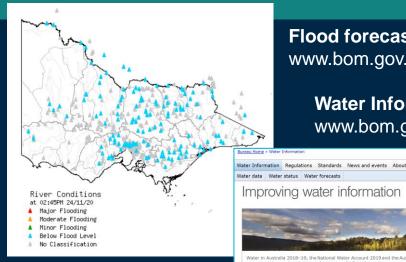


High water use per capita



Moist tropical Semi-arid with summer rain Sand dune alignment Arid zone Moist temperate with hot summers Semi-arid with winter rain Winter rain with dry summers Moist temperate **Alpine** with warm summers

Rod Marsh for the Ian Potter Foundation and The Myer Foundation 2019 Sources: FAQ Aquastat and Chiew et al. (2006, 2007)

A brief history of water in the BoM

- 1. Flood forecasting, IFDs
- 2. Water Division ~ 2007
 - Water Act
 - Collating data
 - monitoring, reporting, forecasting
- 3. 2020 Restructure:
 - Customer focus (BSG)
 - Services (CSG)
 - Water R&D in SIG!

Flood forecasting service www.bom.gov.au/water/floods

Water Information www.bom.gov.au/water

contextual data and analysis to inform the work of the Bureau's core customers in the water, infrastructure planning, environment

Read the reports here: Water in Australia 2018-19, the National Water Account 2019 and the Australian Water Markets Report

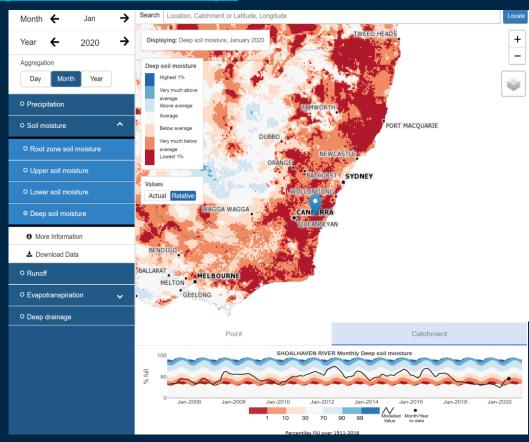
- Groundwater Information
- Hydrologic Reference Stations
- Water Market Information
- Water Data Online

- Landscape Water Balance
- National Water Account

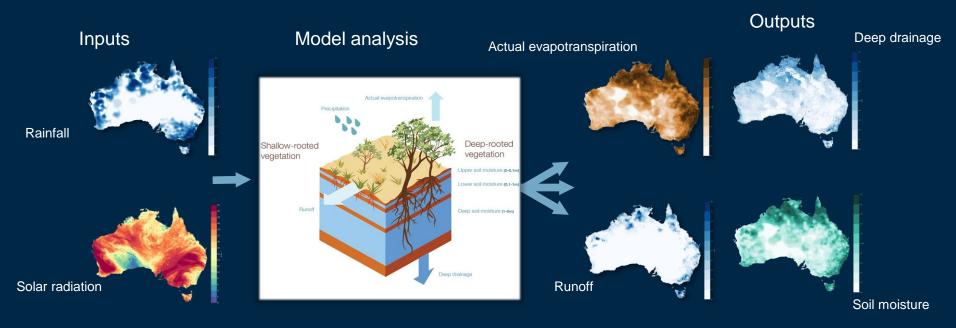
7-day Streamflow Forecasts

Seasonal Streamflow Forecasts

- Urban National Performance
- Urhan Water Information
- Water Restrictions · Water Storage
- Water Focus Reports
- Water Reporting Summaries


Moving towards a consolidated Australian Water Outlook service

Existing Australian Landscape Water Balance web application


www.bom.gov.au/water/landscape

- A unique service!
- Updated daily
- See all variables at daily, monthly or annual time slices
- Download the grids at a resolution of 5km x 5km
- Past 15 years data available to all
- Registered users access >100 years and tailored products
- Model details available under 'About the AWRA-L model'

Overview and outputs: AWRA-L The Australian Water Resources Assessment Landscape model

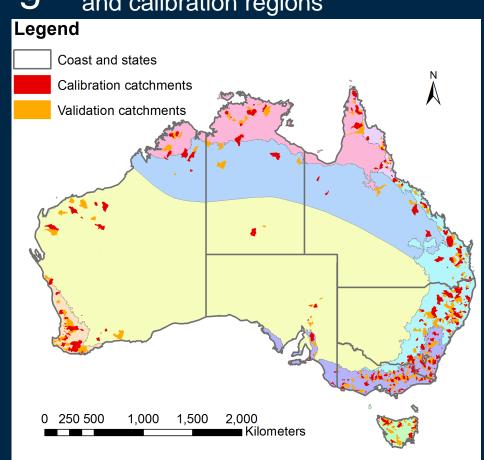
National, daily time-step, 5 km resolution

AWRA-L v5 operational in the Bureau since 2016, AWRA v6 late 2018

AWRA v7 early 2021

Australian Government

Bureau of Meteorology

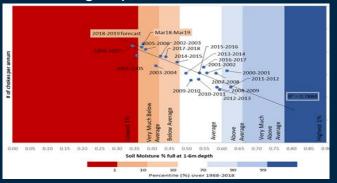


Development and testing

Calibration/Validation catchments and calibration regions

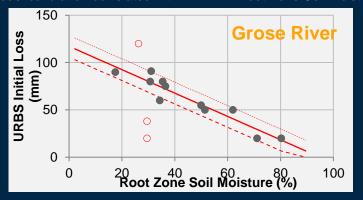
 CSIRO/BoM development 2009-2018


- Key static parameters calibrated via (may change with new version):
 - catchment streamflow
 - satellite ET
 - AMSRE soil moisture

