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Hello! I am Mark Rodwell. | work on Diagnostics of the Integrated Forecast System (IFS).

Diagnostics at ECMWEF is about looking for weaknesses in the IFS, trying to identify their causes,
working with developers, and documenting the resulting changes in performance. Here, with the
help of a few examples, | will discuss the development of some of our diagnostic tools, and how they
are helping us identify residual deficiencies.



Diagnostics: Why? What? How?
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The scope of Diagnostics is broad-ranging. Some think of diagnostics as primarily associated with case-studies of
individual events that happened (a severe storm or the medieval warm period may be two examples) and
perhaps were poorly forecast (or hindcast). Individual case-studies can be a useful approach for understanding
the evolution of the event and for identifying gross errors, but have limitations if not backed-up by other
evidence. At the heart of these limitations is the question “was it a model error, or was the event highly
unpredictable?”. By “unpredictable”, | mean that it was a feature for which chaotic uncertainties grew quickly.
Wrongly assuming it is all model error (in the weather or climate context) opens-up the possibility of making
detrimental changes to our models. Others consider diagnostics to be about metrics of the model climate (the
Lorenz energy cycle for example). This approach side-steps the issue of predictability, but at the possible
expense of making it difficult to identify the root-cause of any deficiency. Nevertheless, it can be useful for
monitoring and comparing weather or climate models. One could argue, however, that the two central aspects
of weather and climate forecasting are precisely the quantification of predictability and the identification of the
root-causes for errors! Central to my research have been attempts to enable Diagnostics to provide useful
information on these two aspects.

The choice between cars in the slide is fairly clear (although I’'m sure the Austin Maxi was ground-breaking in its
day!). These days, it is perhaps more difficult to choose between cars without reading the specifications very
closely. The same is true for weather and climate models. Our diagnostics need to be ever more precise if we
are to judge unambiguously whether any given update to the forecasting system is a real improvement. This
might involve looking at many cases (compositing on many storm events for example) but, because of
limitations of computing time, also requires that our diagnostics distil as much information from the available
test cases as possible, and are not sensitive to sampling uncertainties. Making sure that diagnostics are
calculated from un-interpolated data, targeted carefully at a given hypothesis, and include statistical
significance testing are examples and good practice.

These days, we are not just interested in developing one good model. Increasingly, users are demanding (and
researchers are recognising the importance of) the estimation of uncertainty in all aspects of our forecast
system. We need to be sure that the predicted uncertainty accurately reflects the true uncertainty of the
situation. The cartoon strip represents an example of where the ensemble spread may have been too large! The
correct tuning, or calibration, of ensemble spread also requires consideration of many cases and further
development of diagnostics is needed.

The “Diagnostics Explorer” has been developed at ECMWEF with the aim of providing all researchers the ability
to make precise diagnostics of their experiments as easily as possible. The diagnostics include “model-space”
and “observation-space” tools. The hope is that this will help speed-up the development process.



Deterministic forecasting (initial conditions)
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Potential Vorticity on the Potential Temperature = 320K surface. 20110410 00UTC, VT = 20110410 00 UTC, step = 000 hr
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Here is an example of the traditional deterministic forecasting approach. | am showing Potential
Vorticity (PV) on the 320K isentropic surface. The orange colours highlight high PV air, primarily from
the polar stratosphere. The blue colours highlight tropospheric air from lower latitudes. The green
band in-between highlights the tropopause. PV is materially conserved in adiabatic, frictionless
situations. Hence PV highlights nicely the atmospheric flow and the physical process (convection
etc.) that are modifying it. In the next slide, we see an animation of the subsequent analysed and
forecast flow.



@ Deterministic forecasting (flow evolution to day-6)

Potential Vorticity on the Potential Temperature = 320K surface. 20110410 00UTC, VT = 20110416 00 UTC {step = 144 hr
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It is difficult, by day-6, to disentangle model error from the natural
growth of initial condition uncertainty (chaos)

Over the first 6 days of the forecast, we see how the flow evolves. We see examples of anticyclonic
wave-breaking that, in the analysis, lead to a blocked-type flow over Europe at day-6. The single
high-resolution forecast is particularly poor by day-6, but what led to this forecast failure? Was it a
model error? Was it that the initial conditions were unusually poor? Was it that the flow was more
un-predictable than usual? We cannot begin to disentangle these issues at day-6 without moving to
the ensemble (probabilistic) forecast system.



= Ensemble forecasting (initial conditions)
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Here we see the same initial conditions, but | have also included the ensemble forecast system. For
clarity, | am only showing the first 32 of the 50 ensemble members (labelled ‘Perturbed’). Looking
carefully, it is possible to see slight differences in the initial conditions of these ensemble members.
These differences represent our uncertainty in the observations and also errors that are likely to
grow most quickly in the early stages of the forecast. | have also included the ‘control’ forecast for
the ensemble. The initial conditions for the control forecast match more closely those of the high-
resolution forecast, but are at the lower-resolution of the ensemble (although this is not easy to see

differences here).



