
Hello! I am Mark Rodwell. I work on Diagnostics of the Integrated Forecast System (IFS). 
 
Diagnostics at ECMWF is about looking for weaknesses in the IFS, trying to identify their causes, 
working with developers, and documenting the resulting changes in performance. Here, with the 
help of a few examples, I will discuss the development of some of our diagnostic tools, and how they 
are helping us identify residual deficiencies. 
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The scope of Diagnostics is broad-ranging. Some think of diagnostics as primarily associated with case-studies of 
individual events that happened (a severe storm or the medieval warm period may be two examples) and 
perhaps were poorly forecast (or hindcast). Individual case-studies can be a useful approach for understanding 
the evolution of the event and for identifying gross errors, but have limitations if not backed-up by other 
evidence. At the heart of these limitations is the question “was it a model error, or was the event highly 
unpredictable?”. By “unpredictable”, I mean that it was a feature for which chaotic uncertainties grew quickly. 
Wrongly assuming it is all model error (in the weather or climate context) opens-up the possibility of making 
detrimental changes to our models. Others consider diagnostics to be about metrics of the model climate (the 
Lorenz energy cycle for example). This approach side-steps the issue of predictability, but at the possible 
expense of making it difficult to identify the root-cause of any deficiency. Nevertheless, it can be useful for 
monitoring and comparing weather or climate models. One could argue, however, that the two central aspects 
of weather and climate forecasting are precisely the quantification of predictability and the identification of the 
root-causes for errors! Central to my research have been attempts to enable Diagnostics to provide useful 
information on these two aspects. 
 
The choice between cars in the slide is fairly clear (although I’m sure the Austin Maxi was ground-breaking in its 
day!). These days, it is perhaps more difficult to choose between cars without reading the specifications very 
closely. The same is true for weather and climate models. Our diagnostics need to be ever more precise if we 
are to judge unambiguously whether any given update to the forecasting system is a real improvement. This 
might involve looking at many cases (compositing on many storm events for example) but, because of 
limitations of computing time, also requires that our diagnostics distil as much information from the available 
test cases as possible, and are not sensitive to sampling uncertainties. Making sure that diagnostics are 
calculated from un-interpolated data, targeted carefully at a given hypothesis, and include statistical 
significance testing are examples and good practice. 
 
These days, we are not just interested in developing one good model. Increasingly, users are demanding (and 
researchers are recognising the importance of) the estimation of uncertainty in all aspects of our forecast 
system. We need to be sure that the predicted uncertainty accurately reflects the true uncertainty of the 
situation. The cartoon strip represents an example of where the ensemble spread may have been too large! The 
correct tuning, or calibration, of ensemble spread also requires consideration of many cases and further 
development of diagnostics is needed. 
 
The “Diagnostics Explorer” has been developed at ECMWF with the aim of providing all researchers the ability 
to make precise diagnostics of their experiments as easily as possible. The diagnostics include “model-space” 
and “observation-space” tools. The hope is that this will help speed-up the development process. 
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Here is an example of the traditional deterministic forecasting approach. I am showing Potential 
Vorticity (PV) on the 320K isentropic surface. The orange colours highlight high PV air, primarily from 
the polar stratosphere. The blue colours highlight tropospheric air from lower latitudes. The green 
band in-between highlights the tropopause. PV is materially conserved in adiabatic, frictionless 
situations. Hence PV highlights nicely the atmospheric flow and the physical process (convection 
etc.) that are modifying it. In the next slide, we see an animation of the subsequent analysed and 
forecast flow. 
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Over the first 6 days of the forecast, we see how the flow evolves. We see examples of anticyclonic 
wave-breaking that, in the analysis, lead to a blocked-type flow over Europe at day-6. The single 
high-resolution forecast is particularly poor by day-6, but what led to this forecast failure? Was it a 
model error? Was it that the initial conditions were unusually poor? Was it that the flow was more 
un-predictable than usual? We cannot begin to disentangle these issues at day-6 without moving to 
the ensemble (probabilistic) forecast system. 
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Here we see the same initial conditions, but I have also included the ensemble forecast system. For 
clarity, I am only showing the first 32 of the 50 ensemble members (labelled ‘Perturbed’). Looking 
carefully, it is possible to see slight differences in the initial conditions of these ensemble members. 
These differences represent our uncertainty in the observations and also errors that are likely to 
grow most quickly in the early stages of the forecast. I have also included the ‘control’ forecast for 
the ensemble. The initial conditions for the control forecast match more closely those of the high-
resolution forecast, but are at the lower-resolution of the ensemble (although this is not easy to see 
differences here). 
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Again we see how the forecasts evolve over the first 6 days. In addition to the differences in initial 
conditions, the ensemble forecasts also include ‘stochastic physics’ (stochastically-perturbed physical 
tendencies – SPPT) which acts to represent sub-grid-scale uncertainty (or non-determinism) for a 
given resolved flow field. 
 
