ECMWF-ECCC Land DA online meeting, 24 August 2021

Coupled land-atmosphere data assimilation for
operational NWP and reanalyses

Patricia de Rosnay, David Fairbairn, Pete Weston, Phil Browne,
and many other colleagues
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oward coupled assimilation in ECMWF’s operational systems
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- Consistency of the coupling approaches across the different components of the Earth System

- Modularity to account for the different components in coupled assimilation

- Common infrastructure for land, atmosphere, ocean, sea ice, waves for NWP and reanalysis

S
Vet ECMWF EUROPEAN CENTRE FOR MEDIUM-RANGE WEATHER FORECASTS 2



Current operational NWP system at ECMWF

Weakly coupled land-atmosphere-wave and sea ice assimilation
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Plans to develop land-atmosphere coupling at the outer-loop level of the atmospheric 4D-Var
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Coupled assimilation in operational systems

Methodology:

* Coupled assimilation challenges, coupling strategy from weak to strong coupling, etc

* Link to methodology and unified framework development (e.g. OOPS at ECMWF)

Infrastructure:

* Earth System approach = consistent & modular suite definition for land and atmosphere,
use same file system for all components,

* Develop/maintain consistent research offline and coupled, and operational coupled tools

Observing system and monitoring:

* Access to observations, common acquisition for land & atmosphere, observation pre-
processing, quality control, data selection, feedback files, monitoring, auto-alert system, ...

Observation operators:

* Coupling for observations that depend on more than one sub-system (e.g. low frequency
MW observations sensitive to the surface), explore Al/ML approaches
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Observing system: the example of in situ snow depth

Near-Real-Time access to observations

SYNOP TAC SYNOP BUFR national BUFR data 15 Janu ary 2015
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Snow depth availability o the Global Telecommunication System (GTS)
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Observing system: the example of in situ snow depth

Near-Real-Time access to observations

SYNOP TAC SYNOP BUFR national BUFR data 15 Janu ary 2021
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Snow depth availability o the Global Telecommunication System (GTS)
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Snow data exchange and WMO

» Global Cryosphere Watch (GCW) and Snow Watch Team
- snow data exchange WMO regulation, BUER template (with Observation Team), link to GODEX

» SG-CRYO and JET-EOSDE (both WMO Infrastructure Commission) - relevant for coupled assimilation

Europe snow reporting (BUFR SYNOP) March 2015-2020
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6. Improvements in the reporting of
P ‘zero’ snow depth from SYNOP stations
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ECMWEF Soil Analysis for NWP

Simplified Extended
Kalman Filter (SEKF)

Ensemble Data @ NWP Forecast with EDA Jacobians
Assimilation (EDA) Coupled Land-Atmosphere
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Uncouped Land surface analysis systems
- Support research and land surface reanalysis

System(s) consistency and maintenance

1. Offline surface model forced by atmospheric reanalysis (e.g. ERA5-land)
© Allows enhanced surface model/resolution

@ No land DA SSA forced by ERAS
T+0 to T+12

2. Offline soil moisture DA (Rogriguez-Fernandez et al, 2019) « -
© As (1), but offline soil moisture analysis included :u:fiscs:;r:: At":::::r"c
@ A priori observation processing and gridding
@ No snow DA batkwndl @ ﬁ f

3. Stand-alone surface analysis (SSA, Fairbairn et al., 2019) z:::;:::: ‘ Land surface atmi':A:eric
© Full land DA system in IFS (soil moisture, snow, etc...) analysis o reanaF:ysis

SN

© Coupled land-atmosphere model

© Same observation interface than NWP obt @ postprocessing
© No atmosphere DA so cheaper than coupled DA system
@ Still significantly more computationally expensive than (1) and (2) Land surface

analysis fields

Fairbairn et al., 2019 J. Hydrometeor, 2019. https://doi.org/10.1175/JHM-D-19-0074.1
Rodriguez-Fernandez et al., Rem. Sens. 2019 https://www.mdpi.com/2072-4292/11/11/1334

< ECMWF



https://doi.org/10.1175/JHM-D-19-0074.1
https://www.mdpi.com/2072-4292/11/11/1334

Observation monitoring and quality control

SMOS brightness temperature operational monitoring

« Summer 2020: a large area of RFI (Radio Frequency Interference) contamination over South-East China

» Improved screening does a better job of filtering it out but still not perfect

— Need for further improvements in RFl filtering flags

— Importance of guality control

STATISTICS FOR RADIANCES FROM SMOS/SMOS
STDV OF FIRST GUESS DEPARTURE (ALL)
DATA PERIOD = 2020-09-06 21 - 2020-10-09 21
EXP = 0001, CHANNEL = 2 (FOVS: 27-36)
Min: 0.001 Max: 139.838 Mean: 10.274
GRID: 0.25x 0.25
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Basic RFI screening
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STATISTICS FOR RADIANCES FROM SMOS/SMOS
STDV OF FIRST GUESS DEPARTURE (RFI SCREENED)
DATA PERIOD = 2020-09-06 21 - 2020-10-09 21
EXP = 0001, CHANNEL = 2 (FOVS: 27-36)

Min: 0.003 Max: 139.125 Mean: 8.426
GRID: 0.25x 0.25
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Stronger RFI screening
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New observation implementation 471 hgTjan/SatellteMantor
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observations in a complex (Earth) system
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Coupling through the observation operator

- New interface between CMEM (surface) and RTTOV (atmosphere) radiative transfer schemes

- Multi-layer snow radiative transfer scheme (HUT, Lemmetyinen et al., 2010) in CMEM offline

- Adapt to model cycle changes, take advantage to improve coupled DA

Use the multi-layer snowpack model (Arduini et al JAMES 2019) to assess the impact of multi-layer
approach on snow emissions against AMSR2 10GHz data

Multi-layer snowpack scheme leads to
reduce STDV and gives higher
correlation values between ECMWF
forward and AMSR2 observed
brightness temperatures at 10GHz
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SMOS neural network soil moisture assimilation

Input layer Hidden layer Output layer

Soil moisture

Rodriguez-Fernandez et al., HESS 2017, RS 2019

A priori training of the SMOS neural network processor
-> retraining when L1Tb or IFS soil change
Online training possibilities?

Further explore ML/AI for forward modelling

Pressure (hPa)
=]
IS

Recent work from Aires et al QIRMS 2021: use neural network to 1000
investigate the relation between ASCAT backscatter and soil -
moisture
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SMOS DA impact
Aircraft humidity (JJA 2017)
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Summary

model cycle

modularity gata acquisition

feedback file operations

online training offline
data eXChange monitoring observing system

reanalysis outer-loop coupling data format
near real time

sustainability archiving auto-alert system
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Future plans

 Land DA

Unified multivariate ensemble-based land DA system: progressively include more variables in the
SEKF control vector, use the EDA to estimate flow-dependent B, enhance observation usage

Move towards level 1 observation usage: develop forward operator using combined physical and
include ML approaches tackle challenges of complex surfaces radiative transfer modelling

« Coupled land-atmosphere DA

Develop modular coupling infrastructure to enable different degrees of coupling flexibility under a
single suite definition (optimal maintenance, useful for land reanalysis and initialisation of
reforecasts)

Develop outer loop coupling consistent with ocean-atmosphere coupling

Observation operator coupling to enhance the exploitation of satellite observations e.g. over snow
covered surfaces

Assimilate 4D-Var Extended Control Variable as land pseudo-observations (e.g. skin temperature)
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