= Ensemble forecasting (flow evolution to day-6)
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Again we see how the forecasts evolve over the first 6 days. In addition to the differences in initial
conditions, the ensemble forecasts also include ‘stochastic physics’ (stochastically-perturbed physical
tendencies — SPPT) which acts to represent sub-grid-scale uncertainty (or non-determinism) for a
given resolved flow field.

At day-6, there is a lot of ‘spread’ in the ensemble — reflecting our uncertainty in the outcome. But
do any members capture the real outcome? One member (‘Pertubed 32’) matches quite well the
analysis. It is clearly possible that the issue is purely associated with low inherent predictability. In
which case, any improvement would require reducing uncertainties in the initial conditions. Later in
this talk, | highlight an aspect of the flow (a meso-scale convective system over North America) that
acts within the forecasts to amplify the initial uncertainties. Hence it appears there is still scope for
improving the forecast at day-6 through improvements to the modelling (or parametrization) of such
meso-scale systems.



The complexity of present-day model physics
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The complexity of today’s models, with numerous interactions between physical processes and the resolved
flow (including teleconnections), can make it very difficult to isolate the offending process(es). Single column

and LES models can help, but these do not take into account the evolution of the resolved flow.
Figure from Peter Bechtold

In addition to the issue of predictability, there is another issue of model complexity.

Much model development is driven by a ‘bottom-up’ desire to improve the representation of
underlying physical processes. Such development is undertaken at ECMWF by researchers with
responsibility for a given physical process. They use, for example, single-column models driven by
fixed boundary conditions. However, we also need a ‘top-down’ approach to diagnosing the impact
of such changes in the full forecast system, and to identify residual issues. This top-down task is one
of the functions of Diagnostics. With the increasing complexity (and accuracy) of present-day
models, which include increasing numbers of physical and micro-physical processes, with
considerable scope for interaction between themselves and with the resolved flow, our task is
always challenging!



Diagnosis of analysis & deterministic model error

Diagnastics

8

Schematic of the data assimilation process — a diagnostic perspective
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An approach to over-coming the issues of predictability and model complexity: Look at initial process tendencies
First-guess = sum of all processes.

Analysis increment corrects first-guess error, and draws next analysis closer to observations.

Relationship between increment and individual process tendencies can help identify key errors.

Approach first discussed by Klinker and Sardeshmukh (1992). Refined by Rodwell and Palmer (2007)

One approach to over-coming the issues of predictability and model complexity in our quest for top-down
model assessment is to look very early-on in the forecast. Indeed, to look at the forecast model within the data
assimilation system itself. With every data assimilation cycle, the model is effectively assessed against millions
of new observations. | will discuss such an approach within this talk.

The data assimilation system acts to draw the analysis away from the first-guess (prior forecast) and closer to
the observations in a way that is consistent with estimated observation and model errors. The difference
between the final analysis and the first-guess is known as the ‘analysis increment’. This can be viewed as a
correction to the first-guess forecast. What | term the ‘analysed evolution’ of the flow is the difference between
successive analyses. Note that the first-guess forecast is simply the sum of the tendencies from the dynamics
and the physical processes (and any other numerics) represented within the model. In the schematic, the
impact of each process has been accumulated over all model timesteps within the data assimilation window -
so that we can see the accumulated effect of each process. If the forecast model is perfect and the observations
unbiased then, when averaged over many data assimilation cycles, the mean analysis increment should be zero
(or at least very small). In such a situation, the contributions from all the processes should be almost in balance
(since the analysed evolution is also small when averaged over many cycles). If the mean analysis increment is
not zero, then this indicates that the model processes are not correctly in balance and that some aspect(s) of
the model contain errors. (This assumes that the observations are unbiased, which is a reasonable assumption
since the ‘variational bias correction scheme’ acts to remove large-scale systematic departures from the first-
guess). How might such an imbalance arise? The concept of ‘radiative-convective’ equilibrium embodies the
idea that radiative processes act to destabilise the atmosphere (heat the surface and cool the mid-to-upper
troposphere) and the convection induced by this destabilisation acts to restore balance by cooling the surface
and heating the mid-to-upper troposphere. With this idealised concept in mind, either a convection scheme
that is too weak (given the observed temperature and humidity profiles) or a radiation scheme that is too
strong (given the observed conditions — humidity etc.; as embodied by the analysis) would lead to a systematic
initial net cooling of the mid-troposphere. Assuming there are relevant observations present, this cooling would
be corrected with positive analysis increments. With the mean initial tendencies (or analysis increments), we
therefore have a diagnostic that can quantify local model physics error before significant interactions have
taken place with (and via) the resolved dynamics.



Initial temperature tendencies and D+10 error
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A long-standing issue for the ECMWF model has been a cold bias near the (primarily extratropical)
tropopause. The analysis increments (bottom left) show that the analysis is around 0.1K warmer on
average than the model at a lead-time of 12 hours. The mean forecast error at day 10 (bottom right)
is around 1K. This ten-fold growth confirms that the root-cause is likely to be model error, rather
than observation error. Consideration of the process tendencies shows that there are two strong
contributors to the temperature budget in the extratropical upper troposphere: dynamics and
radiation. What appears to be happening is that the radiative cooling extends slightly higher than
the dynamical warming.