At day-6, there is a lot of ‘spread’ in the ensemble – reflecting our uncertainty in the outcome. But 
do any members capture the real outcome? One member (‘Pertubed 32’) matches quite well the 
analysis. It is clearly possible that the issue is purely associated with low inherent predictability. In 
which case, any improvement would require reducing uncertainties in the initial conditions. Later in 
this talk, I highlight an aspect of the flow (a meso-scale convective system over North America) that 
acts within the forecasts to amplify the initial uncertainties. Hence it appears there is still scope for 
improving the forecast at day-6 through improvements to the modelling (or parametrization) of such 
meso-scale systems. 
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In addition to the issue of predictability, there is another issue of model complexity. 
 
Much model development is driven by a `bottom-up’ desire to improve the representation of 
underlying physical processes. Such development is undertaken at ECMWF by researchers with 
responsibility for a given physical process. They use, for example, single-column models driven by 
fixed boundary conditions. However, we also need a `top-down’ approach to diagnosing the impact 
of such changes in the full forecast system, and to identify residual issues. This top-down task is one 
of the functions of Diagnostics. With the increasing complexity (and accuracy) of present-day 
models, which include increasing numbers of physical and micro-physical processes, with 
considerable scope for interaction between themselves and with the resolved flow, our task is 
always challenging! 
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One approach to over-coming the issues of predictability and model complexity in our quest for top-down 
model assessment is to look very early-on in the forecast. Indeed, to look at the forecast model within the data 
assimilation system itself. With every data assimilation cycle, the model is effectively assessed against millions 
of new observations. I will discuss such an approach within this talk. 
 
The data assimilation system acts to draw the analysis away from the first-guess (prior forecast) and closer to 
the observations in a way that is consistent with estimated observation and model errors. The difference 
between the final analysis and the first-guess is known as the ‘analysis increment’. This can be viewed as a 
correction to the first-guess forecast. What I term the ‘analysed evolution’ of the flow is the difference between 
successive analyses. Note that the first-guess forecast is simply the sum of the tendencies from the dynamics 
and the physical processes (and any other numerics) represented within the model. In the schematic, the 
impact of each process has been accumulated over all model timesteps within the data assimilation window - 
so that we can see the accumulated effect of each process. If the forecast model is perfect and the observations 
unbiased then, when averaged over many data assimilation cycles, the mean analysis increment should be zero 
(or at least very small). In such a situation, the contributions from all the processes should be almost in balance 
(since the analysed evolution is also small when averaged over many cycles).  If the mean analysis increment is 
not zero, then this indicates that the model processes are not correctly in balance and that some aspect(s) of 
the model contain errors. (This assumes that the observations are unbiased, which is a reasonable assumption 
since the ‘variational bias correction scheme’ acts to remove large-scale systematic departures from the first-
guess). How might such an imbalance arise? The concept of ‘radiative-convective’ equilibrium embodies the 
idea that radiative processes act to destabilise the atmosphere (heat the surface and cool the mid-to-upper 
troposphere) and the convection induced by this destabilisation acts to restore balance by cooling the surface 
and heating the mid-to-upper troposphere. With this idealised concept in mind, either a convection scheme 
that is too weak (given the observed temperature and humidity profiles) or a radiation scheme that is too 
strong (given the observed conditions – humidity etc.; as embodied by the analysis) would lead to a systematic 
initial net cooling of the mid-troposphere. Assuming there are relevant observations present, this cooling would 
be corrected with positive analysis increments. With the mean initial tendencies (or analysis increments), we 
therefore have a diagnostic that can quantify local model physics error before significant interactions have 
taken place with (and via) the resolved dynamics. 
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A long-standing issue for the ECMWF model has been a cold bias near the (primarily extratropical) 
tropopause. The analysis increments (bottom left) show that the analysis is around 0.1K warmer on 
average than the model at a lead-time of 12 hours. The mean forecast error at day 10 (bottom right) 
is around 1K. This ten-fold growth confirms that the root-cause is likely to be model error, rather 
than observation error. Consideration of the process tendencies shows that there are two strong 
contributors to the temperature budget in the extratropical upper troposphere: dynamics and 
radiation. What appears to be happening is that the radiative cooling extends slightly higher than 
the dynamical warming. 
 
