# Cycle 47r3 overview

Andy Brown Director of Research ECMWF



# IFS Cycle 47r3

- IFS upgrades ("Cycles") approximately one per year
- Originally planned for 48r1 to be the next Cycle after 47r1
- Single precision was brought forward to 47r2, enabled ENS vertical resolution to increase to L137 (operational implementation 11 May 2021)
- Now an opportunity to bring forward other planned changes for a second Cycle this year, 47r3





# IFS Cycle 47r3

1. Changes to observation usage in the assimilation (infra-red, microwave, atmospheric motion vectors, Aeolus winds)

2. Weak constraint 4DVar for stratosphere in EnsembleDA

3. Major revision to improve the physical and numerical basis for moist processes in the IFS











# SCIENCE DEVELOPMENTS IN 47R3

## Observations: Assimilation of all-sky AMSU-A

| Satellite | Launch | EOL  | <b>Broken Channels</b> |
|-----------|--------|------|------------------------|
| NOAA-15   | 1998   | -    | 6, 11, 14              |
| NOAA-16   | 2000   | 2014 | 8,9                    |
| NOAA-17   | 2002   | 2003 | N/A                    |
| Aqua      | 2002   | -    | 1, 2, 5, 6, 7, 14      |
| NOAA-18   | 2005   | -    | 8,9                    |
| Metop-A   | 2006   | 2021 | 7, 8                   |
| NOAA-19   | 2009   | -    | 7, 8                   |
| Metop-B   | 2012   | -    | 15                     |
| Metop-C   | 2018   | -    | -                      |

AMSU-A channels 5 to 14 are actively assimilated. These are channels with primary sensitivity to temperature from the mid-troposphere through upper stratosphere

In 47r3, **"clear-sky" assimilation is replaced by "all-sky"**, treating satellite radiances in all atmospheric conditions



➔ Assimilation of all-sky AMSU-A: Increases use of microwave sounder data in areas of cloud and precipitation (+12% global increase for Channel 5)

→ Provide critical observations near Tropical Cyclones (Hurricane Humberto shown on left)

# Data assimilation: Improved upper atmosphere

### 1. New RTTOV coefficients for hyperspectral infrared (IR) sounders.

The new coefficients are based on a new CO2 transmittance scheme and more vertical layers



→ Analysis better fits the temperature measurements from radiosondes

→ Improvement translates in the forecast

**2. Weak-constraint 4D-Var is implemented in EDA** (stratosphere only) to reduce model biases in the stratosphere and make it consistent with HRES

EDA Tco 399 (winter+summer) T RMSE



- → RMSE is reduced by 5%
- ➔ The bias in the stratospheric temperature analysis is reduced by up to 50%.

# Data assimilation: Improve wind analysis

1. Heights of low level AMVs diagnosed above the model cloud are reassigned to the cloud average pressure



2. Add representativeness error in the total observation error for Aeolus



## Moist physics upgrade – a significant package of developments

### Major revision to moist processes

A more consistent formulation of boundary layer turbulence, shallow convection, sub-grid cloud and microphysics

- $\rightarrow$  improved physics, numerics and interactions between parametrizations
- $\rightarrow$  simpler timestep sequence and approach to saturation adjustment
- $\rightarrow$  a stronger foundation for further improvements in the future
- $\rightarrow$  impacts all aspects of the forecast, across regions, across forecast time ranges

### **Parametrized convection**

Total advective moisture convergence in convective instability closure (in addition to CAPE)

- $\rightarrow$  improved precipitation pdf, some MCS propagation improvement, increased rain in arid regions
- $\rightarrow$  improved scale-independence for convection-permitting resolutions

### Parametrized cloud processes and radiation

Improved cloud/precip microphysical processes and cloud vertical overlap for radiation

### **Dynamics**

Higher order departure point interpolation (cubic) for cloud liquid, ice, rain, snow

 $\rightarrow$  less smoothing of cloud/precipitation fields



More details in...