Why might this be the case? Separate experiments (Leroy and Rodwell; 2014) highlight an issue with
humidity at this level. There does not appear to be a lot of upper-tropospheric humidity information
in the observations, and consequently humidities are able to drift towards the model’s own attractor
(which is difficult to improve for the same reason). The radiation then responds to these humidity
biases and leads to erroneous cooling.

Note that the ‘residual’ in the budget is plotted with the same contour interval as the analysis
increments. The is important because the conclusions drawn require that there are no other hidden
(numerical) reasons for the budget imbalance.



@ 1st example: Method questions 12K warming
10
Temperature tendency profiles over the Amazon (300-320°E, 20°5-0°N)
Data assimilation using control model Data assimilation using reduced entrainment model
12 :
_ 9
& 202
=
o 363
=]
0
0
® B39
o
%
o 728
o
o
< 884
979 .
-6 -3 0 3 6 6 -3 0 3 6
Kday™ (K for bias) Kday™"' (K for bias)
Dyn Rad V.Dif Con LSP — First D+5 Bias
Guess
Mean first guess tendency, red, (the sum of Greatly increased first-guess tendency:
all processes) is ‘quite small’: A reference Perturbation leads to poorer physics. Reject
value for the realism of the model’s physics this perturbation from climate ensemble?
Rodwell and Palmer (2007). 6hr tendencies. 31 days (January 2005) X 4 forecasts per day. 70% conf.int. T159, L60,1800s

This slide shows our first use of this approach.

The left figure shows the initial tendencies associated with the dominant physical processes (and the
dynamics) within the ECMWF model for the Amazon region (based on a model version that was
operational a few years ago). It can be seen that convective (Con) heating is balanced by dynamic
(Dyn) cooling due to ascent and also by radiative (Rad) cooling. The first-guess tendency is simply the
sum the individual process tendencies. It can be seen that this total initial tendency is ‘small’ and
thus the model physics is ‘reasonable’.

Stainforth et al. (2005) found that the perturbation that led to the largest global warming (up to 12K)
in their ensemble was a reduction in the turbulent entrainment coefficient. When this perturbation
is applied to the ECMWF model and a new data assimilation / forecast cycle experiment made, it is
found (see right figure) that the initial tendencies are not so well in balance.

Rodwell and Palmer (2007) argued that the larger total initial tendency implies that this perturbation
is very unrealistic (unphysical) and can thus be down-weighted or even rejected within the
perturbed ensemble. In this particular case, the uncertainty in climate change would be substantially
reduced. The initial tendency approach is much less computationally expensive than running a
coupled model for hundreds of years. This provides justification for pursuing a seamless approach to
weather and climate forecasting.

We can begin to understand physically what is happening in the model with reduced entrainment:
with less entrainment, less buoyancy is detrained from a convective plume, which thus rises higher
and heats more. Initially, this increased heating is not balanced by increased dynamical cooling since
the large-scale dynamics are better constrained by the observations, and respond more slowly.
Later in the forecasts, the processes within this perturbed model must also come into balance (when
the atmospheric state approaches the climate attractor of the perturbed model). Interesting the
Amazonian precipitation climate of the perturbed model is less than that of the control model —
highlighting the issues of interpretation after processes have had time to interact: a key reason for
looking at the shortest relevant timescales.

10
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Analysis Observations. AMV v950 for 2013_20130601-20130831. Deep colours = 5% sig.
Atmospheric motion vector wind (infrared, visible, and water vapour)
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Sometimes the increments (or departures) may reflect observation issues

It is not always obvious from examination of the data assimilation system that the model is at fault.
Here is an example of the differences between the observed meridional wind speed, as observed
using satellite-derived atmospheric motion vectors (AMVs). The various geostationary satellites are
obvious from there circular foot-prints. Is the meteorology of the eastern tropical Pacific that
different from the meteorology of the other ocean basins to account for the much larger departures,
or is there an issue with the satellite observations in this region? This is one question we are
investigating at the moment.

11



Wave Spotting: The movie
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Movie of dynamical waves in the tropics (free solutions of the shallow water equations)
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Colours show height perturbation (red positive, blue negative), arrows show lower-level winds
Frequency (w) is the local rate of change of phase
Zonal wavenumber (k) is the number of waves that would fit around a latitude circle

In addition to reducing mean errors, we also wish to better represent variability in the flow. This is
(the first frame of) an animation that highlights the horizontal structure and phase-speed of the
various equatorial waves (assuming a stationary background flow). The animation highlights the fact
that local anomalies (or errors) can affect other regions through the actions of waves and
teleconnections (quasi-stationary waves). This animation also highlights the fact that variations in
the atmosphere can have specific spatio-temporal characteristics. We can use this fact to target
diagnostics towards particular features.