Why might this be the case? Separate experiments (Leroy and Rodwell; 2014) highlight an issue with 
humidity at this level. There does not appear to be a lot of upper-tropospheric humidity information 
in the observations, and consequently humidities are able to drift towards the model’s own attractor 
(which is difficult to improve for the same reason). The radiation then responds to these humidity 
biases and leads to erroneous cooling. 
 
Note that the ‘residual’ in the budget is plotted with the same contour interval as the analysis 
increments. The is important because the conclusions drawn require that there are no other hidden 
(numerical) reasons for the budget imbalance. 
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This slide shows our first use of this approach. 
 
The left figure shows the initial tendencies associated with the dominant physical processes (and the 
dynamics) within the ECMWF model for the Amazon region (based on a model version that was 
operational a few years ago). It can be seen that convective (Con) heating is balanced by dynamic 
(Dyn) cooling due to ascent and also by radiative (Rad) cooling. The first-guess tendency is simply the 
sum the individual process tendencies. It can be seen that this total initial tendency is ‘small’ and 
thus the model physics is ‘reasonable’. 
 
Stainforth et al. (2005) found that the perturbation that led to the largest global warming (up to 12K) 
in their ensemble was a reduction in the turbulent entrainment coefficient. When this perturbation 
is applied to the ECMWF model and a new data assimilation / forecast cycle experiment made, it is 
found (see right figure) that the initial tendencies are not so well in balance. 
 
Rodwell and Palmer (2007) argued that the larger total initial tendency implies that this perturbation 
is very unrealistic (unphysical) and can thus be down-weighted or even rejected within the 
perturbed ensemble. In this particular case, the uncertainty in climate change would be substantially 
reduced. The initial tendency approach is much less computationally expensive than running a 
coupled model for hundreds of years. This provides justification for pursuing a seamless approach to 
weather and climate forecasting. 
 
We can begin to understand physically what is happening in the model with reduced entrainment: 
with less entrainment, less buoyancy is detrained from a convective plume, which thus rises higher 
and heats more. Initially, this increased heating is not balanced by increased dynamical cooling since 
the large-scale dynamics are better constrained by the observations, and respond more slowly.  
Later in the forecasts, the processes within this perturbed model must also come into balance (when 
the atmospheric state approaches the climate attractor of the perturbed model). Interesting the 
Amazonian precipitation climate of the perturbed model is less than that of the control model – 
highlighting the issues of interpretation after processes have had time to interact: a key reason for 
looking at the shortest relevant timescales. 
 