ECMWF Newsletter 164 (Summer 2020)



Timestep sequence with changes to saturation adjustment



# METEOROLOGICAL IMPACTS HIGHLIGHTS FOR 47R3

# 47r3 Highlight: Extratropical geopotential and wind

- Improved upper-air geopotential and winds (1-2%) in the first few days of the forecast
- Northern and Southern hemispheres, HRES and ENS



## 47r3 Highlight: Tropical winds

- Improved tropical upper-air winds (2-4%)
- HRES and ENS •



## 47r3 Highlight: Tropical Cyclones - HRES 9km and future 4km resolution



- HRES position absolute error slightly improved (solid)
- HRES central pressure absolute error slightly improved (solid)
- Future 4km resolution significantly improved in 47r3 (dashed)

# 47r3 Highlight: Extended-range improvements to MJO

- TCo199 extended-range forecasts show improved MJO skill out to day 30
- Increase in amplitude/spread of RMM index and increase in eastward phase speed

# Madden-Julian Oscillation (MJO) RMM summary scorecard 47r3 versus 47r2, TCo199, 19890101-20161201



# 47r3 Highlight: Extended-range - small positive impact in weeks 3-4 Europe/NHem

- TCo199 extended-range forecasts suggest improvement in weeks 3 and 4 (NH, Europe)
- Due to improved representation of Madden-Julian Oscillation (MJO) and teleconnections from tropics

#### Impact on the weekly mean anomaly correlation for the extended-range forecasts

| NHEM        |      |       |       |       | TROPICS |       |       |       | SHEM |       |       |       | NA   | TL    |       | EUROPE |      |       |       |       |
|-------------|------|-------|-------|-------|---------|-------|-------|-------|------|-------|-------|-------|------|-------|-------|--------|------|-------|-------|-------|
| Lead (days) | 5-11 | 12-18 | 19-25 | 26-32 | 5-11    | 12-18 | 19-25 | 26-32 | 5-11 | 12-18 | 19-25 | 26-32 | 5-11 | 12-18 | 19-25 | 26-32  | 5-11 | 12-18 | 19-25 | 26-32 |
| tprate      |      |       |       |       |         |       |       |       | *    |       | *     |       | 12   |       |       |        |      |       |       |       |
| 2t          |      |       | ۵     |       | *       | *     | ۸     |       | *    |       |       |       |      |       |       |        |      |       |       |       |
| msl         |      | ۵     |       |       |         |       |       | *     |      |       | *     |       |      |       |       |        |      |       |       |       |
| u850        |      |       |       |       |         |       |       |       |      | 4     |       |       |      |       |       |        |      |       |       |       |
| v850        |      |       |       |       |         | ۸     |       |       |      |       | V     | *     |      |       |       | •      |      |       |       |       |
| t850        |      | ۸     |       | A     |         |       |       |       | *    |       |       |       |      |       |       |        |      |       |       |       |
| u500        |      |       | ۸     |       |         | ٠     |       |       |      |       |       |       |      | ۵     | ۸     |        |      |       |       |       |
| v500        |      | 0.00  |       |       |         |       | *     |       |      |       |       |       |      |       |       |        |      |       |       |       |
| t500        |      |       |       |       |         | *     | ۸     | *     |      |       |       |       |      |       |       |        |      |       |       |       |
| z500        | 25   |       |       |       | *       |       | ٠     |       |      |       | v     |       | *    | *     |       | *      | *    |       |       |       |
| u200        |      | ۸     |       |       |         | *     | 1.0   |       | *    |       |       |       |      |       |       |        |      |       |       |       |
| v200        |      | ۸     |       |       | ×.      |       | v     |       |      |       | *     |       |      |       |       |        | *    |       |       |       |
| t200        |      |       |       |       |         |       |       |       |      |       |       |       |      |       |       |        |      |       |       |       |
| strf200     |      |       |       |       |         |       |       |       |      |       |       |       |      |       |       |        |      |       |       |       |
| vp200       |      |       | ۸     |       |         |       |       |       |      |       |       |       | ۵    |       | ۸     |        |      |       |       |       |
| rws200      |      |       |       |       |         |       |       |       |      |       | v     |       |      |       |       |        |      | *     |       |       |
| u50         |      |       |       |       |         |       |       |       |      |       |       |       |      |       |       |        | Ψ.   |       |       |       |
| v50         |      | ۵     |       |       |         |       |       |       | *    | v     | 4     |       |      |       |       |        |      |       |       | V     |
| t50         | •    |       |       |       | •       | ्र    |       | *     |      |       | •     | ▼     | *    | •     |       |        |      | *     |       | V     |



Change in the anomaly correlation due to the moist physics upgrade in Cycle 47r3 for different parameters and regions in the extended-range. The scores are weekly means from lower resolution (TCo199/ORCA1) extendedrange forecasts for the period 1989 to 2016. Blue triangles represent an improvement, red represents a degradation.