12



Wave Spotting: The movie
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Movie of equatorial waves based on shallow-water equations (shortened version 1m 30s)

In addition to reducing mean errors, we also wish to better represent variability in the flow. This is
an animation that highlights the horizontal structure and phase-speed of the various equatorial
waves (assuming a stationary background flow). The animation highlights the fact that local
anomalies (or errors) can affect other regions through the actions of waves and teleconnections
(quasi-stationary waves). This animation also highlights the fact that variations in the atmosphere
can have specific spatio-temporal characteristics. We can use this fact to target diagnostics towards
particular features.
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Using out-going long-wave radiation (for example) it is possible to isolate the wave power for each
wave-number and frequency. This has been done in panel (a) for the observed waves that are
symmetric about the equator, and over-laid with the theoretical dispersion diagram for equatorial
waves. The agreement is quite amazing (to me at least!). The higher wave power can be seen for
both the Rossby and Kelvin waves. The observations are not frequent enough to allow us to calculate
the power in the gravity waves. The region of high power at small positive wave-number and small
frequency relates to the Madden-Julian Oscillation (MJO). The MJO is not on any of the curves and
this demonstrates that the MJO is not adequately represented by the Shallow water model. A likely
reason could be that the MJO involves coupling with the physics (convection, radiation etc). A
reasonable agreement can also be seen between the theoretical symmetric waves and those found
in the ECMWF model cycle 32R3, here run at resolution T;159L91 (panel c). The ECMWF model cycle
32R3 had a major change to its convection. The entrainment of moisture into a convective plume
used to be partly due to turbulent processes and partly related to the large-scale convergence. At
cycle 32R3, the explicit connection to the large-scale convergence was removed. This had many
beneficial impacts on forecast scores and on synoptic activity. Unfortunately, it also strongly
increased low-frequency, planetary activity. This over-estimation of low-frequency activity is clearly
visible for symmetric and asymmetric waves (compare panels (c) and (d) to panels (a) and (b),
respectively). The entrainment change may well have had a major impact on wave-convective
coupling. It remains to be seen if subsequent model cycles build on this change and improve our
ability to simulate the Madden-Julian Oscillation. For the asymmetric waves, the mixed Rossby-
gravity waves are apparent in the observed OLR data (panel b). The model (panel d) tends to capture
the asymmetric Rossby waves but doesn’t appear to capture the distinct set of mixed Rossby-gravity
waves seen in the observations. (Note that the large power near non-dimensionalised wavenumber
2 is spurious and due to satellite sampling that involves 14 passes around the length of the equator).
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2% Mean zonal wind tendency (60-180°E) during MJO
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The panel on the left is part of a schematic showing the eastward propagation of the Madden and
Julian Oscillation MJO) around the equator. The MJO is not a solution of the shallow water equations
(that were shown in the wave-spotting movie), partly because it involves an interaction between the
dynamical flow and the convection. It is these interactions that we need focus-on diagnostically.

We have investigated the MJO with the initial tendency approach too. The temperature budget is a
bit tricky to interpret as several processes are important. Here | am showing (in the central column
of panels) the zonal wind budget, that is dominated by the dynamics and convection terms. This is
the budget averaged between 60 and 180°E when the convection is active over the Warm Pool and
western equatorial Pacific. In the upper tropical troposphere, the dynamics are accelerating the
(prevailing easterly) winds and the convection is acting to decelerate these winds. The physical
process for this deceleration is the turbulent mixing with lower-tropospheric air, which has a smaller
easterly component. The increments suggest that the convective deceleration is twice as strong as it
should be (assuming the resolved dynamics are blameless!). In a sensitivity study, we halved the
convective momentum transport globally and the resulting tendency budget (when data assimilation
is performed with this perturbed model) is shown in the right-hand panels. The result was quite
pleasing — the upper-tropospheric balance was improved so that the mean increments effectively
disappear. Since the convective momentum transport must integrate vertically to zero, one worry
was that the reduction is convective momentum transport would also reduce the easterly
convective acceleration in the mid-troposphere and lead to a new imbalance with the dynamics.
What was also pleasing to see was that the mid-tropospheric dynamical westerly forcing appears to
weaken (as an indirect response) so that the mid-tropospheric balance is maintained. This example
demonstrates that the initial tendency approach can motivate, as well as assess, model
improvements.

We have yet to assess whether the better upper-tropospheric momentum budget allows the MJO to
propagate more freely through the Warm-Pool region. This is a particular problem for the model at
present and one that, once solved, could lead to improved extended-range predictions in the
extratropics as well as the tropics.

