbody>
<tr>
<td>(T_b) EOF</td>
<td>2-6-day-westward-filtered brightness temperature ((T_b))</td>
<td>15S-30N, 40W-40E</td>
</tr>
<tr>
<td>(v700) EOF</td>
<td>2-6-day-filtered meridional wind at 700 hPa</td>
<td>15S-30N, 40W-40E</td>
</tr>
<tr>
<td>(v200) EOF</td>
<td>2-6-day-filtered meridional wind at 200 hPa</td>
<td>5S-5N, 40W-40E</td>
</tr>
</tbody>
</table>
The first pair of EOFs explains 20% of the variance

\(T_b \) EOF captures a typical AEW evolution closely coupled with convection

Convection and circulation centered and confined around the ITCZ

\(T_b \) (shadings, K), 700-hPa wind (m s\(^{-1}\)) and streamfunction (contours, \(2 \times 10^5 \) m\(^2\) s\(^{-2}\))
The first pair of EOFs explains 16% of the variance.

v700 EOF shows the interaction of AEWs with extratropical waves and equatorial modes.
v700 EOF Structure

T_b (shadings, K), 700-hPa wind (m s⁻¹) and streamfunction (contours, 2×10⁵ m² s⁻²)

• v700 EOF shows the interaction of AEWs with extratropical waves and equatorial modes.

A Moroccan Vortex
B Mixed Rossby Gravity wave (MRG)
Interaction with the MRG

Day 0

T_b (shadings, K), 700-hPa wind (m s$^{-1}$) and geopotential height (contours, 0.2 m)

- Prominent cross-equatorial meridional flow
Interaction with the MRG

- Prominent cross-equatorial meridional flow
- Antisymmetric geopotential height

T_b (shadings, K), 700-hPa wind (m s$^{-1}$) and geopotential height (contours, 0.2 m)
Interaction with the MRG

Day 0

T_b (shadings, K), 700-hPa wind (m s$^{-1}$) and geopotential height (contours, 0.2 m)

- Prominent cross-equatorial meridional flow
- Antisymmetric geopotential height

Kiladis et al. (2016)
Interaction with the MRG

Day 0

- Prominent cross-equatorial meridional flow
- Antisymmetric geopotential height
- “AEW-MRG hybrid” Convection more “AEW-like”

T_b (shadings, K), 700-hPa wind (m s$^{-1}$) and geopotential height (contours, 0.2 m)
Two AEW Behaviors

- Circulation and convection closely coupled and centered around the ITCZ
- AEW-MRG hybrid and interaction with the subtropics
Rainfall more likely for Tb EOF and more frequent intense rainfall
v200 EOF

2-6-day-filtered meridional wind at 200 hPa
Domain: 5S-5N, 40W-40E
A coherent MRG structure in both convective and kinematic fields

T_b (shadings, K), 200-hPa wind (m s$^{-1}$) and streamfunction (contours, 2×10^5 m2 s$^{-2}$)

Kiladis et al. (2016)
Vertical Structure of v200 EOF

- A hint of AEW structure is seen at the mid-lower levels
- Upper-level MRGs may modulate the structure of AEW.
- Could MRGs explain some of the observed larger scale AEWs?

\[T_b \text{ (shadings, K), wind (m s}^{-1}\text{) and streamfunction (contours, } 2 \times 10^5 \text{ m}^2 \text{ s}^{-2}\text{)} \]
The results highlight the coexistence of AEWs and MRGs across the Africa-Atlantic sector.

Frank and Roundy (2006)

What is the origin of the MRG over Africa?
v200 EOF (upper-level MRG)
v200 EOF (upper-level MRG)

Day -1.50

v200 EOF-PC1; 200 hPa

2X10^5 m^2 s^{-1}; ms^{-1}; 0.5 K
v200 EOF (upper-level MRG)

Day -1.00

v200 EOF-PC1; 200 hPa

2X10^5 m^2 s^{-1}; ms^{-1}; 0.5 K
v200 EOF (upper-level MRG)

Day -0.50

v200 EOF-PC1; 200 hPa

2X10^5 m^2 s^{-1}; ms^{-1}; 0.5 K
v200 EOF (upper-level MRG)

Day 0.00

v200 EOF-PC1; 200 hPa

2x10^5 m^2 s^-1; ms^-1; 0.5 K
v200 EOF (upper-level MRG)

v200 EOF-PC1; 200 hPa

Day 0.50

2x10^5 m^2 s^{-1}; ms^{-1}; 0.5 K
v200 EOF (upper-level MRG)

Day 1.00

v200 EOF-PC1; 200 hPa

2X10^5 m^2 s^{-1}; ms^{-1}; 0.5 K
Most AEWs do not trigger Tropical Cyclones.