10 



It is not always obvious from examination of the data assimilation system that the model is at fault. 
Here is an example of the differences between the observed meridional wind speed, as observed 
using satellite-derived atmospheric motion vectors (AMVs). The various geostationary satellites are 
obvious from there circular foot-prints. Is the meteorology of the eastern tropical Pacific that 
different from the meteorology of the other ocean basins to account for the much larger departures, 
or is there an issue with the satellite observations in this region? This is one question we are 
investigating at the moment. 
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In addition to reducing mean errors, we also wish to better represent variability in the flow. This is 
(the first frame of) an animation that highlights the horizontal structure and phase-speed of the 
various equatorial waves (assuming a stationary background flow). The animation highlights the fact 
that local anomalies (or errors) can affect other regions through the actions of waves and 
teleconnections (quasi-stationary waves). This animation also highlights the fact that variations in 
the atmosphere can have specific spatio-temporal characteristics. We can use this fact to target 
diagnostics towards particular features. 
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In addition to reducing mean errors, we also wish to better represent variability in the flow. This is 
an animation that highlights the horizontal structure and phase-speed of the various equatorial 
waves (assuming a stationary background flow). The animation highlights the fact that local 
anomalies (or errors) can affect other regions through the actions of waves and teleconnections 
(quasi-stationary waves). This animation also highlights the fact that variations in the atmosphere 
can have specific spatio-temporal characteristics. We can use this fact to target diagnostics towards 
particular features. 
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Using out-going long-wave radiation (for example) it is possible to isolate the wave power for each 
wave-number and frequency. This has been done in panel (a) for the observed waves that are 
symmetric about the equator, and over-laid with the theoretical dispersion diagram for equatorial 
waves. The agreement is quite amazing (to me at least!). The higher wave power can be seen for 
both the Rossby and Kelvin waves. The observations are not frequent enough to allow us to calculate 
the power in the gravity waves. The region of high power at small positive wave-number and small 
frequency relates to the Madden-Julian Oscillation (MJO). The MJO is not on any of the curves and 
this demonstrates that the MJO is not adequately represented by the Shallow water model. A likely 
reason could be that the MJO involves coupling with the physics (convection, radiation etc). A 
reasonable agreement can also be seen between the theoretical symmetric waves and those found 
in the ECMWF model cycle 32R3, here run at resolution TL159L91 (panel c). The ECMWF model cycle 
32R3 had a major change to its convection. The entrainment of moisture into a convective plume 
used to be partly due to turbulent processes and partly related to the large-scale convergence. At 
cycle 32R3, the explicit connection to the large-scale convergence was removed. This had many 
beneficial impacts on forecast scores and on synoptic activity. Unfortunately, it also strongly 
increased low-frequency, planetary activity. This over-estimation of low-frequency activity is clearly 
visible for symmetric and asymmetric waves (compare panels (c) and (d) to panels (a) and (b), 
respectively). The entrainment change may well have had a major impact on wave-convective 
coupling. It remains to be seen if subsequent model cycles build on this change and improve our 
ability to simulate the Madden-Julian Oscillation. For the asymmetric waves, the mixed Rossby-
gravity waves are apparent in the observed OLR data (panel b). The model (panel d) tends to capture 
the asymmetric Rossby waves but doesn’t appear to capture the distinct set of mixed Rossby-gravity 
waves seen in the observations. (Note that the large power near non-dimensionalised wavenumber 
2 is spurious and due to satellite sampling that involves 14 passes around the length of the equator). 
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The panel on the left is part of a schematic showing the eastward propagation of the Madden and 
Julian Oscillation MJO) around the equator. The MJO is not a solution of the shallow water equations 
(that were shown in the wave-spotting movie), partly because it involves an interaction between the 
dynamical flow and the convection. It is these interactions that we need focus-on diagnostically. 
 
We have investigated the MJO with the initial tendency approach too. The temperature budget is a 
bit tricky to interpret as several processes are important. Here I am showing (in the central column 
of panels) the zonal wind budget, that is dominated by the dynamics and convection terms. This is 
the budget averaged between 60 and 180oE when the convection is active over the Warm Pool and 
western equatorial Pacific. In the upper tropical troposphere, the dynamics are accelerating the 
(prevailing easterly) winds and the convection is acting to decelerate these winds. The physical 
process for this deceleration is the turbulent mixing with lower-tropospheric air, which has a smaller 
easterly component. The increments suggest that the convective deceleration is twice as strong as it 
should be (assuming the resolved dynamics are blameless!). In a sensitivity study, we halved the 
convective momentum transport globally and the resulting tendency budget (when data assimilation 
is performed with this perturbed model) is shown in the right-hand panels. The result was quite 
pleasing – the upper-tropospheric balance was improved so that the mean increments effectively 
disappear. Since the convective momentum transport must integrate vertically to zero, one worry 
was that the reduction is convective momentum transport would also reduce the easterly 
convective acceleration in the mid-troposphere and lead to a new imbalance with the dynamics. 
What was also pleasing to see was that the mid-tropospheric dynamical westerly forcing appears to 
weaken (as an indirect response) so that the mid-tropospheric balance is maintained. This example 
demonstrates that the initial tendency approach can motivate, as well as assess, model 
improvements. 
 
We have yet to assess whether the better upper-tropospheric momentum budget allows the MJO to 
propagate more freely through the Warm-Pool region. This is a particular problem for the model at 
present and one that, once solved, could lead to improved extended-range predictions in the 
extratropics as well as the tropics. 
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This figure shows the model climate changes in precipitation, low-level winds and 500 hPa 
geopotential heights associated with a change in model aerosol climatology – primarily over the 
Sahara region (Rodwell and Jung; 2008). The main effect was a dramatic (and welcome) decrease in 
strength of the North African monsoon. The physical basis for this improvement was understood 
through the use of initial (and medium-range) tendency budgets. From what I have discussed about 
equatorial waves, we are able to explain the change in low-level circulation over the subtropical 
north Atlantic as a clear Rossby-wave response to the reduced monsoon heating over northern 
Africa (the circulation anomaly is the opposite to that seen for the `Gill response’ (Gill; 1980 – see 
also Matsuno; 1966) because we have a cooling anomaly rather than his heating anomaly). In 
addition, increased precipitation over the Indian Ocean in the June-August season (JJA) can be 
explained as being triggered by the upwelling Kelvin wave response to the reduced heating over 
tropical north Africa. As with the North African monsoon response itself, feedbacks with the 
convection tend to strongly enhance the precipitation response over the Indian Ocean. Notice the 
additional response in the southern extratropics. I discuss briefly our diagnostics of tropical-to-
extratropical forcing in the next slide. 