15



foed Model climate response to Sahara aerosol change
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Rodwell and Jung (2008). JJA season response to (primarily) a reduction in aerosol over the Sahar:

This figure shows the model climate changes in precipitation, low-level winds and 500 hPa
geopotential heights associated with a change in model aerosol climatology — primarily over the
Sahara region (Rodwell and Jung; 2008). The main effect was a dramatic (and welcome) decrease in
strength of the North African monsoon. The physical basis for this improvement was understood
through the use of initial (and medium-range) tendency budgets. From what | have discussed about
equatorial waves, we are able to explain the change in low-level circulation over the subtropical
north Atlantic as a clear Rossby-wave response to the reduced monsoon heating over northern
Africa (the circulation anomaly is the opposite to that seen for the "Gill response’ (Gill; 1980 — see
also Matsuno; 1966) because we have a cooling anomaly rather than his heating anomaly). In
addition, increased precipitation over the Indian Ocean in the June-August season (JJA) can be
explained as being triggered by the upwelling Kelvin wave response to the reduced heating over
tropical north Africa. As with the North African monsoon response itself, feedbacks with the
convection tend to strongly enhance the precipitation response over the Indian Ocean. Notice the
additional response in the southern extratropics. | discuss briefly our diagnostics of tropical-to-
extratropical forcing in the next slide.
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= ‘Stretching’ and vorticity advection from Tropics
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Sardeshmukh and Hoskins (1988) discussed the ‘Rossby wave source’ and how tropical convective
anomalies could lead to the excitation of extratropical Rossby waves. This plot shows, for DJF
2012/13, shows mean upper-tropospheric divergent winds (integrated between 100 and 300hPa),
mean streamfunction (thick contours) and the Rossby wave source (shaded). The streamfunction is
associated with the rotational flow, which reaches speeds of ~50ms™ (e.g. over Tibet). The Rossby
wave source comprises two elements. (1) A ‘stretching term’ - which is visible (in red) on the down-
slopes of Tibet - whereby horizontal convergence associated with stretching leads to the spin-up of
vorticity (the ‘ballerina effect’). (2) The blue shading over southern China represents the advection of
low values of planetary vorticity by the divergent outflow from tropical convection. Such vorticity
forcing results in Rossby waves along the Jet stream. In some cases (such as for the aerosol change
on the previous slide) the resulting extratropical response involves a strong stationary component
(when the Rossby wave has a scale that allows it to propagate upstream at the same speed as it is
advected downstream by the Jet). Regardless of whether the extratropical response is stationary or
not, itis clearly worth evaluating our ability to predict the Rossby wave source.

Mean errors in the Rossby wave source presently account for % to % of the day-1 root-mean-square
errors in this region (and indeed around the other large mountain ranges of the Earth too). Although
it maybe unclear by how much we can reduce the random component of the Rossby wave source
error, it does seem feasible that we could tackle this sizeable mean component. Doing so should
help us better predict the evolution of the world’s stormtracks, such as that over the North Pacific.

For more discussion of this diagnostic approach, see Rodwell and Jung (2008).
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10 April Rockies trough with CAPE & MCS ahead
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Rossby waves crossing the North Pacific, and baroclinic developments, lead to variations in the flow
over North America. One particular flow-regime over North America has been shown to lead to
poorer subsequent forecasts over the North Atlantic and Europe (Rodwell et al.; 2013). An example,
for 10 April 2011, is shown here. The key features are a trough over the Rockies and, associated
with warm moisture southerly flow on its leading edge, high levels of Convective Available Potential
Energy (CAPE). This CAPE can give rise to Mesoscale Convective Systems (MCSs; shown in the right
panel) over northern North America which can disrupt the upper-level Jet Stream. This is actually the
case | discussed at the beginning — when the high resolution forecast for Europe was particularly bad
at day-6
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=~ Skill of single forecasts (Europe, leadtime = 6 days)
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Score is the spatial Anomaly Correlation Coefficient (ACC)x100 for 500 hPa geopotential height (Z500) over
Europe (12.5°W —42.5°E, 35°N-75°N). The date shown is the forecast start date

This figure shows the time series of spatial anomaly correlation coefficient (ACC) for day-6 forecasts
of Z500 over Europe from several of the world’s forecast centres. In general, scores fluctuate around
the 80% level, but around 10 April (corresponding the 10 April case shown on the previous slide) a
‘bust’ occurs. On this particular occasion all centres suffered, with the UK Met. Office (UKMO)
recovering earliest.

The fact that all centres suffered suggests that much of this bust must be associated with a drop in
predictability (and not purely due to model error). Hence we need to start think in probabilistic
terms and investigating our ensemble prediction systems. Looking for “best ensemble members” can
give an indication of the likely regions where initial condition uncertainty is most important. In this
case, it was over central North America. The next slide shows the development of this uncertainty
over the subsequent 12 hours.
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Ensemble of data assimilations, EDA
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The ensemble of first-guess forecasts develops spread over the first 12 hours associated with uncertainties in the
prediction of a mesoscale convective system. The incorporation of new observations by the ensemble of data
assimilations results in a contraction of the spread. Key question: Is the final analysis spread too large or too small
to correctly reflect the predictability of the subsequent flow? Data: Temperature at 200 hPa from 10-member EDA,
valid at 6UTC.

In addition to its ‘best estimate’ high-resolution analysis, ECMWF runs an Ensemble of Data
Assimilations (EDA) which assimilates observations that are perturbed to reflect observation error.
At the time this analysis was conducted the EDA involved 10 members. This slide shows (shaded) the
EDA standard deviation in 200 hPa temperatures for the 10 April case. The first-guess forecasts (left)
show strong growth of uncertainty associated with the development of the mesoscale convective
system. When new observations are then assimilated (right), we see that the spread of the final set
of analyses is reduced.