Most TCs develop in association with AEWs – but which one?
Regional Variations in African Easterly Wave Structures
Janiga and Thorncroft (2013)
Notable E-W variations in heating rates and profiles are seen in the reanalyses.
Zonal Variations in PV Tendency

Consistent with the variability in heating rate profiles there are marked E-W variations in PV tendencies.

Note following general characteristics:

- Positive mid-level PV generation between 40E and GM.
- Weaker PV tendencies between GM and coast.
- Increased positive PV tendencies at low levels over ocean.

We expect this to impact AEW structures.

Janiga and Thornicroft (2013)
Zonal Variations in AEW Structures

Note marked changes in AEW structure between E and W Africa and the Atlantic.

Especially weakened intensity of cold core and development of low-level circulations.

Variability in such processes may impact probability of downstream tropical cyclogenesis.
Rapid change in vertical structure occurs as AEWs reach the coastal region.
Importance of Guinea Highlands

- Marked transition takes place close to Guinea Highlands and Coastal region
- AEWs are often invigorated as they pass these regions – especially at low-levels
- May influence tropical cyclogenesis probabilities
Deep convective bursts over West African coastline feedback on trough increasing vorticity for developing waves (Ross & Krishnamurti 2009, 2012)

Widespread deep convection over coast more important than small intense convection (Leppert et al. 2013)

Horizontal flux of moist enthalpy important for sustained MCSs moving off the coast (Arnault & Roux 2009, 2010)

TPW, Precipitation, SST, 1000-600 hPa Vertical shear among best predictors for developing / non-developing systems over Atlantic (Peng et al. 2012)
AEW trough tracks

Count per 0.5° grid of all waves/storms originating from Africa tracked over 1979-2012 tracked at 700 hPa. Developing cases classified as TD+ by 45° W

Brammer and Thorncroft 2015
A logistic regression model was used to find the best combination of AEW-factors to describe the probability of genesis.

<table>
<thead>
<tr>
<th>Statistical Predictors</th>
<th>Synoptic Predictors</th>
<th>IR predictors</th>
</tr>
</thead>
<tbody>
<tr>
<td>Julian day - 239(^{123})</td>
<td>850:700 hPa Specific Humidity</td>
<td>Mean IR Brightness Temp</td>
</tr>
<tr>
<td>(Peak Day of AEWs)</td>
<td>600 hPa Relative Humidity</td>
<td>Std. Dev. IR</td>
</tr>
<tr>
<td>Latitude of system</td>
<td>Relative Vorticity (RV) 850 hPa(^{12})</td>
<td>Minimum IR</td>
</tr>
<tr>
<td>Total Phase Speed of wave</td>
<td>RV 850:600 hPa layer average</td>
<td>Area less than 240 K(^{13})</td>
</tr>
<tr>
<td>Meridional Phase Speed</td>
<td>RV 600-850 hPa difference</td>
<td>Area less than 220 K</td>
</tr>
<tr>
<td>Zonal Phase Speed</td>
<td>400:200 hPa Temp Anom(^{12})</td>
<td>Mean IR 24 to 0 hours before coast(^{3})</td>
</tr>
<tr>
<td>850RV 5° longitude tendency(^{3})</td>
<td>200 hPa Divergence</td>
<td>Minimum IR -24:0 hr</td>
</tr>
<tr>
<td></td>
<td>Relative Vorticity 800 hPa</td>
<td>Area less than 240 K -24:0 hr</td>
</tr>
<tr>
<td></td>
<td>300:200 hPa Divergence(^{2})</td>
<td>Area less than 220 K -24:0 hr</td>
</tr>
<tr>
<td></td>
<td>Vertical Velocity 800:300 hPa(^{12})</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Deep Vertical Shear 200-850 hPa</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Mid. Vertical Shear 500-850 hPa</td>
<td></td>
</tr>
</tbody>
</table>

Brammer and Thorncroft 2015
Most non-developing waves are diagnosed as very unfavorable.

