
© ECMWF 2014

Metview Training Course – April 2014

Metview – Macro Language

Iain Russell, Sándor Kertész, Fernando Ii

Development Section, ECMWF

© ECMWF 2014

Slide 2 Metview Training Course – April 2014

Macro Introduction

 Designed to perform data manipulation and plotting from

within the Metview environment

Metview Training Course – March 2013

© ECMWF 2014

Slide 3 Metview Training Course – April 2014

Metview Training Course – March 2013

Macro Introduction

 Able to describe complex sequences of actions

© ECMWF 2014

Slide 4 Metview Training Course – April 2014

Metview Training Course – March 2013

Macro Introduction

 Easy as a script language - no variable declarations or

program units; typeless variables ; built-in types for

meteorological data formats

© ECMWF 2014

Slide 5 Metview Training Course – April 2014

Metview Training Course – March 2013

Macro Introduction

 Complex as a programming language - support for

variables, flow control, functions, I/O and error control

© ECMWF 2014

Slide 6 Metview Training Course – April 2014

Macro Introduction

 Interfaces with user’s FORTRAN and C programs

Metview Training Course – March 2013

© ECMWF 2014

Slide 7 Metview Training Course – April 2014

Metview Training Course – March 2013

Uses of Macro Language

 Generate visualisation plots directly

 Generate a derived data set to save to disk, to drop in plot

windows or to provide input to other Metview modules

 Provide a user interface for complex tasks

 Incorporate macros in scheduled tasks - thus use Metview

in an operational environment, run in batch mode

© ECMWF 2014

Slide 8 Metview Training Course – April 2014

Metview Training Course – March 2013

Creating a Macro Program

 Save visualisation as Macro -

limited in scope

 Drop icons inside Macro Editor, add

extra bits

 Write from scratch (the more

macros you write, the more you

recycle those you have done,

lessening the effort)

© ECMWF 2014

Slide 9 Metview Training Course – April 2014

The Macro Editor

© ECMWF 2014

Slide 10 Metview Training Course – April 2014

The Macro Editor

Drop icons directly into the editor

Run (automatically saves the macro first)

 Tab settings (Settings | Tabs…)

 Insert function name (F2)

 Insert code template (F4)

Advanced run options

© ECMWF 2014

Slide 11 Metview Training Course – April 2014

Metview Training Course – March 2013

Executing Macros Another Way

Right-click
Execute

Visualise

Examine

Save result

© ECMWF 2014

Slide 12 Metview Training Course – April 2014

Metview Training Course – March 2013

Macro Documentation

 All Macro functions are documented in the new

Metview 4 Confluence pages:

 https://software.ecmwf.int/metview/The+Macro+Language

 Some more Metview 4 documentation there, plus

tutorials

 But some things are still only in the Metview 3

documentation:

 http://www.ecmwf.int/publications/manuals/metview

 ‘Full’ Metview 4 documentation is in progress

© ECMWF 2014

Slide 13 Metview Training Course – April 2014

Metview Training Course – March 2013

Data For Tutorial

 cd ~/metview

 ~trx/mv_data/get_macro_data

Data is unzipped into

 metview/macro_tutorial

© ECMWF 2014

Slide 14 Metview Training Course – April 2014

Metview Training Course – March 2013

Tutorial Steps 1-4

 Steps 1-4 : Basic intro - input, basic contours, plot window,

variables and functions (start on page 5)

 Steps 5-7 : Outputs other than on-screen

 Step 8 : Macro run mode control

 Steps 9-10 : User Interfaces in Macro

 Step 11 : Macro in Batch

 Steps 12a,b,c : Using functions in Macro (libraries)

 Embedding FORTRAN and C in Macro

© ECMWF 2014

Slide 15 Metview Training Course – April 2014

Metview Training Course – March 2013

Macro Essentials - Variables

 No need for declaration

 Dynamic typing

a = 1 # type(a) = ’number’

a = ’hello’ # type(a) = ’string’

a = [4, 5] # type(a) = ’list’

a = |7, 8| # type(a) = ’vector’

