
30

ECMWF Newsletter No. 125 – Autumn 2010ComPuting

Metview Macro –
A powerful meteorological batch language

to worry about the conversion between formats and the
interpolation of data values. If required, Metview directs
such calculations to its support packages, such as Emoslib
and Grib_API. The resulting plot is shown in Figure 1.

Key macro features

Macro syntax and functions
Metview Macro offers all the facilities of a modern scripting
language, for instance loops, if and case statements, and
functions. As well as simple variable types (e.g. numbers,
strings and lists), Macro has native variable types for
commonly used meteorological data formats such as GRIB,
BUFR, netCDF and ODB.

When used with the GUI, most interaction with Metview
is performed via a rich set of icons that enable data retrieval,
manipulation and plotting. For every icon, a corresponding
Macro function exists; parameters are supplied via a set of
parameter-value pairs whose syntax is based on the MARS
language. Executing a MARS Retrieval icon and running the
function retrieve() result in the same outcome.

sTephAn sieMen, fernAndo ii, iAin russell

parallel To its graphical user interface (GUI), Metview
offers a high-level meteorological scripting language to
describe the retrieval, processing and visualisation of mete-
orological data. A scripting language was part of the first
design specification of Metview and has always been an
integral part. A language is the best ‘user interface’ to
describe complex sequences of actions, particularly if the
flow of action is conditional; this includes the expression of
mathematical formulae and other forms of data
manipulation.

The philosophy behind Metview Macro is that it is easy
to get started, but powerful and flexible enough for
advanced needs. The user does not need to declare vari-
ables – their types are assigned automatically according to
the data they store. The language also supports flow control,
user-defined functions, I/O and error control. Functions can
be called from other macros; this feature enables users to
build their own libraries of Macro functions that can then
be used by a larger user group.

This article outlines the key features and versatility of
Metview Macro.

overview of metview macro

The Metview Macro language provides an easy, powerful
and comprehensive way for an analyst or researcher to
manipulate and display meteorological data. It extends the
use of Metview into an operational environment as it enables
a user to write complex scripts that may be run with any
desired periodicity. Metview has few runtime dependencies,
thus making it ideal for running in an operational environ-
ment. This and the integrated access to MARS (Meteorological
Archival and Retrieval System) archives makes Metview the
ideal tool to run operational tasks for internal and external
users of ECMWF’s operational data. As described later, users
can create and customise their visualisation interactively and
then save it as a macro that can be executed in batch.

There are various ways to run a macro. It can be executed
through the right-click menu of its icon on the GUI or
executed within the Macro editor. Outside the GUI a script
can be executed through the command metview –b followed
by the name of the macro file and the macro’s parameters.
The latter is the way to run scripts in batch operationally,
for example within SMS or as cron jobs.

To demonstrate the power of Metview Macro, consider
the following example in Listing 1. To calculate and plot the
difference between some point observations and an analysis
field needs just four lines of code. The user does not need

t2m_points = read(“temperature_towns.gpt”)
t2m_analysis = read(“t2m_an.grib”)
t2m_diff = t2m_points – t2m_analysis
plot(t2m_diff)

Listing 1 example Macro visualising the difference between point
observations and analysis field. here ‘grib’ and ‘gpt’ are used as
file extensions for the GriB and Metview’s Geopoints data formats
respectively.

40°E20°E0°E

Difference of 2m temperature observation and analysis for 10 October 2010
-5 -3 -2 -1 -0.5 0.5 1 2 3 5

Figure 1 plot resulting from Macro code in listing 1. Additional to
the listing, the differences between analysis and observation are
coloured according to whether they are positive or negative.

ECMWF Newsletter No. 125 – Autumn 2010

31

ComPuting

In addition Metview Macro contains a large set of built-in
functions that can be used for meteorological data process-
ing. Macro also contains functionality to cache results,
reducing the need to recalculate parts of the computation
if the input data does not change. This can improve perform-
ance on repeated execution over the same data set. The
time period of how long data is cached can be set in the
Metview preferences.

Writing Macro code
The Metview user interface provides a Macro editor which
not only offers syntax highlighting, but also the running
and debugging of scripts interactively. While the editor in
Metview 3 required the help of an additional external editor
to offer extended functionality, the new Macro editor in
Metview 4 is more powerful and supports all features
expected from a modern code editor.

To allow users to quickly write Macro code, the Metview
GUI offers features to generate code from the interactive
user interface in two ways:
u	 Users who have generated their desired plot in the inter-

active plot window can use the ‘Generate Macro’ button
(red punch card) to generate the corresponding macro
code. In some cases of complex displays the resulting
script may need some adjustments.

u	 Thanks to the direct mapping between desktop icons
and macro icon-functions the user can drop an icon inside
a macro editor. The result is the textual translation of the
icon contents into a macro icon-function.