Take the top 55, diagnostic $\sim 0.27^+$
“Favourable” AEW evolution

Brammer and Thorncroft 2015
Day 0
Developing – Non-developing AEWs

Total Precipitable Water [mm]

- Developing Waves have increased moisture to west and northwest of trough after leaving coast.
- Non-developing waves have increased moisture near equator, due to horizontal tilt of trough.

Brammer and Thornicroft 2015
Day 0
Developing – Non-developing AEWs

Latitude-height cross section of anomalous specific humidity and geopotential height along 30°W

- Moisture to northwest of trough significant at low levels (850 hPa) between 15-25°N

Brammer and Thorncroft 2015
Relative Inflow for AEWs

Brammer and Thorncroft 2015
Analysis of two “Favourable” AEWs

<table>
<thead>
<tr>
<th></th>
<th>AL90 2014</th>
<th>Hurricane Leslie 2012</th>
</tr>
</thead>
<tbody>
<tr>
<td>Coast Date</td>
<td>September 4th</td>
<td>August 26th</td>
</tr>
<tr>
<td>NHC Genesis %</td>
<td>50%</td>
<td>0 (10% 24 h later)</td>
</tr>
<tr>
<td>Days to Genesis</td>
<td></td>
<td>3.5</td>
</tr>
<tr>
<td>NW low-level</td>
<td>Dry</td>
<td>Moist</td>
</tr>
<tr>
<td>NW jet-level</td>
<td>Dry</td>
<td>Dry</td>
</tr>
<tr>
<td>AEW diagnostic</td>
<td>Marginal</td>
<td>Favourable</td>
</tr>
</tbody>
</table>
Analysis of two “Favourable” AEWs

<table>
<thead>
<tr>
<th></th>
<th>AL90 2014</th>
<th>Hurricane Leslie 2012</th>
</tr>
</thead>
<tbody>
<tr>
<td>Coast Date NHC Genesis %</td>
<td>September 4th</td>
<td>August 26th 0 (10% 24 h later)</td>
</tr>
<tr>
<td>Days to Genesis</td>
<td>50%</td>
<td>3.5</td>
</tr>
<tr>
<td>NW low-level</td>
<td>Dry</td>
<td>Moist</td>
</tr>
<tr>
<td>NW jet-level</td>
<td>Dry</td>
<td>Dry</td>
</tr>
<tr>
<td>AEW diagnostic</td>
<td>Marginal</td>
<td>Favourable</td>
</tr>
</tbody>
</table>
Accumulated precipitation within 750km of trough.

Trough axes every 24h

TPW and 300hPa geopotential height for 5th September 2014
Accumulated precipitation within 750km of trough.

Trough axes every 24h

TPW and 300hPa geopotential height for 26th August 2012
AL90 /pre-Leslie comparison
Schematic

In

troductory Data & Methodology Favourable AEWs Relative Flow Case Studies Conclusions

Conclusions

75 / 78

Potential routes for dry air over the Eastern Atlantic

Region of environment ingested at low-levels

Low-level vortex offset or completely open to environment below closed jet-level circulation

Inflow under downshear left quadrant. Deep convection sensitive to environment.
SUMMARY AND FINAL COMMENTS
Two Types of AEW Behavior

• EOF Analysis has highlighted two types of AEW Behavior

• AEW-Strongly Coupled with Convection: Circulation closed coupled with convection, centered and confined around the ITCZ

• AEW-MRG Hybrid: broad meridional extent of the wave - interacting with Moroccan vortex and MRG

• More work needed on the origins of the MRG and MRG-AEW interactions
Regional Variations in AEW Structure

- There are marked variations in AEW structures as they propagate between the African continent and the ocean.

- AEWs intensify and develop low level circulations as they pass the Guinea Highlands and coastal region.

- These changes appear to be associated with changes in the type of convection and vertical profile in heating rate.

- Variability in these processes likely impacts probability of tropical cyclogenesis. But that is not the whole story!
Tropical Cyclogenesis in East Atlantic

- Favorable mid-level AEW-troughs are often “open” at low-levels – due to low-level westerly flow (and a NE-relative shift of low-level vortex over the ocean).