© ECMWF 2014

Slide 16 Metview Training Course – April 2014

Metview Training Course – March 2013

Macro Essentials - Strings

 ’Hello’ is the same as ”Hello”

 Concatenate strings with strings, numbers and dates using

the ’&’ operator

eg. ”part1_” & ”part2_” & 3

produces ”part1_part2_3”

 Obtain substrings with substring()

e.g. substring (”Metview”, 2, 4)

produces ”etv”
first last

© ECMWF 2014

Slide 17 Metview Training Course – April 2014

Metview Training Course – March 2013

Macro Essentials - Strings

 Split a string into parts using parse()

 Creates a list of substrings

 n = parse("z500.grib", ".")

 print ("name = ", n[1], " extension = ", n[2])

 prints the following string :

 name = z500 extension = grib

© ECMWF 2014

Slide 18 Metview Training Course – April 2014

Metview Training Course – March 2013

Macro Essentials - Dates

 Dates defined as a built-in type - year, month, day, hour,

minute and second.

 Dates can be created as literals using :

 yyyy-mm-dd

 yyyy-DDD

 where : yr, yyyy - 4 digit yr, mm - 2 digit month, dd - 2

digit day, DDD - 3 digit Julian day.

 The time can be added using :

 HH:MM or HH:MM:SS

 Eg start_date = 2003-03-20 12:01

© ECMWF 2014

Slide 19 Metview Training Course – April 2014

Metview Training Course – March 2013

Macro Essentials - Dates

 Function date() creates dates from numbers:

d1 = date(20080129)

today = date(0)

yesterday = date(-1)

 Hour, minute and second components are zero.

 To create a full date, use decimal dates:

d = date(20080129.5)

or

d = 2008-01-29 + 0.5

or

d = 2008-01-29 + hour(12)

© ECMWF 2014

Slide 20 Metview Training Course – April 2014

Metview Training Course – March 2013

Macro Essentials - Dates

 Note that numbers passed to Metview modules are

automatically converted to dates:

r = retrieve(date : -1, ...)

r = retrieve(date : 20070101, ...)

© ECMWF 2014

Slide 21 Metview Training Course – April 2014

Macro Essentials - Dates

 Loops on dates using a for loop:

 for d = 2007-01-01 to 2007-03-01 do

 ... # each step is 1 day

 end for

 for d = 2007-01-01 to 2007-03-01 by 2 do

 ... # each step is 2 days

 end for

 for d = 2007-01-01 to 2007-03-01 by hour(6) do

 print(d)

 ... # each step is 6 hours

 end for

Metview Training Course – March 2013

© ECMWF 2014

Slide 22 Metview Training Course – April 2014

Metview Training Course – March 2013

Macro Essentials - Lists

 Ordered, heterogeneous collection of values. Not limited in

length. List elements can be of any type, including lists.

List are built using square brackets, and can be initialised

with nil:

 l = [3,4,"foo","bar"]

 l = nil

 l = l & [2,3,[3,4]]

 l = l & ["str1"] & ["str2"]

 europe = [35,-12.5,75,42.5] # S, W, N, E

© ECMWF 2014

Slide 23 Metview Training Course – April 2014

Metview Training Course – March 2013

Macro Essentials - Lists

 Accessing List Elements

 Indexes start at 1

mylist = [10,20,30,40]

a = mylist[1] # a = 10

b = mylist[2,4] # b = [20,30,40] (m to n)

c = mylist[1,4,2] # c = [10,30] (step 2)

© ECMWF 2014

Slide 24 Metview Training Course – April 2014

Macro Essentials - Lists

 Useful List Functions

 num_elements = count (mylist)

 sorted = sort (mylist)

 # can provide custom sorting function

if (2 in mylist) then

 …

end if

© ECMWF 2014

Slide 25 Metview Training Course – April 2014

Metview Training Course – March 2013

Macro Essentials - Lists

 Useful List Functions

 mylist = [’b’, ’a’, ’a’, ’c’]

 # find occurrences of ’a’ in list

 index = find(mylist, ’a’) # 2

 indexes = find(mylist, ’a’, ’all’) # [2,3]

 # return list of unique members

 reduced = unique(mylist) # [’b’, ’a’, ’c’]

