Cycle 47r3 overview

Andy Brown Director of Research ECMWF

September 2021

IFS Cycle 47r3

- IFS upgrades ("Cycles") approximately one per year
- Originally planned for 48r1 to be the next Cycle after 47r1
- Single precision was brought forward to 47r2, enabled ENS vertical resolution to increase to L137 (operational implementation 11 May 2021)
- Now an opportunity to bring forward other planned changes for a second Cycle this year, 47r3

IFS Cycle 47r3

1. Changes to observation usage in the assimilation (infra-red, microwave, atmospheric motion vectors, Aeolus winds)

2. Weak constraint 4DVar for stratosphere in EnsembleDA

3. Major revision to improve the physical and numerical basis for moist processes in the IFS

SCIENCE DEVELOPMENTS IN 47R3

Observations: Assimilation of all-sky AMSU-A

Satellite	Launch	EOL	Broken Channels
NOAA-15	1998	-	6, 11, 14
NOAA-16	2000	2014	8,9
NOAA-17	2002	2003	N/A
Aqua	2002	-	1, 2, 5, 6, 7, 14
NOAA-18	2005	-	8,9
Metop-A	2006	2021	7, 8
NOAA-19	2009	-	7, 8
Metop-B	2012	-	15
Metop-C	2018	-	-

AMSU-A channels 5 to 14 are actively assimilated. These are channels with primary sensitivity to temperature from the mid-troposphere through upper stratosphere

In 47r3, **"clear-sky" assimilation is replaced by "all-sky"**, treating satellite radiances in all atmospheric conditions

- ➔ Assimilation of all-sky AMSU-A: Increases use of microwave sounder data in areas of cloud and precipitation (+12% global increase for Channel 5)
- → Provide critical observations near Tropical Cyclones (example: Hurricane Humberto)

Data assimilation: Improved upper atmosphere

1. New RTTOV coefficients for hyperspectral infrared (IR) sounders.

The new coefficients are based on a new CO2 transmittance scheme and more vertical layers

→ Analysis better fits the temperature measurements from radiosondes

→ Improvement translates in the forecast

2. Weak-constraint 4D-Var is implemented in EDA (stratosphere only) to reduce model biases in the stratosphere and make it consistent with HRES

EDA Tco 399 (winter+summer) T RMSE

t	30		
	50		
	100		
	250	********* ******	H
	500		
	850		1

 \rightarrow RMSE is reduced by 5%

➔ The bias in the stratospheric temperature analysis is reduced by up to 50%.

Data assimilation: Improved wind analysis

1. Heights of low level Atmospheric Motion Vectors (AMVs) diagnosed above the model cloud are reassigned to the cloud average pressure

2. Representativeness error added into the total observation error for Aeolus (lidar winds)

Moist physics upgrade in IFS Cycle 47r3

- Major development to moist physics parametrizations (cloud, convection, turbulent mixing, microphysics)
- Simpler interactions, more consistency, improved physical processes, better numerics

Changes to many different aspects of the moist physics...

ECMWF Newsletter 164 (Summer 2020) (www.ecmwf.int/en/publications/newsletters)

Moist physics upgrade in IFS Cycle 47r3

- Impacts all aspects of the forecast across regions and across forecast timescales

 many positives but also a few negatives
- Changes the character of cloud and precipitation (more small scale structure) and improves storm organisation (due to changes to the convective closure including total advective moisture, to saturation adjustment and higher order departure point interpolation)
- More accurate tropical cyclone tracks from improved tropical winds
- Improved MJO in the extended range
- A stronger foundation for the IFS physics for the move to higher resolutions (3-5km) and future developments

METEOROLOGICAL IMPACTS HIGHLIGHTS FOR 47R3

47r3 summary - scorecards

Based on 650 forecasts Jun 2020 - Aug 2021

(1) Improved upper air - GEOPOTENTIAL

AC Z500 geopotential NH/SH 1-4% improvement

47r3 summary - scorecards (2) Improved upper air - WIND

RMSE extratropics 1-2%, tropics 1-7% improvement

ECMWF Overview of IFS Cycle 47r3, Webinar, Sep 2021

47r3 summary - scorecards

	HRES					ENS						
	(AnomCorr/RMSE)								(CF	(PS)		
	NHem SHem Tropics					NHem	SHem	Tropics				
		<u>n.</u>	hem	s.	nem	tro	pics			n.hem	s.hem	tropics
		ccaf/seep	s rmsef/sde	fccaf/seeps	rmsef/sde	ccaf/seeps	rmsef/sdef			crps	crps	crps
	anz	100						anz	50			
	7	250							25			
	-	500							50	o 🎞		
		850							85	o 🔲		
	ţ	50						t	50			
Vanaura	_	100							10	0		
versus		250							25	0		
analysis		850							50			
anaryoro	vw	50						ff	50			
		100							10	o 		
	VW	250							25	0		
	•••	500							50	0		
		850							85	0		
	^r R	250						<u>r</u>	25	0		
	msl	/00							70			
	2t							21	51			
	10ff							10	off			
	10ff@sea	a 🔳						10)ff@sea			
	swh							sw	<u>vh</u>			
	mwp			-				m	WD			
	ob z	50						<u>ob z</u>	50			
	7	250							10			
	-	500							50	0		
		850							85	0		
	ţ	50						t	50			
	т	100							10	0		
Versus		250							25	0		
101040		850							50			
ODS	VW	50						ff	50			
		100							10	o 		
	VW	250							25	0		
		500							50	0		
		850							85	0		
	^L R	250						Ľ	25	0		
	1.0ff	/00						10	70 off			
	2t							21				
	2 d							20	1			
	tcc							tco	c			
	tp							tp				