Sardeshmukh and Hoskins (1988) discussed the ‘Rossby wave source’ and how tropical convective 
anomalies could lead to the excitation of extratropical Rossby waves. This plot shows, for DJF 
2012/13, shows mean upper-tropospheric divergent winds (integrated between 100 and 300hPa), 
mean streamfunction (thick contours) and the Rossby wave source (shaded). The streamfunction is 
associated with the rotational flow, which reaches speeds of ~50ms-1 (e.g. over Tibet). The Rossby 
wave source comprises two elements. (1) A ‘stretching term’ - which is visible (in red) on the down-
slopes of Tibet - whereby horizontal convergence associated with stretching leads to the spin-up of 
vorticity (the ‘ballerina effect’). (2) The blue shading over southern China represents the advection of 
low values of planetary vorticity by the divergent outflow from tropical convection. Such vorticity 
forcing results in Rossby waves along the Jet stream. In some cases (such as for the aerosol change 
on the previous slide) the resulting extratropical response involves a strong stationary component 
(when the Rossby wave has a scale that allows it to propagate upstream at the same speed as it is 
advected downstream by the Jet). Regardless of whether the extratropical response is stationary or 
not, it is clearly worth evaluating our ability to predict the Rossby wave source. 
 
Mean errors in the Rossby wave source presently account for ⅓ to ½ of the day-1 root-mean-square 
errors in this region (and indeed around the other large mountain ranges of the Earth too). Although 
it maybe unclear by how much we can reduce the random component of the Rossby wave source 
error, it does seem feasible that we could tackle this sizeable mean component. Doing so should 
help us better predict the evolution of the world’s stormtracks, such as that over the North Pacific. 
 
For more discussion of this diagnostic approach, see Rodwell and Jung (2008).  
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Rossby waves crossing the North Pacific, and baroclinic developments, lead to variations in the flow 
over North America.  One particular flow-regime over North America has been shown to lead to 
poorer subsequent forecasts over the North Atlantic and Europe (Rodwell et al.; 2013). An example, 
for 10 April 2011,  is shown here. The key features are a trough over the Rockies and, associated 
with warm moisture southerly flow on its leading edge, high levels of Convective Available Potential 
Energy (CAPE). This CAPE can give rise to Mesoscale Convective Systems (MCSs; shown in the right 
panel) over northern North America which can disrupt the upper-level Jet Stream. This is actually the 
case I discussed at the beginning – when the high resolution forecast for Europe was particularly bad 
at day-6 
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This figure shows the time series of spatial anomaly correlation coefficient (ACC)  for day-6 forecasts 
of Z500 over Europe from several of the world’s forecast centres. In general, scores fluctuate around 
the 80% level, but around 10 April (corresponding the 10 April case shown on the previous slide) a 
‘bust’ occurs. On this particular occasion all centres suffered, with the UK Met. Office (UKMO) 
recovering earliest. 
 
The fact that all centres suffered suggests that much of this bust must be associated with a drop in 
predictability (and not purely due to model error). Hence we need to start think in probabilistic 
terms and investigating our ensemble prediction systems. Looking for “best ensemble members” can 
give an indication of the likely regions where initial condition uncertainty is most important. In this 
case, it was over central North America. The next slide shows the development of this uncertainty 
over the subsequent 12 hours. 
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In addition to its ‘best estimate’ high-resolution analysis, ECMWF runs an Ensemble of Data 
Assimilations (EDA) which assimilates observations that are perturbed to reflect observation error.  
At the time this analysis was conducted the EDA involved 10 members. This slide shows (shaded) the 
EDA standard deviation in 200 hPa temperatures for the 10 April case. The first-guess forecasts (left) 
show strong growth of uncertainty associated with the development of the mesoscale convective 
system. When new observations are then assimilated (right), we see that the spread of the final set 
of analyses is reduced. 
 