To first-order, the MSC is clearly acting to magnify uncertainty. Not only does the MCS disrupt the
Jet Stream — and thus affect subsequent European weather - but there is also considerable
uncertainty in how it disrupts the Jet Stream — and thus it enhances uncertainty in the subsequent
European weather. A key question for Diagnostics is not about the Ot-order disruption, nor about
the 1t-order enhancement of uncertainty, but rather the 2"d-order question of whether the
uncertainty is enhanced by the correct amount.
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Composite ensemble spread & error (Z500 at day 6)
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Composite over all 84 events 10 November 2010 — 20 March 2012 (0 or 12UTC) with a strong trough over the
Rockies and positive CAPE ahead. ‘Error’ is RMSE of ensemble-mean (dominated by random component),
‘Spread’ is ensemble standard deviation, scaled for finite ensemble

This figure shows mean day-6 spread and ensemble-mean error based on 84 trough/CAPE events
(right) and for the background (left). It can be seen that the trough/CAPE situation does indeed lead
to increased spread and error. Experimentation has shown that both the trough and the CAPE are
necessary aspects.

Note that ‘spread’ is actually the ensemble standard deviation - scaled slightly so that, for long-term
averages, it would be equal to the root-mean-square-error of the ensemble-mean for a reliable
system. Notice that the spread and error are in good agreement for the background. However,
general agreement between mean spread and mean error is not sufficient for an ensemble forecast
system to be useful. The system needs to be able to predict variations in error about this mean
value. If anything, the spread for the trough/CAPE situation is too small compared to the error.
However, the sample size of 84 may still be too small to be completely sure about this.

Given a sufficient sample size, we would need to know whether the first-guess forecasts (e.g. on the
previous slide) realistically represent the uncertainty prior to the assimilation of new observations,
and whether the assimilation correctly reduces this spread. Key aspects would include the estimates
of observation and background error, and assumptions made within the tangent-linear version of
the model used within the assimilation process (does linear physics produce too much spread in fast-
maturing non-linear MCSs for example?). We would also need to consider how well we represent
sub-grid-scale physics uncertainty (‘stochastic physics’) within the ensemble forecasts? This
investigation has provided pointers to how we might assess flow-dependent uncertainty in the
future, but Diagnostics has not got much further yet.

21



L4 7500 and Precipitation: 23/08/2008
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There is a need to focus more diagnostic attention on the prediction (and predictability) or weather
features such as precipitation. Here we see a situation where the 500 hPa height field is reasonably
well predicted at a lead-time of 4 days but the precipitation forecast is very poor over Europe. (The
‘observed’ precipitation here is actually a 1-day forecast). Weather parameters are much more
problematic to verify owing to their small-scale variability and highly skewed distribution. Note, for
example, the non-linear colour scale used here. However, such verification (and monitoring of trends
in scores) is essential because it targets more directly the model physics (including cloud micro-
physics) and should accelerate improvements in the prediction of the weather features that our
users are interested in.
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This slide demonstrates how the 3-category ‘SEEPS’ score can assess the forecast performance for
precipitation for the same case as the previous slide. Panel (a) shows the observed 24hr-
accumulated precipitation (this time it is station observations) and (b) shows the corresponding day-
4 forecast.

Panel (c) is based on a long-term station climatology. It shows the climatological probability that a
day in August will be dry (and demonstrates why northern Europeans head south for their summer
vacation!). We use this climatology to define three precipitation categories. The schematic graph,
which shows an typical cumulative distribution curve, demonstrates how this is done. The
probability of dry weather pg,., is at the intercept with the y-axis (for compatibility with reporting
practices, we actually take the intercept at a precipitation value of 0.2mm). We define ‘light’ and
‘heavy’ precipitation by dividing the remaining probability into two (we choose the ratio 2:1 so that
light precipitation occurs twice as often as heavy precipitation: pjigns = 2Ppeavy). Drawing a
horizontal line as shown (at pgry + Prignt) to the cumulative distribution and then down to the x-
axis, we fine the precipitation threshold that divides light and heavy precipitation categories. This
threshold is dependent on location and month of the year, and ensures that the 3-categories are
meaningful whatever the local climate. Panel (d) and (e) show the observed and forecast categories.

Using a 3x3 scoring matrix, SEEPS then attaches an error to each (observation, forecast) category
pair (panel f). The scoring matrix is designed so that SEEPS possess useful attributes such as being
‘equitable’. The expected (i.e. long-term mean) error for a completely unskilful forecast system is 1,
while the error is 0 for a perfect forecast system. SEEPS is essentially (1 minus) the average of two
Peirce skill scores, one assessing the dry/light boundary and one assessing the light/heavy boundary.
Notice that SEEPS penalises the failure to predict precipitation ahead of a low over northern Europe
and the over-prediction of frontal convection to the south. Since ‘heavy precipitation’ is quite rare at
this time of year (it occurs <10% of days, as deduced from panel c), the under-prediction to the
north is penalised more heavily than the over-prediction to the south.

