Overview of coupled land-atmosphere data assimilation at ECMWF

Patricia de Rosnay, David Fairbairn, Pete Weston, Yoichi Hirahara, Phil Browne, Kenta Ochi, Dinand Schepers, Stephen English, and many other colleagues

Toward coupled assimilation in ECMWF's operational systems

- Modularity to account for the different components in coupled assimilation
- Consistency of the coupling approaches across the different components of the Earth System
- Common infrastructure for ocean, sea ice, wave, land, atmosphere, for NWP and reanalysis

In situ snow depth observations GTS Snow depth availability

SYNOP TAC SYNOP BUFR national BUFR data

15 January 2015

In situ snow depth observations GTS Snow depth availability

SYNOP TAC SYNOP BUFR national BUFR data

15 January 2020

2021: Expected improvement in the US (NOAA)

CECMWF

Snow analysis: 2D-OI Forecast impact

Impact on snow October 2012 to April 2013 (251 independent *in situ* observations)

Impact on atmospheric forecasts October 2012 to April 2013 (RMSE new-old)

Consistent improvement of snow and atmospheric forecasts

 \rightarrow Importance of snow cover observations

de Rosnay et al., ECMWF newsletter 143, Spring 2015

Soil Moisture coupled data assimilation

Stand-alone Surface Analysis and offline systems → Support land surface reanalysis

Three options:

Offline surface model forced by atmospheric reanalysis (e.g. ERA5-land)
 Offline surface model/resolution
 No land-atmosphere coupling and no land DA

- Offline soil moisture DA (e.g. H SAF ASCAT soil moisture data records)
 S (1), but offline soil moisture analysis included
- Stand-alone surface analysis (SSA, Fairbairn *et al.*, 2019)
 Full land DA system in IFS (soil moisture, snow, etc...)
 Coupled land-atmosphere model

⁽⁸⁾ Significantly more computationally expensive than (1) and (2)

D. Fairbairn, P. de Ronsay, and P. Browne, "The new stand-alone surface analysis at ECMWF: Implications for land-atmosphere DA coupling," *J. Hydrometeor*, 2019. <u>https://doi.org/10.1175/JHM-D-19-0074.1</u>

Simplifed EKF soil moisture analysis

Soil moisture satellite observations used operationally

Active microwave data:

ASCAT: Advanced Scatterometer On MetOP-A (2006-), MetOP-B (2012-), MetOP-C (2018-) C-band (5.6GHz) backscattering coefficient EUMETSAT Operational mission

Scatterometer soil moisture also used in ERA5 (ERS-SCAT, Metop/ASCAT)

Passive microwave data:

SMOS: Soil Moisture & Ocean Salinity (2009-) L-band (1.4 GHz) Brightness Temperature ESA Earth Explorer, dedicated soil moisture mission (Munoz-Sabater et al., GRSL, 2012)

SMOS near real time brightness temperature monitoring

- In early July we detected a large area of RFI (Radio Frequency Interference) contamination over South-East China
- The new screening does a better job of filtering it out but still not perfect
 - Hence the need for further improvements in RFI filtering flags

Basic RFI screening

Stronger RFI screening

CECMWF

Slide from Pete Weston

Comparison between SMOS and ECMWF forward TB for 2010-2016

CMEM: Community Microwave Emission Modelling platform de Rosnay et al, RSE, 2020

SMAP monitoring

- Scripts, suite and prepIFS changes complete
- IFS changes in progress
- Experiments to test assimilation into SEKF in 2021

Slide from Pete Weston

SMOS Neural network: ESA level 2 SMOS NRT Soil

Moisture product

Weston et al., 2020

Designed by CESBIO/Estellus, Implemented by ECMWF Rodriguez-Fernandez et al, HESS 2017

- Neural Network used to retrieve SMOS L2 SM:
 - Trained on SMOS L2 soil moisture
 - Single hidden layer, 5 neurons
- Product available within 4 hours of sensing time
- Available in NetCDF, since March 2016 on ESA SMOS
 Online Dissemination service

https://smos-ds-02.eo.esa.int/oads/access

SMOS Neural Network in the IFS and Ensemble SEKF approach

Impact of:

- Use the Ensemble Data Assimilation (EDA) in the SEKF
- SMOS neural network soil moisture assimilation

Resol.	NPES*THREADS	45r1	46r1
Tco 1279 (9km)	300*9	1580	435

Reduction of the SEKF CPU cost by a factor ~3.6

SMOS innovation (obs-model) 01 August 2017 (m3/m3)

Atmospheric forecasts impact (T2m) compared to CTRL

(CTRL has no Ensemble and no SMOS)

Atmospheric impact: fit to aircraft observations

Summary and outlook

- ECMWF land data assimilation: combine OI, and EDA-SEKF
- Satellite data used operationally: SMOS, ASCAT, IMS
- Coupling developments: EDA-SEKF, multi-layer snow MW observation operator, coupling with hydrology, future outer-loop coupling \rightarrow consistent with ocean coupling
- Continuous integration of reanalysis capabilities \rightarrow preparation of ERA6 and ERA6Land
- Obs usage plans: near future SMAP data, VOD assimilation, LST
- Ongoing developments: soil temperature and snow in the SEKF
- Work on surface mapping (\rightarrow Balsamo, Boussetta, Arduini, Choulga)
- Consistency NWP, hydrology, CO2 \rightarrow link to Copernicus Services (C3S, CEMS, CAMS)