# 47r3 Highlight: Improved precipitation PDF (convective regimes)

With new convective closure, 47r3 IFS closer to observed PDF of precipitation rate than 47r1



Frequency\*precipitation distribution of the HRES 24-48 hour forecast hourly precipitation accumulations for the GPM-IMERG (black) and NEXRAD radar network (grey) observational products, 47r1 HRES (blue) and 47r3 physics (red). Data for August 2016 remapped to 0.1°. Note, the observational products tend to underestimate lighter rain rates.



## 47r3 Highlight: Improved organisation and propagation of squall lines (in some cases)



Animation of squall line propagation over Africa, 2016-08-06



### 47r3 scorecards for HRES and ENS (Jun & Dec 2020 + Feb/Mar 2021)



## 47r3 impact of small bias in ENS tropical upper tropospheric temperature

### ENS RMSE

ENS STDEV

(very similar to CRPS)

(domain mean bias removed)

|             |     | n.hem | s.hem   | tropics |    |             |     | n.hem | s.hem | tropics |
|-------------|-----|-------|---------|---------|----|-------------|-----|-------|-------|---------|
|             |     | rmsef | rmsef   | rmsef   |    |             |     | sdef  | sdef  | sdef    |
| an z        | 50  |       |         |         | an | z           | 50  |       |       |         |
|             | 100 |       |         |         |    |             | 100 |       |       |         |
|             | 250 |       |         |         |    |             | 250 |       |       |         |
|             | 500 |       |         |         |    |             | 500 |       |       |         |
|             | 850 |       |         |         |    |             | 850 |       |       |         |
| msl         |     |       |         |         |    | msl         |     |       |       |         |
| t           | 50  |       |         |         |    | t           | 50  |       |       |         |
|             | 100 |       |         |         |    |             | 100 |       |       |         |
|             | 250 |       |         |         |    |             | 250 |       |       |         |
|             | 500 |       |         |         |    |             | 500 |       |       |         |
|             | 850 |       | <b></b> |         |    |             | 850 |       |       |         |
| ff          | 50  |       |         |         |    | ff          | 50  |       |       |         |
|             | 100 |       |         |         |    |             | 100 |       |       |         |
|             | 250 |       |         |         |    |             | 250 |       |       |         |
|             | 500 |       |         |         |    |             | 500 |       |       |         |
|             | 850 |       |         |         |    |             | 850 |       |       |         |
| 5           | 250 |       |         |         |    | 5           | 250 |       |       |         |
|             | 700 |       |         |         |    |             | 700 |       |       |         |
| 2t          |     |       |         |         |    | 2t          |     |       |       |         |
| 10ff@s      | ea  |       |         |         |    | 10ff@sea    |     |       |       |         |
| swh         |     |       |         |         |    | swh         |     |       |       |         |
| mwp         |     |       |         |         |    | mwp         |     |       |       |         |
| ob z        | 50  |       |         |         | ob | z           | 50  |       |       |         |
|             | 100 |       |         |         |    |             | 100 |       |       |         |
|             | 250 |       |         |         |    |             | 250 |       |       |         |
|             | 500 |       | 0       |         |    |             | 500 |       |       |         |
|             | 850 |       |         |         |    |             | 850 |       |       |         |
| t           | 50  |       |         |         |    | t.          | 50  |       |       |         |
|             | 100 |       |         |         |    |             | 100 |       |       |         |
|             | 250 |       |         |         |    |             | 250 |       |       |         |
|             | 500 |       |         |         |    |             | 500 |       |       |         |
|             | 850 |       |         |         |    |             | 850 |       |       |         |
|             | 50  |       |         |         |    | iii.        | 50  |       |       |         |
|             | 100 |       |         |         |    |             | 100 |       |       |         |
|             | 250 |       |         |         |    |             | 250 |       |       |         |
|             | 500 |       |         |         |    |             | 500 |       |       |         |
|             | 850 |       |         |         |    |             | 850 |       |       |         |
| ŗ.          | 250 |       |         |         |    | Ľ.          | 250 |       |       |         |
| 7*          | 700 |       |         |         |    | 7*          | 700 |       |       |         |
| 24          |     |       |         |         |    | 24          |     |       |       |         |
| 20          |     |       |         |         |    | 20          |     |       |       |         |
| 1.00        |     |       |         |         |    | 1.00        |     |       |       |         |
| to          |     |       |         |         |    | to          |     |       |       |         |
| 92<br>Guilh |     |       |         |         |    | 92<br>Guile |     |       |       |         |
| SWI         |     |       |         |         |    | swn         |     |       |       |         |