- Non-developing favorable troughs tend to be associated with dry low-level air NW of the trough which is ingested beneath the mid-level trough.

- Source regions for the low-level dry air include Midlatitudes, Sahara and Equatorial region. More work needed on how this impacts predictability.
The genesis bias seen in the forecasts appears to be associated with a bias in convection close to the West African coast – that acts to strengthen and align the circulation centers, as well as moisten them. This impacts each forecast within the first 24 hours. The environmental dry air becomes irrelevant in this case (c.f. Dunkerton et al, 2009).
THANK YOU!
As of 8.00am EDT Thu Sep 4th 2014

A tropical wave accompanied by a broad low pressure system, is located a few hundred miles east-south-east of the Cape Verde Islands. Environmental conditions are expected to be conducive for some development of this disturbance through early next week while it moves westwards at about 15mph.

- Formation chance through 48 hours: low 10%
- Formation chance through 72 hours: medium 40%

AL90: A moderate chance of development!
Observations
African Easterly Wave trough left the coast around 9/4/2014 when it was convectively active. NHC posted a 40% probability of development within next 5 days.

Area of convection reduced as the trough reached a drier environment over the ocean. No significant development occurred.
Although there is an attempt to develop a low level circulation, the trough weakens after leaving the coast.

Trough dries after leaving the coast, although there is initial moistening at low-levels.

Vertical profile evolution for 6 hourly variables averaged over 300 km around the trough center. Relative vorticity (background shading), the 6-hourly change in specific humidity (contours) and wave relative zonal and meridional wind (vectors)
500-850hPa relative streamlines with “pouches” (Dunkerton et al, 2009) and equivalent potential temperature and TRMM PPN

NOTES:

- Pouches tilt with time
- PPN always present within 850hPa pouch
- But limited to Western side
- Dry advection east of this enhanced due 500hPa being displaced to west
- 500hPa pouch VERY dry by the 6th
- Low-levels spins up but mid-levels do not.
Predictability
Ensemble operation GEFS forecasts during coastal transition of AL90.

- Slight poleward bias in track overland
- Ensemble members generally over intensify for all lead times
Forecast evolution of vertical profile in relative vorticity for ensemble mean (shading) and error (contoured)

Forecast hour increases from right to left

Vertical line is time of coastal transition.

All forecasts over-develop – especially the earlier ones.
Ensemble mean forecast fields from 4 different initialisation times all verifying for 6th Sep. Relative streamlines and equivalent potential temperature.

As lead time decreases forecasts behave more like observed evolution:

- Pouches become slightly more displaced from each other.
- More dry air is wrapped around the southern side of the trough.
- Areal extent of rainfall reduces (consistent with dry advection)
There are two competing processes:

(i) Displacement of pouches leading to dry advection across each pouch – weakens convection and/or decreases its areal coverage

(ii) Intense convection in the AEW trough generates vorticity in the column (including 500hPa) that becomes resistent to the environmental shear.

It appears that a bias in the modeled rainfall favors (ii) in this case over (i) and results in over-prediction of genesis.

This bias sets in less than 24 hours into each forecast.
So what is the initial condition sensitivity to subsequent rainfall?

Over land its moist static energy north of the trough

Closer to the coastline it’s the moist static energy to the north and west.

Conclusion: Errors in these regions can influence the outcome downstream

Trough-relative streamlines layer averaged between 900hPa and 700hPa. Shading shows sign and significance of 42 hour PPN sensitivity to layer average moist static energy.
Conclusions

• The lack of genesis in the East Atlantic associated with this event appears to be linked to dry advection at low and mid-levels, favored by misaligned circulation centers. The dry environment ahead of the AEW trough is important for the lack of genesis (c.f. Brammer and Thorncroft, 2015).

• The genesis bias seen in the forecasts appears to be associated with a bias in convection close to the West African coast – that acts to strengthen and align the circulation centers, as well as moisten them. This impacts each forecast within the first 24 hours (see next talk). The environmental dry air becomes irrelevant in this case (c.f. Dunkerton et al, 2009).

• Observations are suggestive of some dry (and dusty air) having entrained into the circulation center before the Global Hawk flight - ideally need more frequent flights earlier than this stage to see pathways for this apparent entrainment.

• Future work should consider a more in-depth Lagrangian analysis to assess the evolution of pouch properties (including OW).