CECMWF

Special Issue "Remote Sensing of Land Surface and Earth System Modelling"

- Special Issue Editors
- Special Issue Information
- Keywords
- Published Papers

https://www.mdpi.com/journal/remotesensing/speci al_issues/Land_Surface_Earth_System_Modeling

A special issue of *Remote Sensing* (ISSN 2072-4292). This special issue belongs to the section "Biogeosciences Remote Sensing".

Deadline for manuscript submissions: 31 May 2021

- Land surface data assimilation
- Land surface re-analysis
- Land surface forward modelling (VIS/IR/MW),
- Inverse modelling and machine learning
- Land surface parameter retrieval
- Coupled assimilation (land-hydrologyatmosphere)
- Intercomparison (model and DA)

Special Issue Editors

Guest Editor

Dr. Clement Albergel

France Website | E-Mail

Interests: land surface modelling; climate change; hydrology; data analysis

Guest Editor

Dr. Sujay Kumar

Hydrological Sciences Lab, NASA Goddard Space Flight Center, 8800 Greenbelt Rd, Greenbelt, MD, 21042, USA

Website | E-Mail

Interests: land surface modelling; hydrology; data assimilation; remote sensing; Optimization

A few slides on snow data assimilation

Snow data exchange and WMO activities

- Global Cryosphere Watch (GCW) and Snow Watch Team
 - → snow data exchange WMO regulation, BUFR template (with Observation Team), link to GODEX
- ➤ SG-CRYO and JET-EOSDE (both Infrastructure Commission) → relevant for polar observations for coupled assimilation

CECMWF

(de Rosnay, Pullen, and Nitu WIGOS NL April 2020)

Snow cover data assimilation in mountainous areas

Further work on snow assimilation impact on the Tibetan Plateau (de Rosnay et al in prep)

Scorecard March-April-May

				_	I	
			n.hem	europe	n.amer	e.asia
			rmsef/sdef	rmsef/sdef	rmsef/sdef	rmsef/sdef
ЪÞ	z	100				
		250				
		500				
		850				
	t	100				
		250				********
		500				
		850				
	2t					
	vw	100				
		250				
		500				
		850				
	10ff					
	r	250				
		700				
	2d					
	tcc					
	tp					

ECMWF

Toward assimilation of surface-sensitive satellite data over land

- New interface between CMEM and RTTOV, processing of surface sensitive observations through the all-sky code path.
- Implementation of multi-layer snow radiative transfer scheme in CMEM (complementarity with multi-layer snow pack model from Arduini et al., JAMES, 2019)

Hirahara et al Remote Sens. 2020, 12(18), 2946; https://doi.org/10.3390/rs12182946

Toward assimilation of surface-sensitive satellite data over land

- Next steps:
 - → SEKF using CMEM-RTTOV through all-sky from April 2021 (Pete)
 - → Soil temp and snow in the SEKF (Kenta, from April 2021)
 - → Initialization of multi-layer sow conditions from satellite radiances assimilation
- Current collaboration with Kenta (JMA)
 - Comparison between ERA5, JRA55 and the ESA CCI+ snow cover v1.0 (1981-)
 - Potential for snow cover reanalysis

ERA5, CCI, IMS comparison:

ECMWF VS of Clément Albergel, Nov. 2019

CECMWF

ERA5_Snow: snow reanalysis using conventional snow only

-Discontinuity in ERA5 snow analysis from 2004 when IMS assimilation starts (Daily report 13/03/2020) -Ervin's memo on impact of spurious trends in ERA5 (mainly precip and snow) \rightarrow Zsótér et al <u>TM-871</u>

Stand-alone reanalysis ERA5_Snow to be compared to ERA5, ERA5Land and snow CCI
 Production with 21 two-year streams July-June

- Good test of reanalysis capabilities in 47r2 using conventional obs only (thanks Dinand!)
- Link to Kenta's work to investigate ESA CCI+ snow cover assimilation for future reanalysis

ERA5 Snow water equivalent (m) 1990-2019

One slide on plans for land assimilation developments in OOPS

Land data assimilation in OOPS

- Internal discussion in Q4 2020 to define land DA in OOPS strategy
- Developments to start implementing the SEKF in OOPS in 2021
- Solve usage of gridded observations → develop ODBs for snow cover and pseudo screen level observations
- Need to code the EDA Jacobians (read EDA spread)
- Longer term possibilities to explore EnKF, taking advantage of JCSDA EnKF and IFS EnKF existing infrastructure
- Land DA should be in OOPS to enable consistent coupling approaches with atmosphere and ocean
- Resources needed to support Land DA in OOPS → possibilities in Destination Earth ?

###