8.1 Score definitions

The following definitions should be used:

Mean error:
$$M = \sum_{i=1}^{n} w_i (x_f - x_v)_i$$

Root mean square (rms) error:
$$rms = \sqrt{\sum_{i=1}^{n} w_i (x_f - x_v)_i^2}$$

Correlation coefficient between forecast and analysis anomalies

$$r = \frac{\sum_{i=1}^{n} w_{i}(x_{f} - x_{c} - M_{f,c})_{i} (x_{v} - x_{c} - M_{v,c})_{i}}{\left(\sum_{i=1}^{n} w_{i}(x_{f} - x_{c} - M_{f,c})_{i}^{2}\right)^{1/2} \left(\sum_{i=1}^{n} w_{i}(x_{v} - x_{c} - M_{v,c})_{i}^{2}\right)^{1/2}}$$

rms vector wind error
$$rms = \sqrt{\sum_{i=1}^{n} w_i (\vec{V}_f - \vec{V}_v)_i^2}$$

mean absolute error
$$MAE = \sum_{i=1}^{n} w_i |x_f - x_v|_{t}$$

rms anomaly
$$rmsa = \sqrt{\sum_{i=1}^{n} w_i (x - x_c)_i^2}$$

standard deviation of field
$$sd = \sqrt{\sum_{i=1}^{n} w_i (x - M_x)_i^2}$$
 where $M_x = \sum_{i=1}^{n} w_i x_i$

S1 score
$$S_i = 100 \frac{\sum_{i=1}^n w_i (e_g)_i}{\sum_{i=1}^n w_i (G_L)_i}$$

where:

 x_f = the forecast value of the parameter in question

 x_v = the corresponding verifying value

 x_c = the climatological value of the parameter

n = the number of grid points or observations in the verification area

 $M_{f,c}$ = the mean value over the verification area of the forecast anomalies from climate

 $M_{\nu,c}$ = the mean value over the verification area of the analysed anomalies from climate

 \vec{V}_f = the forecast wind vector

 \vec{V}_{ν} = the corresponding verifying value

where the differentiation is approximated by differences computed on the verification grid.

$$\begin{split} e_g &= \left(\left| \frac{\partial}{\partial x} \left(x_f - x_v \right) \right| + \left| \frac{\partial}{\partial y} \left(x_f - x_v \right) \right| \right) \\ G_L &= \max \left(\left| \frac{\partial x_f}{\partial x} \right|, \left| \frac{\partial x_v}{\partial x} \right| \right) + \max \left(\left| \frac{\partial x_f}{\partial y} \right|, \left| \frac{\partial x_v}{\partial y} \right| \right) \end{split}$$

The weights w_i applied at each grid point or observation location are defined as:

Verification against analyses: $w_i = \cos \phi_i$, cosine of latitude at grid point i Verification against observations: $w_i = 1/n$, all observations have equal weight