© ECMWF 2014

Slide 26 Metview Training Course – April 2014

Macro Essentials - Lists

 List Operations

 Operators acting on lists will act on each list element,

returning a list of results

 a = [3, 4]

 b = a + 5 # b is now [8, 9]

 c = a * b # c is now [24, 36]

 Lists are general-purpose, and are not recommended for

handling large amounts (thousands) of numbers – for that,

use vectors (see later)

© ECMWF 2014

Slide 27 Metview Training Course – April 2014

Metview Training Course – March 2013

Macro Essentials - Fieldsets

 Definition

 Entity composed of several meteorological fields, (e.g.

output of a MARS retrieval).

 Operations and functions on fieldsets

 Operations on two fieldsets are carried out between

each pair of corresponding values within each pair of

corresponding fields. The result is a new fieldset.

 result = fieldset_1 + fieldset_2

© ECMWF 2014

Slide 28 Metview Training Course – April 2014

Metview Training Course – March 2013

Macro Essentials - Fieldsets

© ECMWF 2014

Slide 29 Metview Training Course – April 2014

Metview Training Course – March 2013

Macro Essentials - Fieldsets

© ECMWF 2014

Slide 30 Metview Training Course – April 2014

Metview Training Course – March 2013

Macro Essentials - Fieldsets

 Operations and functions on fieldsets

 Can also combine fieldsets with scalars:

 Z = X – 273.15

Gives a fieldset where all values are 273.15 less than the

original (Kelvin to Celcius)

 Functions such as log:

Z = log(X)

© ECMWF 2014

Slide 31 Metview Training Course – April 2014

Metview Training Course – March 2013

Macro Essentials - Fieldsets

 Operations and functions on fieldsets

 Boolean operators such as > or <= produce, for each

point, 0 when the comparison fails, or 1 if it succeeds:

 Z = X>0

Gives a fieldset where all values are either 1 or 0

– can be used as a mask to multiply by

– bitmap() can be used to invalidate values

e.g.

 t2m_masked = t2m * landseamask

 t2m_masked = bitmap (t2m_masked, 0)

© ECMWF 2014

Slide 32 Metview Training Course – April 2014

Metview Training Course – March 2013

Macro Essentials - Fieldsets

 suppose that fieldset ‘fs’ contains 5 fields:

 accumulate(fs)

 returns a list of 5 numbers, each is the

sum of all the values in that field

 sum(fs)

 returns a single field where each value is

the sum of the 5 corresponding values in

the input fields

 Many, many more – see the user guide

e.g. mean(), maxvalue(), stdev(),
coslat()

© ECMWF 2014

Slide 33 Metview Training Course – April 2014

Metview Training Course – March 2013

Macro Essentials - Fieldsets

 Building up fieldsets

 fieldset & fieldset , fieldset & nil

 merge several fieldsets. The output is a fieldset with as

many fields as the sum of all fieldsets.

fs = nil

for d = 2006-01-01 to 2006-12-31 do

 x = retrieve(date : d, ...)

 fs = fs & x

end for

 This is useful to build a fieldset inside a loop.

© ECMWF 2014

Slide 34 Metview Training Course – April 2014

Metview Training Course – March 2013

Macro Essentials - Fieldsets

 Extracting fields from fieldsets

 fieldset [number]

 fieldset [number,number]

 fieldset [number,number,number]

 Examples :

y = x[2] # copies field 2 of x into y

y = x[3,8] # copies fields 3,4,5,6,7 and 8

y = x[1,20,4] # copies fields 1, 5, 9, 13 and 17

© ECMWF 2014

Slide 35 Metview Training Course – April 2014

Metview Training Course – March 2013

Macro Essentials - Fieldsets

 Writing Fieldsets as Text

 Easy to save in Geopoints format (see next slide)

© ECMWF 2014

Slide 36 Metview Training Course – April 2014

Metview Training Course – March 2013

Tutorial Steps 5-7

 Steps 1-4 : Basic intro - input, basic contours, plot window,

variables and functions

 Steps 5-7 : Outputs other than on-screen

 Step 8 : Macro run mode control

 Steps 9-10 : User Interfaces in Macro

 Step 11 : Macro in Batch

 Steps 12a,b,c : Using functions in Macro (libraries)