(3) Degraded tropical upper-tropospheric temperature

- In the tropical upper troposphere:
 - ensemble spread & STDEV small ~1K, bias close to 0
 - a small mean warming of ~0.2K gives a large relative change for bias-sensitive scores such as CRPS/RMSE
- Bias-independent scores (STDEV, bias-corrected CRPS) show positive / neutral change.
- For example, tropics T500hPa versus analysis ΔCRPS gives 9% degradation, bias-corrected ΔCRPS gives 3% improvement
- Helps to understand the large impact on the CRPS score, due to a small 0.2K increase in bias

		ENS	ENS		
		(RMSE)	(Std Dev)		
ţ	50				
	100				
	250				
	500				

Degradation present in RMSE of ensemble mean (+0.2K bias) but not std deviation

47r3 summary - scorecards

(4) Mixed signals in near-surface variables

Some degradations partly due to increased variability and/or small changes in biases

- 2m temperature CRPS in ENS extratropics slightly improved against observations (0.5%)
- Total precipitation Neutral to slightly improved (0.5%)
- Total cloud cover
 3% increase in cloud cover results in degradation versus SYNOP

Will look at further developments in upcoming Cycles

47r3 changes to cloud cover: example snapshot

 In 47r3, cloud cover is increased by ~3%, is more binary (increased occurrence of cloud fraction=1) and has more smaller scale structure → less "smooth", higher RMSE

Example: HRES High Cloud Cover 2021-03-03 00Z T+9

Precipitation rates – change in character of precipitation

Animation of 47r2 and 47r3 (new cycle) instantaneous precipitation rate for 26 Dec 2020 30 hour forecast

- **Precipitation accumulations** similar but with increased smaller scale structure in 47r3
- **Precipitation rates**, 47r3 has:

16

- Smaller and more realistic rain area
- Increased small scale structures (e.g. in convective regime over the sea)
- Higher peak rain rates with more variability (e.g. stronger cold front line convection)

Precipitation: Changes in model precipitation climate (tails of the pdf)

- 47r2 and 47r3 similar over central and northern Europe
- Increased convective precipitation (reduced dry bias) in semi-arid regions further south

Relative percentage difference in the 99th percentile of 24-48h precipitation between the 47r3 and 47r2 model climates from reforecasts for the extended range ENS on 29 July 2021. The formula is 200*(E-suite - O-suite)/(E-suite + O-suite)

Precipitation: Improved precipitation PDF (convective regimes)

With new convective closure, 47r3 IFS closer to observed PDF of precipitation rate than 47r1

Frequency*precipitation distribution of the HRES 24-48 hour forecast hourly precipitation accumulations for the GPM-IMERG (black) and NEXRAD radar network (grey) observational products, 47r1 HRES (blue) and 47r3 physics (red). Data for August 2016 remapped to 0.1°. Note, the observational products tend to underestimate lighter rain rates.

Precipitation: Improved organisation and propagation of squall lines (in some cases)

Animation of squall line propagation over Africa, 2016-08-06

Tropical cyclone performance: track and intensity

Tropical cyclone performance: Central pressure – two examples

August

TC Larry – Sep 2021

47r2 O-suite 47r3 E-suite

BestTrack

September

- In rapidly deepening tropical cyclones, at TCo1279 (9km) resolution, 47r3 is less deep than 47r2, and too shallow versus obs estimate $\begin{pmatrix} \circ \\ \circ \end{pmatrix}$
- But at future higher resolutions (4km), ٠ 47r3 is closer to obs than 47r2 $\begin{pmatrix} \circ & \circ \end{pmatrix}$ (not shown here)

And 47r3 mitigates over-deepening of HRES often seen in current operations in late stages of cyclone evolution

Extended-range: Improvements to MJO

- Extended-range forecasts overall skill similar at full resolution (lower resolution had shown improvements)
- MJO skill shows some small improvements out to day 30
- Increase in spread leads to beneficial increase in MJO amplitude and eastward phase speed

Anomaly correlation weeks 1-4 summary scorecard

Madden-Julian Oscillation (MJO) RMM summary scorecard 47r3 versus 47r2, TCo319L137, 19890101-20161201

NEW AND REVISED PRODUCTS IN 47R3

47r3 Products – revised visibility in fog and precipitation

• Improved extinction coefficients for visibility calculations leads to reduced bias compared to observations

47r3 Products – revised wind gusts

- Wind gusts too strong in unstable conditions in 47r1 HRES & ENS
- Revision of gust parametrization in 47r3 half convective gust factor and 7% reduction in turbulent gust factor
- 47r3 closer agreement to observations