Figure 2 gives a snapshot of the Metview 4 macro editor.

Inlining Fortran and C/C++
The Macro language can be extended by the user with
Fortran and C/C++ code. This ability extends immensely
the scope of the macro language and enables the program-
mer to make efficient use of existing Fortran and C codes.

These programs are used in tasks that cannot be easily
achieved by means of a Macro language function or combi-
nation of functions. Also, suitable code might already exist
and the writing and testing of the same task in Macro
language would simply consume precious time.

Building a Macro User Interface
Metview allows developers to build their own user inter-
faces to their scripts. These are useful to provide generality,
meaning that the same Macro program used for a given
task will be able to accept a variety of input parameters
which will be provided via an icon editor window-like
interface (in batch, parameters may be supplied on the
command line). Listing 2 shows some sample code, and
Figure 3 the resulting user interface.

Figure 2 snapshot of the Metview 4 Macro editor, showing syntax
highlighting and debug output (bottom).

c = slider (name : “days”,
 min : 1,
 max : 10,
 default : 5)

Listing 2 Macro code to generate a slider in a customised user
interface.

Figure 3 snapshot of a user-defined user interface generated by a
macro (see listing 2 for a partial code listing).

Defining outputs
One major highlight of Metview 4 is the introduction of
many more graphical output formats, due to the use of
Magics++. Scripts run on the interactive GUI can make use
of Metview 4’s new interactive plot window or plot in new
formats such as PDF, EPS, SVG and KML. These new options
required a change in the way graphical output formats are
defined in comparison to previous Metview versions.
However, Metview 4 largely retains backwards compatibility
with Metview 3’s macro functions to export plots to files
(output() and setoutput() functions). For more details
see Box A.

ECMWF Newsletter No. 125 – Autumn 2010

32

ComPuting

Changes introduced in version 4.0
The new options to define outputs in Metview 4 are only the
beginning of improvements to come for the Macro language
(see Figure 4). Parameters are being cleaned up to remove
those specific to MAGICS 6 and new ones added to access
features in Magics++. Many issues in version 3 regarding
performance and temporary files are being improved.

From version 4.0 onwards Metview’s macro language
handles missing values in its data in a more consistent and
useful way. Previously, functions such as integrate()
returned a ‘missing value indicator’ if all its input values
were missing. This was not easy to test, and computations
could use the result incorrectly without realising it. From
now on all such functions return a nil variable when their
inputs are invalid. Macros that do not test for this condition
will fail if they try to use a nil variable in a computation.
The following is an example code extract:

a = integrate(data)
if (a = nil) then
 fail (‘Integration failed’)
end if

The much improved installation scripts of Metview 4 will
also allow for a batch only installation to reduce dependen-
cies resulting from the GUI. This version is aimed for usage
on operational servers.

documentation, training and future developments

For users interested to find out more about Metview Macro
there is full documentation of the language and available
functions at:

http://www.ecmwf.int/publications/manuals/metview/
documentation.html

The page also contains the training material from the annual
Metview training course held at ECMWF, including tutorials
and presentations.

The evolution of Metview’s macro language will continue
beyond the release of Metview 4.0. More built-in functions
will be provided to support ECMWF tasks of observation
handling and model developments. Metview’s GUI and
Macro editor will be extended to provide facilities to search
for available macro functions and libraries.

User requests will of course continue to play an important
role in improving the performance and reliability of Metview.

extensions to defining output formats in
metview 4

The following syntax is used to define a PostScript format
in Metview 3:

ps = output(format : “postscript”,
 file_name : “plotfile.ps”)

Metview 4 has a new set of functions, for example:

ps = ps_output (output_name : “plotfile”)
kml = kml_output(output_name : “plotfile”)
svg = svg_output(output_name : “plotfile”)

Both syntaxes are valid in Metview 4. An extension is
that setoutput() can take a list of several output defini-
tions – in this case, Metview will generate its plot for all
outputs. This can be significantly faster than running a
macro multiple times (once for each output format). For
instance:

setoutput([ps, kml, svg])

An alternative way to select which output formats will
be generated is to give them directly to the plot()
command:

plot([ps, kml, svg],…)

Any output formats given to the plot() command
will override those given to setoutput().

Optionally, within a macro the user can define specific
output formats depending on the environment in which
it is run:

sets output destination according to
run-mode
if mode = “batch” then
 setoutput(ps_file)
else if mode = “visualise” then
 setoutput(screen)
end if

a

Figure 4 The user has all the functionality of the interactive
graphical user interface plus a lot more.