 Embedding FORTRAN and C in Macro

© ECMWF 2014

Slide 37 Metview Training Course – April 2014

Metview Training Course – March 2013

Macro Essentials – Loops, Tests &

Functions

 The for, while, repeat, loop statements

 See ‘Metview Macro Syntax’ handout

 The if/else, when, case statements

 See ‘Metview Macro Syntax’ handout

 Function declarations

 See ‘Metview Macro Syntax’ handout

© ECMWF 2014

Slide 38 Metview Training Course – April 2014

Metview Training Course – March 2013

 Multiple versions

 Can declare multiple functions with the same name, but

with different parameter number/types.

function fn_test ()

function fn_test (param1: string)

function fn_test (param1: number)

 Correct one will be chosen according to the supplied

parameters

Macro Essentials – Functions

© ECMWF 2014

Slide 39 Metview Training Course – April 2014

Metview Training Course – March 2013

Tutorial Step 8

 Steps 1-4 : Basic intro - input, basic contours, plot window,

variables and functions

 Steps 5-7 : Outputs other than on-screen

 Step 8 : Macro run mode control

 Steps 9-10 : User Interfaces in Macro

 Step 11 : Macro in Batch

 Steps 12a,b,c : Using functions in Macro (libraries)

 Embedding FORTRAN and C in Macro

© ECMWF 2014

Slide 40 Metview Training Course – April 2014

Metview Training Course – March 2013

Tutorial Steps 9-10

 Steps 1-4 : Basic intro - input, basic contours, plot window,

variables and functions

 Steps 5-7 : Outputs other than on-screen

 Step 8 : Macro run mode control

 Steps 9-10 : User Interfaces in Macro

 Step 11 : Macro in Batch

 Steps 12a,b,c : Using functions in Macro (libraries)

 Embedding FORTRAN and C in Macro

© ECMWF 2014

Slide 41 Metview Training Course – April 2014

Metview Training Course – March 2013

Tutorial Step 11

 Steps 1-4 : Basic intro - input, basic contours, plot window,

variables and functions

 Steps 5-7 : Outputs other than on-screen

 Step 8 : Macro run mode control

 Steps 9-10 : User Interfaces in Macro

 Step 11 : Macro in Batch

 Steps 12a,b,c : Using functions in Macro (libraries)

 Embedding FORTRAN and C in Macro

© ECMWF 2014

Slide 42 Metview Training Course – April 2014

Metview Training Course – March 2013

Tutorial Step 12

 Steps 1-4 : Basic intro - input, basic contours, plot window,

variables and functions

 Steps 5-7 : Outputs other than on-screen

 Step 8 : Macro run mode control

 Steps 9-10 : User Interfaces in Macro

 Step 11 : Macro in Batch

 Steps 12a,b,c : Using functions in Macro (libraries)

 Embedding FORTRAN and C in Macro

© ECMWF 2014

Slide 43 Metview Training Course – April 2014

Metview Training Course – March 2013

Fortran and C in Macro - Introduction

 Users can write their own Macro functions in Fortran or

C/C++, extending the Macro language

 Used in tasks which cannot be achieved by macro

functions. Or use existing FORTRAN/C code to save time.

 FORTRAN/C-Metview macro interfaces support input data

of types GRIB, number, string and vector. BUFR, images

and matrices are waiting implementation.

© ECMWF 2014

Slide 44 Metview Training Course – April 2014

Metview Training Course – March 2013

Fortran and C in Macro - Introduction

 3 interfaces available:

 Macro/Fortran Interface (MFI)

Uses GRIB_API for fieldsets (GRIB 1 and 2)

 Macro/C Interface (MCI)

Uses GRIB_API for fieldsets (GRIB 1 and 2)

 Legacy Macro/Fortran interface

Uses GRIBEX for fieldsets (GRIB 1 only)

Deprecated: will disappear in the future – do not use!