47r3 New Products (Member State requests)

Short Name	Name	Units	Component
trpp	Tropopause pressure	Pa	HRES
degm10l	Altitude of -10 degrees C isothermal level	m	HRES/ENS
u10n	Neutral wind at 10 m u-component	m s ⁻¹	ENS
v10n	Neutral wind at 10 m v-component	m s ⁻¹	ENS
mlcape50	Mixed-layer CAPE in the lowest 50 hPa	J kg⁻¹	HRES/ENS
mlcin50	Mixed-layer CIN in the lowest 50 hPa	J kg⁻¹	HRES/ENS
mlcape100	Mixed-layer CAPE in the lowest 100 hPa	J kg⁻¹	HRES/ENS
mlcin100	Mixed-layer CIN in the lowest 100 hPa	J kg⁻¹	HRES/ENS
mucape	Most-unstable CAPE	J kg⁻¹	HRES/ENS
mudlp	Departure level (pressure) of the most unstable parcel	Pa	HRES/ENS
cat	Clear air turbulence (CAT)	m ^{-2/3} s ⁻¹	HRES (ml)

47r3 New Product: Clear Air Turbulence (CAT)

- Based on eddy dissipation rate (EDR)
- Details in
 - ECMWF Tech Memo 874
 - ECMWF Newsletter No 168, summer 2021

Eddy Dissipation Rate (m^{2/3} s⁻¹) daily average for 20190302 level 10-12 km, wind isotachs at 250 hPa (grey contours)

47r3 New Product: Most Unstable CAPE (Convective Available Potential Energy)

- Current CAPE uses Theta-E in the calculation for computational efficiency
- New most-unstable CAPE (MUCAPE) parameter correctly uses Theta-V
- MUCAPE > CAPE, but both are reduced by 47r3 physics, so 47r3 MUCAPE is only sligthly higher than 47r2 CAPE
- Encourage use of MUCAPE

Implementation timeline and next steps

On 14 September, the start of the release candidate phase

- A full set of 47r3 test product services will be offered until the operational implementation, e.g.
 - Dissemination: products based on operational requirements
 - ecCharts: layers labelled "0076"
 - Meteograms and vertical profiles as web charts
- Test products will be generated daily shortly behind operational HRES and ENS
- Availability of the test data does not follow any strict schedule

Next steps

- Keep testing data *and* software
 - Release Candidate test data available from 14 Sep
 - For longer time series available beta test data from 15 April can be used
 - New software versions required to handle all 47r3 data will become the default on ECMWF systems on 6 October

Users are strongly encouraged to test their applications and data processing chains with the software versions before that change

Please
 <u>Watch</u> the implementation page for more details and to keep up to date with latest news

• Implementation planned for 6 UTC run on 12th October

ges / Forecast User Portal / Changes to the forecasting system 🏻 🚡 🥔 🥥	🖋 Edit 🕼 Save for later 🗢 Watching 🗠 Share					
nplementation of IES Cycle 47r3						
seted by Carsten Maass, last modified just a moment ago						
escription of the upgrade	NEWS!					
cle upgrade 47r3 will bring improvements to the assimilation and observations usage	© 08 Sep 2021 ENS and HRES scorecards have been added					
J a significantly improved physical basis for moist processes, necessary to facilitate ther development of the Integrated Forecasting System (IFS) and future application convection-permitting resolutions.	15 Sep 2021 Updated recommended software versions and information on test data from release candidate added					
e upgrade will bring more accurate upper air fields, particularly tropical winds, as well precipitation in convective regimes. Several new convection-related products will be	26 Aug 2021 Specific information on new CAPE and CIN parameters published					
illable and systematic errors are reduced for wind gusts and visibility for fog and cipitation.	25 Aug 2021. A webinar giving an updated overview of Cycle 47r3 with a focus on the scientific developments, the meteorological impact and new products has been scheduled for					
plementation scheduled for 06 UTC run on 12 Oct 2021, TBC	13 September 2021, 15:00 UTC					
	To join please register on the event page.					
je updated on mi 01 Sep 2021 547r3 €newfoystem @ECMWF	O6 Aug 2021 Changes to the grid descriptions of analysis parameters of and stt 15 Jul 2021					
Description of the upgrade	Implementation moved to 12 October Beta test data available now					
Timeline of the implementation Meteorological content	107 Jul 2021 Recording and slides of the webinar Cycle 47r3 overview and more information on the meteorological impact are now available.					
Assimilation Observations Model	23 Jun 2021 IFS Cycle 47r3 content and implementation timeline announce The new cycle will be introduced in a first webinar on					
Meteorological impact	6 July 2021 at 8:00 UTC: Join the webinar on Zoom					
Evaluation New and changed parameters New parameters Change to eviction GPIP components	A recording of the webinar will be made available after the event					
Changes to GRIB encoding Software						
Availability of A174 test data Test data in MARS Test data in MARS Test data in discrimination Graphical display of test data in eCharts Wide charts based on test data WWO charts based on test data						

31

eline of the implementation

Jun 2021

Jul 2021

6 Jul 8:00 UTC