Note that the boxes in (f) are drawn with differing sizes. Larger squares reflect lower spatial density
of observations. We use such an approach to ensure that area-averaged scores are not dominated
by data-rich regions.
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@ Score identifies trends & model improvements
24
5 T T T T I T T T T I T T T T I T T

| Extra-tropics 4

o I |

o L .
n

e 4 -
L

w - .
w

e L |
(]

E | |
3

3 [ High Res i

3 —— ERA Interim m

il L 1 1 l 1 L 1 L l L 1 1 1 I L 1
1995 2000 2005 2010
Forecast start date

The attributes of the SEEPS score enable area-averages to be calculated (and meaningful). This graph
shows the lead-time for SEEPS to reach 0.6 (the longer the lead-time, the better the forecast system)
for the extra-tropics (North and South). The red curve shows the lead-time for ECMWF’s operational
‘high-resolution’ forecast. The upward trend over the years indicates continual improvement. This is
due to improvements in the observing system, the data assimilation system, the forecast model and
increasing resolution over the years. Such improvement is a strong argument for the continued
monitoring of ‘deterministic’ scores (even though we know that the prediction of precipitation is
very much a probabilistic exercise). Note that there are also inter-annual variations along the red
curve —what is the cause of these variations?

The green curve shows the lead-time for forecasts made with a fixed system (the forecast system
used within the ECMWF re-analysis project, ‘ERA Interim’). There is a slight upward trend here that
must be due to changes in the observing system. However, the main feature of note is that
interannual variations are very similar to those of the operational forecast. This suggests that a large
part of the interannual variation of the operational scores is simply ‘regime-related’ (precipitation is
easier to predict in some years than others due to changes in the frequencies of different weather
regimes etc.). The indication is that it might be worth using the ERA Interim scores to remove this
regime-related variability (see next slide).
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L4 Precipitation forecast performance trend
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When we subtract the detrended ERA-Interim lead-times from the operational high-resolution
forecast lead-times (to remove the regime-related variability, but preserve the trend associated with
the observing system), we obtain a clearer quantification of forecast system improvements. The
trend is about 1 day lead-time gain per decade (this is actually the target set by ECMWF’s governing
body).
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Rodwell et al (2011), North et al (2013)

The main plot here shows two aspects of the forecast system based on ~1000 European stations
during December-February 2009/10. The red curves show the contributions to SEEPS from particular
categorical errors (when predicting 24hr accumulations). For example, the top, middle graph shows
the contribution to the European-averaged SEEPS from occasions where dry weather was forecast
but light precipitation was observed. The graph shows this contribution as a function of forecast
lead-time.

On the diagonal (where there is zero contribution to SEEPS because the forecast category is correct),
the blue curves show the frequencies of each category for the observations (dashed) and high-
resolution deterministic forecast (dotted). As discussed above, the observed frequency of light
precipitation is twice that of heavy predication (to within variations due to the fact that the
climatology was deduced from independent data). These frequency graphs show a clear under-
prediction of dry weather and an over-prediction of light precipitation. The frequency of prediction
of heavy precipitation appears to be remarkably good.

The contributions to SEEPS from particular categorical errors highlight the issue of over-prediction of
‘drizzle’ from the very start of the forecast. At longer lead-times, failures to predict heavy
precipitation become more important. A paper by North et al. (2013) discusses the verification of 6-
hr accumulations, and demonstrates that the drizzle issue is strongest at mid-day. The difficulty to
predict heavy precipitation is worst for summertime evening convection. This decomposition of the
SEEPS scores should help in the prioritisation of aspects to improve within the forecast model.
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@ Ensemble and high-resolution information
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As has been noted, precipitation forecasting is perhaps best done in a probabilistic way (although
not all users would agree with this!). Here we see a precipitation ‘Meteogram’ for Madrid. The blue
boxes highlight the distribution of forecast precipitation from ECMWF’s 50-member ensemble. Also
plotted is the single high-resolution forecast (dark blue curve) and the single control forecast
(consistent with the resolution of the ensemble, show by the red dashed curve). All three forecast
‘products’ are predicting precipitation in the first three days, but notice that the high-resolution
forecast predicts quite a bit less than most of the ensemble members. Sometimes, the high —
resolution forecast can be completely outside the range of the ensemble. This should, of course,
happen once in about 25 forecasts on average for statistical reasons. However, perhaps the high-
resolution forecast is providing additional information to the forecaster. Perhaps, for example, it is
more accurate (at short lead-times) than a single ensemble member because it is run at higher
resolution, and started from unperturbed initial conditions. One simple approach to estimating the
addition information provided by the high-resolution system, and thus enabling the forecaster to
make sense of the full set of forecasts, is discussed in the next slide.
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@ Combined Prediction System: Methodology
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If would be useful if we could quantify the information that he ensemble and high-resolution
systems bring to the forecaster on the bench. One intuitive approach (Rodwell 2006: Comparing and
combining deterministic and ensemble forecasts: How to predict rainfall occurrence better, ECMWF
Newsletter, 106, 17-23) is discussed here.