To first-order, the MSC is clearly acting to magnify uncertainty. Not only does the MCS disrupt the 
Jet Stream – and thus affect subsequent European weather - but there is also considerable 
uncertainty in how it disrupts the Jet Stream – and thus it enhances uncertainty in the subsequent 
European weather. A key question for Diagnostics is not about the 0th-order disruption, nor about 
the 1st-order enhancement of uncertainty, but rather the 2nd-order question of whether the 
uncertainty is enhanced by the correct amount. 
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This figure shows mean day-6 spread and ensemble-mean error based on 84 trough/CAPE events 
(right) and for the background (left). It can be seen that the trough/CAPE situation does indeed lead 
to increased spread and error. Experimentation has shown that both the trough and the CAPE are 
necessary aspects.  
 
Note that ‘spread’ is actually the ensemble standard deviation - scaled slightly so that, for long-term 
averages, it would be equal to the root-mean-square-error of the ensemble-mean for a reliable 
system. Notice that the spread and error are in good agreement for the background. However, 
general agreement between mean spread and mean error is not sufficient for an ensemble forecast 
system to be useful. The system needs to be able to predict variations in error about this mean 
value. If anything, the spread for the trough/CAPE situation is too small compared to the error. 
However, the sample size of 84 may still be too small to be completely sure about this. 
 
Given a sufficient sample size, we would need to know whether the first-guess forecasts (e.g. on the 
previous slide) realistically represent the uncertainty prior to the assimilation of new observations, 
and whether the assimilation correctly reduces this spread. Key aspects would include the estimates 
of observation and background error, and assumptions made within the tangent-linear version of 
the model used within the assimilation process (does linear physics produce too much spread in fast-
maturing non-linear MCSs for example?). We would also need to consider how well we represent 
sub-grid-scale physics uncertainty (`stochastic physics’) within the ensemble forecasts? This 
investigation has provided pointers to how we might assess flow-dependent uncertainty in the 
future, but Diagnostics has not got much further yet. 
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There is a need to focus more diagnostic attention on the prediction (and predictability) or weather 
features such as precipitation. Here we see a situation where the 500 hPa height field is reasonably 
well predicted at a lead-time of 4 days but the precipitation forecast is very poor over Europe. (The 
‘observed’ precipitation here is actually a 1-day forecast). Weather parameters are much more 
problematic to verify owing to their small-scale variability and highly skewed distribution. Note, for 
example, the non-linear colour scale used here. However, such verification (and monitoring of trends 
in scores) is essential because it targets more directly the model physics (including cloud micro-
physics) and should accelerate improvements in the prediction of the weather features that our 
users are interested in. 
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This slide demonstrates how the 3-category ‘SEEPS’ score can assess the forecast performance for 
precipitation for the same case as the previous slide. Panel (a) shows the observed 24hr-
accumulated precipitation (this time it is station observations) and (b) shows the corresponding day-
4 forecast. 
 
Panel (c) is based on a long-term station climatology. It shows the climatological probability that a 
day in August will be dry (and demonstrates why northern Europeans head south for their summer 
vacation!). We use this climatology to define three precipitation categories. The schematic graph, 
which shows an typical cumulative distribution curve, demonstrates how this is done. The 
probability of dry weather 𝑝𝑑𝑟𝑦 is at the intercept with the y-axis (for compatibility with reporting 
practices, we actually take the intercept at a precipitation value of 0.2mm). We define ‘light’ and 
‘heavy’ precipitation by dividing the remaining probability into two (we choose the ratio 2:1 so that 
light precipitation occurs twice as often as heavy precipitation: 𝑝𝑙𝑖𝑔ℎ𝑡 = 2𝑝ℎ𝑒𝑎𝑣𝑦). Drawing a 
horizontal line as shown (at 𝑝𝑑𝑟𝑦 + 𝑝𝑙𝑖𝑔ℎ𝑡) to the cumulative distribution and then down to the x-
axis, we fine the precipitation threshold that divides light and heavy precipitation categories. This 
threshold is dependent on location and month of the year, and ensures that the 3-categories are 
meaningful whatever the local climate. Panel (d) and (e) show the observed and forecast categories. 
 
Using a 3x3 scoring matrix, SEEPS then attaches an error to each (observation, forecast) category 
pair (panel f). The scoring matrix is designed so that SEEPS possess useful attributes such as being 
‘equitable’. The expected (i.e. long-term mean) error for a completely unskilful forecast system is 1, 
while the error is 0 for a perfect forecast system. SEEPS is essentially (1 minus) the average of two 
Peirce skill scores, one assessing the dry/light boundary and one assessing the light/heavy boundary. 
Notice that SEEPS penalises the failure to predict precipitation ahead of a low over northern Europe 
and the over-prediction of frontal convection to the south. Since ‘heavy precipitation’ is quite rare at 
this time of year (it occurs <10% of days, as deduced from panel c), the under-prediction to the 
north is penalised more heavily than the over-prediction to the south. 
 