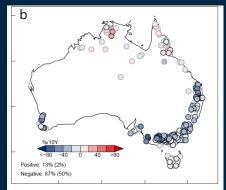

AWRA-L: Past to present

Monitoring/reporting:

National Climate and Water Briefings, Special Climate Statements, NWA, Water In Australia, Regional Water information, Landline, Fire risk



Water Utilities: eg. Pipe chokes vs. soil moisture



Emergency Services:

Flooding initial loss, fire dryness: eg. BoM initial loss estimation from model calibration correlated with AWRA-L Root Zone Soil Moisture

Design: Australian Rainfall & Runoff design initial loss and trends in soil moisture/floods

Wasko and Nathan (2019) Influence of changes in rainfall and soil moisture on trends in flooding

1-10 day forecast

Seasonal forecast

ASCAT/SMAP

NWP

Climate outlook

Data Assimilation

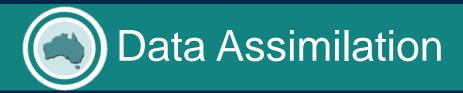
AWRA-L

9 days forecasts

6 months outlook

Derived products - User generated

Variables include:

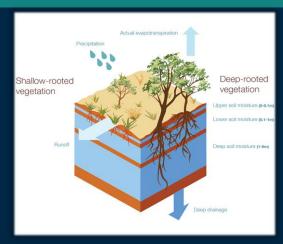

- Soil moisture (output from AWRA-L)
- Runoff (gridded) (output from AWRA-L)
- ET (output from AWRA-L)

Short-term forecast:

- Daily, 5x5 km for 10 days, released daily
- 99-member ensemble

Seasonal forecast:

- Monthly, out to 6 months, released monthly
- 99-member ensemble



SMAP Enhanced L2 Radiometer Half-Orbit 9 km

ASCAT NRT 12.5 km (Metops -A,-B and -C)

AWRA-L upper layer soil moisture:

Assimilation produces daily soil moisture analysis using AWRA-L daily scheduled run (with observed forcing)

Data Assimilation - Approach

- 1) SMAP and ASCAT rescaled: Mean and variance matching with AWRA-L upper layer moisture (rescaling parameters derived from June 2015 July 2019 data)
- 2) Spatially varying error parameters for SMAP, ASCAT and AWRA-L upper layer moisture: Derived using Triple Collocation over period June 2015 July 2019

$$\sigma_x^2 = \left(Q_{x,x} - \frac{Q_{x,y}Q_{x,z}}{Q_{y,z}}\right)$$

$$\sigma_y^2 = \left(Q_{y,y} - \frac{Q_{x,y}Q_{y,z}}{Q_{x,z}}\right)$$

$$\sigma_z^2 = \left(Q_{z,z} - \frac{Q_{z,y}Q_{x,z}}{Q_{x,y}}\right)$$

$$k_1$$

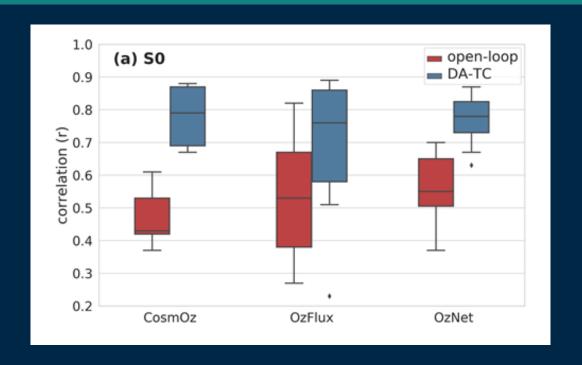
Error variances (Q = covariances)
Triple Collocation e.g. McColl et al. (2014)

[x, y, z represent AWRA, ASCAT, SMAP respectively]

$$B = \frac{\frac{1}{\sigma_x^2}}{\frac{1}{\sigma_x^2} + \frac{1}{\sigma_y^2} + \frac{1}{\sigma_z^2}} \longrightarrow$$

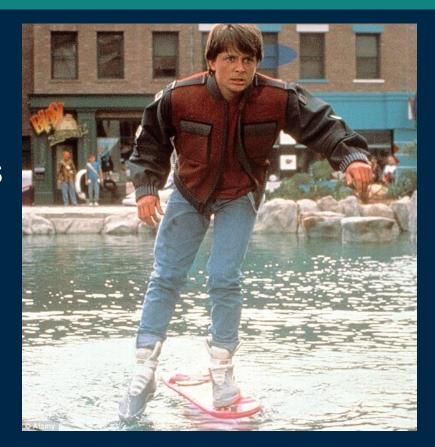
Gain/weighting
For gaps in satellite coverage, K_R=1

(Example here for AWRA gain K_B , same process for calculating K_{ASCAT} and K_{SMAD})


$$X_t^a = k_B X^f + k_{ASCAT} Y_{ASCAT} + k_{SMAP} Y_{SMAP}$$

Daily state updating

(X^a and X^f are updated/analysed and forecast model state respectively; Y is rescaled satellite data)


Data Assimilation – Summary results

Difference in correlation between AWRA-L upper layer moisture from open-loop and after assimilation (DA-TC), against in-situ observations from three Australian monitoring networks

Future

- Assess monthly/seasonal scale error parameters from Triple Collocation
- Single land surface and water balance model (next 5-10 years) → Hydro-JULES
- Scope enhanced data assimilation
 - Vegetation indices
 - Land surface temp
 - GRACE
 - Streamflow

