

Land Surface Modelling Challenges and Opportunities

Elisabetta Carrara & Christoph Rüdiger

Hydrology Section Science and Innovation Group | Research Bureau of Meteorology

The Bureau's Research Plan and Groups

National Operations Centre Bureau of Meteorology MSLP <u>Analysis (hPa)</u> Valid:0000 UTC 22 Mar

© Copyright 2020 Commonwealth of Australia , Bureau of Meteorology

Not Only Weather

The Bureau carries a range of responsibilities relating to weather prediction and to water:

- a. The Bureau is the <u>lead national agency for flood warning</u>, as mandated through the Meteorology Act (1955), following the Hunter floods of 1955.
- b. The <u>Water Act (2007)</u> mandates the Bureau to issue national water information standards, collate and publish water data, monitor and report on water availability (including water accounting), and water availability forecasts among other responsibilities.
- c. The Bureau supports a range of services requiring hydrological modelling and input (e.g., bushfire and drought risk).

Research Plan 2020-2030

OBJECTIVE 1: CUSTOMISED IMPACT-BASED FORECASTS AND WARNINGS WHEN AND WHERE IT COUNTS

More localised, timely and better information for cities and regional areas

OBJECTIVE 2: RELIABLE AND TRUSTED FORECASTS

Enhanced assimilation of observations for more accurate predictions

OBJECTIVE 3: AN EARTH SYSTEM NUMERICAL PREDICTION CAPABILITY

Fully integrated atmosphere, ocean, sea-ice and hydrology models

OBJECTIVE 4: SEAMLESS WEATHER AND CLIMATE INSIGHTS

Historical observations and predictions, from minutes to decades

Hydrology research plans at BoM

Hydrological Modelling Roadmap

National Operations Centre Bureau of Meteorology MSLP <u>Analysis (hPa)</u> Valid:0000 UTC 22 Mar

tralian Government

© Copyright 2020 Commonwealth of Australia , Bureau of Meteorology

Hydrological Modelling Team

Hydrological Modelling

- Model development (JULES, Hydro-JULES)
- Adaptation to Australian landscapes
- Uncoupled and coupled simulations
- Coupling with NEWP (ACCESS)
- Rainfall prediction and hydrological cycle closure

Supporting other Teams and Sections:

- Hydrological product development
 - Flood inundation
 - Fires
 - Landslide
 - Storm surge
- Coupled prediction systems
 - Improved land surface representation
 - EO integration and DA
- Other
 - Agriculture
 - Climate projections
 - Urban

Roadmap

Baseline Functionalities			\sum
Training	Model Analytics		\sum
Infrastructure prep	Benchmarking	Parameterisation	
Environ. Data	Analytics	Routing	
Model set up	Sensitivity runs	Vegetation	
Data stream	Simplified DA	TWS	
		Fluxes	
		Coupling tests	

Roadmap

Specific Challenges

National Operations Centre Bureau of Meteorology MSLP <u>Analysis (hPa)</u> Valid:0000 UTC 22 Mai

Routing

Parameterisation of vertical flow

Scale

Routing

Relief

Ephemeral Streams

Vegetation

- Investigation of different hydroclimatic regions
 - Vegetation activity
 - Growth (e.g. GPP)
 - Water content
 - Seasonality
 - Parameterisation of interactive vegetation module
 - Evapotranspiration
 - GPP and greenness
 - Rooting depth
- Land cover variation across the years
 - Plant migration and replacement

Surface Soil Moisture

Data Assimilation

- Vegetation
- Surface soil moisture and groundwater
- (LST)
- Determination of error covariances
- Triple collocation across the continent
- Seasonality of model and observational uncertainties

Extreme Conditions

Damian Carrington's blog Environment

Damian Carrington

 \boxtimes

Contracting Contract Series Contract Series

Australia adds new colour to temperature maps as heat soars

Forecast temperatures are so extreme that the Bureau of Meteorology has had to add a new colour to its scale. It is a sign of things to come

Australian project simulates effects of runaway climate change
Deadly heatwaves will be more frequent in coming decades

Australian Bureau of Metereology temperature map - with a new colour for 52-54C. Photograph: BOM. Click the image to see a larger version

Global warming is turning the volume of extreme weather up, Spinal-Tapstyle, to 11. The temperature forecast for next Monday by Australia's Bureau of Meteorology is so unprecedented - over 52C - that it has had to add a new colour to the top of its scale, a suitably incandescent purple.

Conclusions National Operations Centre Bureau of Meteorology MSLP <u>Analysis (hPa)</u> Valid:0000 UTC 22 Mar. 2021

Looking Ahead

- Consolidation of hydrology research in one section will enable much more focused and stronger collaboration opportunities
- The new team will be contributing to the research community in full from 2022
- Broad research interests across the entire landscape
 - Contribution to diverse research projects
- Particular focus on parameterization and model verification over the next years
- Increasing strategic intake and use of EO data

Thank you

Contact details : Elisabetta Carrara – <u>elisabetta.carrara@bom.gov.au</u> Christoph Rüdiger – <u>christoph.rudiger@bom.gov.au</u>