Note that the boxes in (f) are drawn with differing sizes. Larger squares reflect lower spatial density 
of observations. We use such an approach to ensure that area-averaged scores are not dominated 
by data-rich regions. 
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The attributes of the SEEPS score enable area-averages to be calculated (and meaningful). This graph 
shows the lead-time for SEEPS to reach 0.6 (the longer the lead-time, the better the forecast system) 
for the extra-tropics (North and South). The red curve shows the lead-time for ECMWF’s operational 
‘high-resolution’ forecast. The upward trend over the years indicates continual improvement. This is 
due to improvements in the observing system, the data assimilation system, the forecast model and 
increasing resolution over the years. Such improvement is a strong argument for the continued 
monitoring of ‘deterministic’ scores (even though we know that the prediction of precipitation is 
very much a probabilistic exercise). Note that there are also inter-annual variations along the red 
curve – what is the cause of these variations? 
 
The green curve shows the lead-time for forecasts made with a fixed system (the forecast system 
used within the ECMWF re-analysis project, ‘ERA Interim’). There is a slight upward trend here that 
must be due to changes in the observing system. However, the main feature of note is that 
interannual variations are very similar to those of the operational forecast. This suggests that a large 
part of the interannual variation of the operational scores is simply ‘regime-related’ (precipitation is 
easier to predict in some years than others due to changes in the frequencies of different weather 
regimes etc.). The indication is that it might be worth using the ERA Interim scores to remove this 
regime-related variability (see next slide). 
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When we subtract the detrended ERA-Interim lead-times from the operational high-resolution 
forecast lead-times (to remove the regime-related variability, but preserve the trend associated with 
the observing system), we obtain a clearer quantification of forecast system improvements. The 
trend is about 1 day lead-time gain per decade (this is actually the target set by ECMWF’s governing 
body). 
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The main plot here shows two aspects of the forecast system based on ~1000 European stations 
during December-February 2009/10. The red curves show the contributions to SEEPS from particular 
categorical errors (when predicting 24hr accumulations). For example, the top, middle graph shows 
the contribution to the European-averaged SEEPS from occasions where dry weather was forecast 
but light precipitation was observed. The graph shows this contribution as a function of forecast 
lead-time. 
 
On the diagonal (where there is zero contribution to SEEPS because the forecast category is correct), 
the blue curves show the frequencies of each category for the observations (dashed) and high-
resolution deterministic forecast (dotted).  As discussed above, the observed frequency of light 
precipitation is twice that of heavy predication (to within variations due to the fact that the 
climatology was deduced from independent data). These frequency graphs show a clear under-
prediction of dry weather and an over-prediction of light precipitation. The frequency of prediction 
of heavy precipitation appears to be remarkably good. 
 
The contributions to SEEPS from particular categorical errors highlight the issue of over-prediction of 
‘drizzle’ from the very start of the forecast. At longer lead-times, failures to predict heavy 
precipitation become more important. A paper by North et al. (2013) discusses the verification of 6-
hr accumulations, and demonstrates that the drizzle issue is strongest at mid-day. The difficulty to 
predict heavy precipitation is worst for summertime evening convection. This decomposition of the 
SEEPS scores should help in the prioritisation of aspects to improve within the forecast model. 
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As has been noted, precipitation forecasting is perhaps best done in a probabilistic way (although 
not all users would agree with this!). Here we see a precipitation ‘Meteogram’ for Madrid. The blue 
boxes highlight the distribution of forecast precipitation from ECMWF’s 50-member ensemble. Also 
plotted is the single high-resolution forecast (dark blue curve) and the single control forecast 
(consistent with the resolution of the ensemble, show by the red dashed curve). All three forecast 
‘products’ are predicting precipitation in the first three days, but notice that the high-resolution 
forecast predicts quite a bit less than most of the ensemble members. Sometimes, the high –
resolution forecast can be completely outside the range of the ensemble. This should, of course, 
happen once in about 25 forecasts on average for statistical reasons. However, perhaps the high-
resolution forecast is providing additional information to the forecaster. Perhaps, for example, it is 
more accurate (at short lead-times) than a single ensemble member because it is run at higher 
resolution, and started from unperturbed initial conditions. One simple approach to estimating the 
addition information provided by the high-resolution system, and thus enabling the forecaster to 
make sense of the full set of forecasts, is discussed in the next slide. 
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If would be useful if we could quantify the information that he ensemble and high-resolution 
systems bring to the forecaster on the bench. One intuitive approach (Rodwell 2006: Comparing and 
combining deterministic and ensemble forecasts: How to predict rainfall occurrence better, ECMWF 
Newsletter, 106, 17-23) is discussed here. 
 