- In the tropical upper troposphere:
  - ensemble spread / STDEV is small ~1K
  - 47r1/47r2 ENS bias is close to 0
  - a small mean warming of ~0.2K gives a large relative change for bias-sensitive scores such as CRPS/RMSE
- Bias-independent scores (STDEV, bias-corrected CRPS) show positive / neutral change
- For example, tropics T500hPa versus analysis Full ΔCRPS gives 9% degradation, Bias-corrected ΔCRPS gives 3% improvement
- Helps to understand the large impact on the CRPS score, due to a small 0.2K increase in bias

## 47r3 increased variability in cloud-related fields

 In 47r3, cloud cover is increased by ~3%, is more binary (increased occurrence of cloud fraction=1) and has more smaller scale structure → less "smooth", higher RMSE



Example: HRES High Cloud Cover 2021-03-03 00Z T+9





# NEW AND REVISED PRODUCTS IN 47R3

# 47r3 Products – revised visibility in fog and precipitation

• Improved extinction coefficients for visibility calculations leads to reduced bias compared to observations



# 47r3 Products – revised wind gusts

- Wind gusts too strong in unstable conditions in 47r1 HRES & ENS
- Revision of gust parametrization in 47r3 half convective gust factor and 7% reduction in turbulent gust factor
- 47r3 closer agreement to observations



# 47r3 New Products (Member State requests)

| Short Name | Name                                                   | Units                             | Component |
|------------|--------------------------------------------------------|-----------------------------------|-----------|
| trpp       | Tropopause pressure                                    | Ра                                | HRES      |
| degm10l    | Altitude of -10 degrees C isothermal level             | m                                 | HRES/ENS  |
| u10n       | Neutral wind at 10 m u-component                       | m s⁻¹                             | ENS       |
| v10n       | Neutral wind at 10 m v-component                       | m s⁻¹                             | ENS       |
| mlcape50   | Mixed-layer CAPE in the lowest 50 hPa                  | J kg <sup>-1</sup>                | HRES/ENS  |
| mlcin50    | Mixed-layer CIN in the lowest 50 hPa                   | J kg⁻¹                            | HRES/ENS  |
| mlcape100  | Mixed-layer CAPE in the lowest 100 hPa                 | J kg <sup>-1</sup>                | HRES/ENS  |
| mlcin100   | Mixed-layer CIN in the lowest 100 hPa                  | J kg <sup>-1</sup>                | HRES/ENS  |
| mucape     | Most-unstable CAPE                                     | J kg <sup>-1</sup>                | HRES/ENS  |
| mudlp      | Departure level (pressure) of the most unstable parcel | Ра                                | HRES/ENS  |
| cat        | Clear air turbulence (CAT)                             | m <sup>-2/3</sup> s <sup>-1</sup> | HRES (ml) |

## 47r3 New Product: Clear Air Turbulence (CAT)

- Based on eddy dissipation rate (EDR)
- Details in
  - ECMWF Tech Memo 874
  - ECMWF Newsletter No 168, summer 2021



Eddy Dissipation Rate (m<sup>2/3</sup> s<sup>-1</sup>) daily average for 20190302 level 10-12 km, wind isotachs at 250 hPa (grey contours)

```
EUROPEAN CENTRE FOR MEDIUM-RANGE WEATHER FORECASTS
```



Eddy Dissipation Rate (m<sup>2/3</sup> s<sup>-1</sup>)



# 47r3 TIMELINE

# 47r3 Implementation timeline



See latest information at:

https://confluence.ecmwf.int/display/FCST/Implementation+of+IFS+Cycle+47r3