© ECMWF 2014

Slide 45 Metview Training Course – April 2014

Metview Training Course – March 2013

Fortran/C in Macro – General Approach

 Embed FORTRAN/C source code in the macro source file

 Metview will automatically compile it at run-time

 OR

 Compile FORTRAN/C program separately or take an

existing executable

 FORTRAN/C program is treated as another macro function

 E.g. specify some MARS retrievals to provide input

fieldsets, use FORTRAN/C function to provide derived

field(s);

© ECMWF 2014

Slide 46 Metview Training Course – April 2014

Metview Training Course – March 2013

Fortran/C in Macro – Inline Code

 Embed the FORTRAN/C code in the macro program using

the inline keyword

© ECMWF 2014

Slide 47 Metview Training Course – April 2014

Metview Training Course – March 2013

Fortran/C in Macro – External Binary

 OR specify location of the FORTRAN/C executable to the

macro program

© ECMWF 2014

Slide 48 Metview Training Course – April 2014

Metview Training Course – March 2013

Fortran/C in Macro – General Approach

 Use suite of FORTRAN/C routines to get the input

arguments, obtain GRIB_API handles for interrogation of

GRIB data, save and set results, - these are the “interface

routines” (mfi_*, mci_*).

 Schematically, the FORTRAN/C program dealing with a

GRIB file is composed of

 a section where input is read and output prepared

 a loop where fields are loaded, expanded, validated,

processed and saved

 a section where output is set

© ECMWF 2014

Slide 49 Metview Training Course – April 2014

Metview Training Course – March 2013

Fortran in Macro – A Simple Example

 Advection of scalar field requires FORTRAN/C program to

obtain the gradient of the field.

 Assume you will have a FORTRAN program called

gradientb returning the gradient of a fieldset in two

components (then advection is trivial). First concentrate

on the writing of the macro program itself.

 Examine macro provided, which computes advection of

specific humidity q at 700 hPa

 Examine FORTRAN source code provided, which

computes gradient of a field

© ECMWF 2014

Slide 50 Metview Training Course – April 2014

Metview Training Course – March 2013

Fortran in Macro – A Simple Example

 Note interface routines, prefixed by "MFI" (e.g.

mfi_get_fieldset, mfi_load_one_grib,

mfi_save_grib). Most of the FORTRAN code is standard

to process a GRIB fieldset.

 User routine GRAD() calculates gradient of input fieldset in

two components:

 saved separately and coded as wind components -

 each can be accessed separately in the macro for the

calculation of the advection.

 Two methods for making the program visible to macros:

© ECMWF 2014

Slide 51 Metview Training Course – April 2014

Metview Training Course – March 2013

Fortran in Macro – Embedding the

FORTRAN Program

 Method 1: write the FORTRAN code inline – i.e., inside the

macro code itself:

extern gradientb(f:fieldset) "fortran90" inline

PROGRAM GRADIENTB

CALL mfi_get_fieldset(fieldset_in, icount)

. . .

end inline

© ECMWF 2014

Slide 52 Metview Training Course – April 2014

Metview Training Course – March 2013

Fortran in Macro – Embedding the

FORTRAN Program

 This can be written directly into the macro that will use it

or else in a separate file.

 If written to a separate file, it can be accessed with the

include macro command.

 If named correctly, it can be placed in the Macro folder of

the System folder (~uid/metview/System/Macros) . In

this case, the calling macro does not need any extra lines

in order to use this function.

© ECMWF 2014

Slide 53 Metview Training Course – April 2014

Metview Training Course – March 2013

Fortran in Macro – Embedding the

FORTRAN Program

 Method 2: compile and link the FORTRAN program

separately. Then:

 a) inform the macro program where to find the FORTRAN

executable:

extern gradientb(f:fieldset)

"/home/xy/xyz/metview/fortran/gradientb"

 or b) place the executable in the Macro folder of the

System folder (~uid/metview/System/Macros)

 No need to specify this location to the macro

© ECMWF 2014

Slide 54 Metview Training Course – April 2014

Metview Training Course – March 2013

Fortran in Macro – Embedding the

FORTRAN Program

 Finally, save the macro and execute to obtain the desired

result.