The figure shows how we could combine the ensemble prediction system and the high-resolution 
deterministic forecast into a single probabilistic forecast. Each ensemble member (shown by the 
orange squares) is given a weight of 1. If the high-resolution forecast (shown by the yellow 
rectangle) brings more information to the system than any individual ensemble member (by virtue 
of its higher resolution or more likely initial conditions), then this should be rewarded with a weight 
greater than 1. The schematic shows an ensemble of size 10 and gives a weight to the high-
resolution forecast equivalent to 3 ensemble members. Hence the probability for the event that 
precipitation is greater than 1 mm is 9/13. 
 
The aim in reality is not to assume a weight of 3, but to calculate the optimal weight to give to the 
high-resolution forecast. The optimal weight could be dependent on the user’s application, but here 
we keep to the physical problem by maximising the Brier Skill Score for a given precipitation 
threshold. This is done for each year in a cross-validated way to ensure that we do not artificially 
inflate the score. The verification data is European gauge observations. 
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Here we see the mean optimal weights that should be applied to the deterministic forecast. The 
weights are shown as a function of lead-time and for three precipitation thresholds. In general, the 
weight is rather insensitive to the threshold. At a lead-time of 1 day, the deterministic forecast 
provides the same information as about 15-18 ensemble members. As the lead-time increases, the 
optimal weight decreases so that by day-10, the deterministic forecast is equivalent to perhaps 2 
ensemble members. 
 
This diagnostic is useful to the forecaster on the bench (and we can produce combined probabilistic 
products), but it could also be useful to help us decide how much computer resources to give to 
each forecast system. At the time of this work, the high resolution system was run at T511 while the 
ensemble was run at T255. This meant that the high resolution forecast required about 18 times as 
much computing power as one ensemble member. Hence, we can conclude that the deterministic 
system is valuable early in the forecast, but other strategies may be more optimal. For example 
making only short forecasts with the high resolution system, and devoting the saved computing 
resources to the ensemble may be one option. Of course, this diagnostic is only one source of 
information - there are many other (sometimes competing) considerations for how we configure our 
forecast system. 
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Finally, here is the comparison of the scores obtained by combining the high-resolution deterministic 
forecast with the ensemble. Again, results are cross-validated to ensure the combined scores are not 
artificially inflated. For each precipitation threshold (x), the Brier Skill Score is improved and this 
improvement is statistically significantly at the 5% level, as indicated by the orange circles. 
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I have discussed two fundamental issues for Diagnostics: the growth of chaos, and the increasing 
complexity of models. One approach to over-coming these issues is to examine the forecast very 
early on - during the data assimilation system in fact. By doing so, we minimise the time over-which 
chaos has had the opportunity to rear its head, and over-which model processes have had a chance 
to interact with each other. We also synergistically harness the great amount of work done by the 
data community to quality-control, estimate errors in, and ‘forward-model’, of as many observations 
as possible. (A forward model ‘interpolates’ the model fields to the observation so that a comparison 
can be made).  I mentioned the assessment of the perturbations to a climate model and also the 
identification of root-causes for errors such as the upper-tropospheric cold bias and 
convective/dynamical coupling in the MJO. 
 
However, we do not simply wish to over-come the issue of chaos. There is a new world 
(diagnostically at least) of uncertainty which we must embrace. The forecast bust example highlights 
our continued reliance on the deterministic forecast system, when we should really be thinking 
probabilistically. Do we predict the correct amount of spread for this and other initial flow regimes? 
What is the sampling uncertainty in the predicted spread and eventual error? What are the key 
process that magnify uncertainty and do we adequately represent these (MCS for example)? 
 
An understanding of the circulation is also important if we are to be able to target diagnostics and 
monitoring at key sources of predictability. What are the most important aspects to focus on in 
order to make the biggest gains in performance? I mentioned the Rossby wave source as one key 
diagnostic. It is a means by which the memory within the tropical oceans can be harnessed to 
(potentially) improve extratropical forecast performance. 
 
Users require diagnostics as well as scores. For example, they would like access to what we know 
about the key deterministic and probabilistic weaknesses of our system. The combined prediction 
system highlights a way for the user to optimally exploit the information from the high-resolution 
and ensemble systems. It can also provide information on optimal forecast system configuration. 
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