The figure shows how we could combine the ensemble prediction system and the high-resolution
deterministic forecast into a single probabilistic forecast. Each ensemble member (shown by the
orange squares) is given a weight of 1. If the high-resolution forecast (shown by the yellow
rectangle) brings more information to the system than any individual ensemble member (by virtue
of its higher resolution or more likely initial conditions), then this should be rewarded with a weight
greater than 1. The schematic shows an ensemble of size 10 and gives a weight to the high-
resolution forecast equivalent to 3 ensemble members. Hence the probability for the event that
precipitation is greater than 1 mm is 9/13.

The aim in reality is not to assume a weight of 3, but to calculate the optimal weight to give to the
high-resolution forecast. The optimal weight could be dependent on the user’s application, but here
we keep to the physical problem by maximising the Brier Skill Score for a given precipitation
threshold. This is done for each year in a cross-validated way to ensure that we do not artificially
inflate the score. The verification data is European gauge observations.
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== The weight to give the high-resolution system
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Here we see the mean optimal weights that should be applied to the deterministic forecast. The
weights are shown as a function of lead-time and for three precipitation thresholds. In general, the
weight is rather insensitive to the threshold. At a lead-time of 1 day, the deterministic forecast
provides the same information as about 15-18 ensemble members. As the lead-time increases, the
optimal weight decreases so that by day-10, the deterministic forecast is equivalent to perhaps 2
ensemble members.

This diagnostic is useful to the forecaster on the bench (and we can produce combined probabilistic
products), but it could also be useful to help us decide how much computer resources to give to
each forecast system. At the time of this work, the high resolution system was run at T511 while the
ensemble was run at T255. This meant that the high resolution forecast required about 18 times as
much computing power as one ensemble member. Hence, we can conclude that the deterministic
system is valuable early in the forecast, but other strategies may be more optimal. For example
making only short forecasts with the high resolution system, and devoting the saved computing
resources to the ensemble may be one option. Of course, this diagnostic is only one source of
information - there are many other (sometimes competing) considerations for how we configure our
forecast system.
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@ Combined system is more skilful
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Finally, here is the comparison of the scores obtained by combining the high-resolution deterministic
forecast with the ensemble. Again, results are cross-validated to ensure the combined scores are not
artificially inflated. For each precipitation threshold (x), the Brier Skill Score is improved and this
improvement is statistically significantly at the 5% level, as indicated by the orange circles.
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® Diagnostic issues: Growth of chaos & model complexity

® Deterministic model error: Initial tendencies within data assimilation cycle
Assessing models (e.g. Perturbed climate ensemble)
Identifying errors (Upper-tropospheric cold bias, convective momentum transport)
® Ensemble distribution: Spread & error of EDA (observation-space) & ENS
Quantifying flow-dependent uncertainty (\What is an ‘ensemble bust'?)
Key processes that magnify uncertainty (e.g. MCSs, baroclinic instabilities, efc.)
Key initial condition errors & sub-grid-scale physics uncertainty
® Understanding the circulation
Targeting and monitoring key sources of predictability (e.g. Rossby wave source)
® Diagnostics for users
The deterministic and probabilistic weaknesses of the forecast system

Exploiting information from high-resolution and ensemble (combined approaches)

| have discussed two fundamental issues for Diagnostics: the growth of chaos, and the increasing
complexity of models. One approach to over-coming these issues is to examine the forecast very
early on - during the data assimilation system in fact. By doing so, we minimise the time over-which
chaos has had the opportunity to rear its head, and over-which model processes have had a chance
to interact with each other. We also synergistically harness the great amount of work done by the
data community to quality-control, estimate errors in, and ‘forward-model’, of as many observations
as possible. (A forward model ‘interpolates’ the model fields to the observation so that a comparison
can be made). | mentioned the assessment of the perturbations to a climate model and also the
identification of root-causes for errors such as the upper-tropospheric cold bias and
convective/dynamical coupling in the MJO.

However, we do not simply wish to over-come the issue of chaos. There is a new world
(diagnostically at least) of uncertainty which we must embrace. The forecast bust example highlights
our continued reliance on the deterministic forecast system, when we should really be thinking
probabilistically. Do we predict the correct amount of spread for this and other initial flow regimes?
What is the sampling uncertainty in the predicted spread and eventual error? What are the key
process that magnify uncertainty and do we adequately represent these (MCS for example)?

An understanding of the circulation is also important if we are to be able to target diagnostics and
monitoring at key sources of predictability. What are the most important aspects to focus on in
order to make the biggest gains in performance? | mentioned the Rossby wave source as one key
diagnostic. It is a means by which the memory within the tropical oceans can be harnessed to
(potentially) improve extratropical forecast performance.

Users require diagnostics as well as scores. For example, they would like access to what we know
about the key deterministic and probabilistic weaknesses of our system. The combined prediction
system highlights a way for the user to optimally exploit the information from the high-resolution
and ensemble systems. It can also provide information on optimal forecast system configuration.
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