 The procedure above is fairly general and with minor

changes, can be adapted to other tasks just by replacing

the processing routine.

 NOTE: in some cases, it may be a good idea to perform the

GRIB handling within Macro, extract the values and

coordinates as vectors, and pass these to the inline

FORTRAN/C code instead – simpler inline code.

© ECMWF 2014

Slide 55 Metview Training Course – April 2014

Metview Training Course – March 2013

Macro Essentials - Variables

 Scope and Visibility

 Variables inside functions are local

 Functions cannot see ‘outside’ variables

x = 9 # cannot see y here

function func

 y = 10 # cannot see x here

end func

 # cannot see y here

© ECMWF 2014

Slide 56 Metview Training Course – April 2014

Metview Training Course – March 2013

Macro Essentials - Variables

 Scope and Visibility

 … unless a variable is defined to be ‘global’

global g1 = 9 # cannot see y1 here

function func

 y1 = 10 + g1 # can see g1 here

end func

 # cannot see y1 here

© ECMWF 2014

Slide 57 Metview Training Course – April 2014

Metview Training Course – March 2013

Macro Essentials - Variables

 Scope and Visibility

 … a better solution is to pass a parameter

 … that way, the function can be reused in other macros

x = 9

func(x) # x is passed as a parameter

function func (t : number) #t adopts value of x

 y1 = 10 + t # y1 = 10 + 9

end func

© ECMWF 2014

Slide 58 Metview Training Course – April 2014

Metview Training Course – March 2013

Macro Essentials - Variables

 Destroying variables automatically

 When they go out of scope

function plot_a

 a = retrieve(...)

 plot(a)

end plot_a

Main routine

plot_a() # a is created and destroyed

© ECMWF 2014

Slide 59 Metview Training Course – April 2014

Metview Training Course – March 2013

Macro Essentials - Variables

 Destroying variables manually

 Set to zero

 (Variables can ‘hold’ lots of data, either in memory or in

temporary files)

 a = retrieve(...)

plot(a) # we have finished with ’a’ now

a = 0

b = retrieve(...)

plot(b)

© ECMWF 2014

Slide 60 Metview Training Course – April 2014

Metview Training Course – March 2013

Macro Essentials - Geopoints

 Hold spatially irregular data

 ASCII format file

#GEO

PARAMETER = 2m Temperature

lat long level date time value

#DATA

36.15 -5.35 850 19970810 1200 300.9

34.58 32.98 850 19970810 1200 301.6

41.97 21.65 850 19970810 1200 299.4

© ECMWF 2014

Slide 61 Metview Training Course – April 2014

Metview Training Course – March 2013

Macro Essentials - Geopoints

 Alternative format: XYV

#GEO

#FORMAT XYV

PARAMETER = 2m Temperature

long lat value

#DATA

-5.35 36.15 300.9

32.98 34.58 301.6

21.65 41.97 299.4

© ECMWF 2014

Slide 62 Metview Training Course – April 2014

Metview Training Course – March 2013

Macro Essentials - Geopoints

 Alternative format: XY_VECTOR

#GEO

#FORMAT XY_VECTOR

lat lon height date time u v

#DATA

80 10 0 20030617 1200 -4.9001 -8.3126

80 5.5 0 20030617 1200 -5.6628 -7.7252

70 11 0 20030617 1200 -6.42549 -7.13829

© ECMWF 2014

Slide 63 Metview Training Course – April 2014

Metview Training Course – March 2013

Macro Essentials - Geopoints

 Alternative format: POLAR_VECTOR

#GEO

#FORMAT POLAR_VECTOR

lat lon height date time speed direction

#DATA

50.97 6.05 0 20030614 1200 23 90

41.97 21.65 0 20030614 1200 4 330

35.85 14.48 0 20030614 1200 12 170

© ECMWF 2014

Slide 64 Metview Training Course – April 2014

Metview Training Course – March 2013

Macro Essentials - Geopoints

 Operations on geopoints

 Generally create a new set of geopoints, where each

value is the result of the operation on the

corresponding input value

 geo_new = geo_pts + 1

Means "add 1 to each geopoint value, creating a new

set of geopoints".

(3, 4, 5, 6, 7, 8)

(4, 5, 6, 7, 8, 9)

© ECMWF 2014

Slide 65 Metview Training Course – April 2014

Metview Training Course – March 2013

Macro Essentials - Geopoints

 Operations on geopoints

 geo_gt_5 = geo_pts > 5

Means "create a new set of geopoints of 1 where input

value is greater than 5, and 0 where it is not".

(3, 4, 5, 6, 7, 8)

(0, 0, 0, 1, 1, 1)

© ECMWF 2014

Slide 66 Metview Training Course – April 2014

Metview Training Course – March 2013

Macro Essentials - Geopoints

 Filtering geopoints

 result = filter (geo_pts, geo_pts > 5)

 result = filter (geo_pts, geo_gt_5)

Means “extract from the first set of geopoints the points

where the corresponding point in the second parameter

is non-zero".

Means "create a new set of geopoints consisting only

of those points whose value is greater than 5".

geo_pts : (3, 4, 5, 6, 7, 8)

geo_gt_5 : (0, 0, 0, 1, 1, 1)

result : (6, 7, 8)

Equivalent

© ECMWF 2014

Slide 67 Metview Training Course – April 2014

Metview Training Course – March 2013

Macro Essentials - Geopoints

 Example of functions on geopoints

 count (geopoints)

Returns the number of points

 distance (geopoints, number, number)

Returns the set of distances from the given location

 mean (geopoints)

Returns the mean value of all the points

© ECMWF 2014

Slide 68 Metview Training Course – April 2014

Metview Training Course – March 2013

Macro Essentials - Geopoints

 Combining Fieldsets And Point Data

 Point data is stored in geopoints variables

 Combination of geopoints and fieldsets is done

automatically by Metview Macro :

 - for each geopoint, find the corresponding value in the

fieldset by interpolation

 - now combine corresponding values (add, subtract

etc.)

 - the result is a new geopoints variable

 - only considers the first field in a fieldset

© ECMWF 2014

Slide 69 Metview Training Course – April 2014

Macro Essentials – ASCII Tables

 ASCII Tables – columns of data in text files

 E.g. CSV (Comma Separated Value)

 Various parsing options for different formats

 Metview can directly visualise these, or read columns of

data into vectors (numeric) or lists of strings (text)

 Metview can currently only read ASCII Tables, not write

Station,Lat,Lon,T2m

1,71.1,28.23,271.3

2,70.93,-8.67,274.7

t2_csv = read_table(

 table_filename : 't2m.csv')

vals = values(t2_csv, 'T2m')

vals is now a vector

© ECMWF 2014

Slide 70 Metview Training Course – April 2014

Macro Essentials – Vectors

 Ordered, array of numbers. Much more efficient than lists

for high volumes of numeric data. Vectors are built using

the vertical bar symbol, and can be initialised with nil:

 v = |7, 8, 9|

 v = nil # start from nil and append

 v = v & |4.4, 5.5, 3.14| & |8, 9|

 v = vector(10000) # pre-allocate space

 v[1] = 4 # assign values to indexes

© ECMWF 2014

Slide 71 Metview Training Course – April 2014

Macro Essentials - Vectors

 Assigning/replacing a range of values at once:

v = |10,20,30,40|

v[2] = |99,99| # v is now |10,99,99,40|

© ECMWF 2014

Slide 72 Metview Training Course – April 2014

Macro Essentials - Vectors

 Operations and functions are applied to each element:

 x = |3, 4, 5|

 y = x + 10 # y is now |13, 14, 15|

 c = cos(x)

 u = |7.3, 4.2, 3.6|

 v = |-4.4, 1.1, -2.1|

 spd = sqrt((u*u) + (v*v))

© ECMWF 2014

Slide 73 Metview Training Course – April 2014

Macro Essentials - Vectors

 Accessing vector elements

 Indexes start at 1

v = |10,20,30,40|

a = v[1] # a = 10

b = v[2,4] # b = |20,30,40| (m to n)

c = v[1,4,2] # c = |10,30| (step 2)

d = v[1,4,2,2] # d = |10,20,30,40|

 # (take 2 at each step)

© ECMWF 2014

Slide 74 Metview Training Course – April 2014

Macro Essentials - Vectors

 The raw data in most file formats supported by Metview

can be extracted into a vector:

 vals = values(fieldset)

 vals = values(netcdf)

 vals = values(geopoints)

 vals = values(table, ’column_A’)

 vals = values(odb, ’column_A’)

© ECMWF 2014

Slide 75 Metview Training Course – April 2014

Macro Essentials - Vectors

 Vectors honour missing values and will not include them

in calculations

 For computations with many steps, vectors can be the

most efficient way to do it

 Stored in memory, no intermediate files on disk (but

greater memory usage!)

 Operations on lists of vectors:

a = [v1,v2] * [v3,v4]

a is now [v1*v3, v2*v4]

© ECMWF 2014

Slide 76 Metview Training Course – April 2014

Metview Training Course – March 2013

Macro Essentials - Definitions

 A collection of named items (members)

 Eg

 Like a struct in ‘C’ or a dictionary in Python

a = (x : 1, y : 2) # create definition

c = a.x # get value of ’x’

 or

c = a[”x”]

© ECMWF 2014

Slide 77 Metview Training Course – April 2014

Metview Training Course – March 2013

Macro Essentials - Definitions

 Icon-functions take definitions:

acoast = mcoast(

 map_coastline_resolution : "high",

 map_coastline_colour : "red",

 map_grid_colour : "grey",

 map_grid_longitude_increment : 10,

 map_label_colour : "grey",

 map_coastline_land_shade : "on",

 map_coastline_land_shade_colour: "cream"

)

© ECMWF 2014

Slide 78 Metview Training Course – April 2014

Metview Training Course – March 2013

Macro Essentials - Definitions

param_def = (param : "Z",

 type : "FC",

 date : -1,

 step : 24)

retrieve as LL grid or not according to user

choice

if (use_LL = "yes") then

 param_def.grid = [1.5,1.5]

end if

Z_ret = retrieve (param_def)

© ECMWF 2014

Slide 79 Metview Training Course – April 2014

Metview Training Course – March 2013

Macro Essentials - Definitions

common_input = (levtype : "PL",

 levelist : 850,

 time : 12,

 grid : [2.5,2.5],

 type : "AN")

Uan = retrieve (common_input,

 date : -1,

 param : "U")

Van = retrieve (common_input,

 date : -2,

 param : "V")

© ECMWF 2014

Slide 80 Metview Training Course – April 2014

Metview Training Course – March 2013

Macro Essentials – Data Input

 For GRIB files, read() reads the data into a fieldset

 For BUFR files, read() reads the data into an

observations variable (usually convert to geopoints before

using)

 For geopoints, read() reads the data into a geopoints

variable

 For netCDF, read() reads the data into a netcdf variable

 For ODB, read() reads the data into an odb variable

(Observational DataBase – see separate tutorial on the

web)

© ECMWF 2014

Slide 81 Metview Training Course – April 2014

Macro Essentials – Data Input

 For ASCII tables, read_table() reads the data into a table

variable

 For other ASCII data, read() reads the data into a list,

where each element is a string containing a line of the text

file. Use string functions parse() and substring() to

separate elements further.

© ECMWF 2014

Slide 82 Metview Training Course – April 2014

Metview Training Course – March 2013

Macro Essentials – Data Output

 Use the write() function

using filename, subsequent calls overwrite

using file handler, subsequent calls append

 Can also use append()

 Automatic file format

fieldset -> GRIB file

observations -> BUFR file

geopoints -> geopoints file

netcdf -> netcdf file

string -> ASCII file (custom formats)

© ECMWF 2014

Slide 83 Metview Training Course – April 2014

Metview Training Course – March 2013

Macro Documentation

 Metview 4 documentation here:

 https://software.ecmwf.int/metview/

 Documentation / User Guide , FAQ

 Material from this course will soon appear there!

 Some information still only for Metview 3

 PDF available

 Will be migrated to the Metview 4 pages

 Ask!

 metview@ecmwf.int

