Introduction to Cycle 48r1

Andy Brown Director of Research ECMWF

Medium range ensemble : 18 km to 9 km (same as HRES) Extended range ensemble : 50+1 members twice weekly to 100+1 members every day

Evolution of HRES and ENS

EUROPEAN CENTRE FOR MEDIUM-RANGE WEATHER FORECASTS

48r1: Improvements in data assimilation and observation use (I)

- TL511 inner loop resolution in HRES 4D-Var
- Operational activation of OOPS
- Higher-density assimilation of ASCAT L2 winds

- Improved assimilation of hyperspectral IR sounders
 - Unified VarBC setup for IR sounders
 - Allow usage of all pixels from IASI
 - Aerosol type classification in IR data
 - Update on the IR trace gas detection

ECMUF EUROPEAN CENTRE FOR MEDIUM-RANGE WEATHER FORECASTS

Enhanced classification and rejection of aerosols for hyper-spectral IR (e.g. dust / volcanic ash)

48r1: Object-Oriented Prediction System (OOPS)

- What is it?
 - OOPS is a modular algorithmic control layer implementing variational data assimilation algorithms and forecasting applications. OOPS is the result of a joint effort by ECMWF, Météo-France and ACCORD partners, with development starting in 2010.
 - Adopted by the JEDI system of JCSDA
- Why we have developed it?
 - The idea is to separate the generic algorithmic level from the complex model-specific implementation code base and so enable <u>fast prototyping of new algorithms</u>.
- What will it allow us to do?
 - OOPS has already allowed us to explore new algorithms including:
 - Integration of machine learning into the incremental 4D-Var framework for model error estimation and correction,
 - > Development of a Dual Configuration model for atmospheric composition applications.
 - Saddle point formulation of weak constraint 4D-Var,
 - > 4D-EnVar (Météo-France),
 - Randomized preconditioners.

Increase of final 4D-Var inner-loop resolution from TL399 to TL511

Increasing inner loop resolution to T511 improves the extraction of finer scale observation information in the 4D-Var analysis.

48r1: Improvements in data assimilation and observation use (II)

- Upgrade RTTOV to v13
 - Latest version of RTTOV: technical upgrade + additional capabilities to prepare for future
 - Microwave gas optical depth coefficient file upgrade, using new predictors (v13)
 - Major scientific upgrade of cloud and precipitation microphysics in RTTOV-SCATT
- ATMS snow, Lambertian, slant-path
 - Activate ATMS humidity channels over snow
 - ATMS Lambertian surface reflection over snow and sea-ice
 - Slant-path interpolation for selected MW sensors assimilated in the all-sky system
- Improved treatment of surface-sensitive channels in all-sky
 - Assimilate polewards of 60 degrees over land and ocean; relying on new sea-ice detection
 - Improved treatment of mixed land-water and water-sea-ice scenes
- Assimilation of microwave imagers over land surfaces
 - 89 GHz, 150/166 GHz channels of GMI, SSMIS + GMI 183 GHz over land
 - Add 37 GHz channels, Add AMSR2; improved bias correction, QC and error models

All-sky all-surface: more microwave observations over difficult surfaces

48r1: Selection of model contributions

- 9 km ensemble
 - Tracer mass fixer applied to moist species
 - Moist physics changes (saturation adjustment, ice fall speed)
 - Stochastic physics (saturation adjustment tendency excluded from SPPT)
- Improved drag representation
- Revised computation of Semi-Lagrangian advection departure points
- New model top sponge layer formulation
- Consistent physics-dynamics interface across non-linear/tangent-linear/adjoint model
- Radiatively interactive prognostic ozone using new HLO scheme + tuned Semi-Lagrangian vertical filter
- Multi level snow scheme
- Revised climate fields
- New representation of freezing drizzle and more precipitation type parameters

A new orographic drag package

- A new representation of the unresolved orographic effect: Taking into account the drag effect from scales between 5 km and 4 times the target resolution
- Revised formulation of the aspect ratio
- Low level blocking and TOFD calibration

- Improvements across all resolutions from TCo319 to TCo1279!
- Decrease in RMSEs getting smaller at higher resolutions due to decrease of SSO contributions (more resolved orography)

Kanehama et al. (2019), JAMES Kanehama et al., TM, 2022

EUROPEAN CENTRE FOR MEDIUM-RANGE WEATHER FORECASTS

Radiatively interactive prognostic ozone "HLO": medium-range impact

- A new Hybrid Linear Ozone (HLO) scheme has been developed, trained on the CAMS ozone reanalysis: a significant improvement over previous Cariolle linear ozone scheme, and already used operationally in CAMS forecasts
- Combined with Semi-Lagrangian Vertical Filter (SLVF) to suppress noise in temperature in the vertical

IWF EUROPEAN CENTRE FOR MEDIUM-RANGE WEATHER FORECASTS

HLO+SLVF: Improved fit to observations (JJA 2020 + DJF 2020/21)

• CRIS infrared sounder: better ozone leads to better fit to ozone sensitive radiances

From 00Z 5-Jun-2020 to 12Z 28-Feb-2021

• **GPS radio occultation**: SLVF suppresses noise in temperature, improving fit

Area(s): N.Hemis S.Hemis Tropics From 00Z 5–Jun–2020 to 12Z 28–Feb–2021

(Green line is impact of HLO+SLVF only, black and red lines include other model changes) RMSE ratio (%): hsdx vs hs21

19890101-20161201

	NHEM				TROPICS					SHEM					
Lead (days)	5-11	12-18	19-25	26-32		5-11	12-18	19-25	26-32		5-11	12-18	19-25	26-32	
tprate		•	•	•		•	•	•			•	•	♥		
2t		۵				•	•	۵				•			
msl		•	•	•		•	•	▼	•		۵	•	•	•	
u850		•		A			▼	▼			۵	▼	•	•	
v850		•	•	۸			•	▼	•		•	▼	▼	•	
t850	•	▼		۵				•	▼		•	•	A	•	
u500	•	•		A			•	•	•		۸	•	•	▼	$\left(\right)$
v500		•	•	A		•	•	•	A		۸	▼	•	•	
t500	•	•	۵	۵				۵	▼			▼	•	▼	
z500	•		۵			۵		•	▼		۵		۵	▼	
u200	•	•		۵			•	۵	▼		۵	▼		▼	
v200	•	▼	۵	•		•	A	۵	۸		۵	▼		•	
t200	•		۵	۵		۸		•	•		٠	•			
strf200	•	•				•		۵	•		۵	▼		•	
vp200	•	۵	۵	۸		•	۵	•	▼		٠	•			
rws200	•	•		•				۵		14		•		•	
u50		A	Δ					\bigtriangledown	\bigtriangledown		▼	♥	•	▼	
v50				۸		•	▼	♥	•	Ι.	v	_	▼	A	
t50		▼	$\mathbf{\nabla}$	•			\bigtriangledown	$\mathbf{\nabla}$	$\mathbf{\nabla}$		▼				
sst	•	•	•	•	L	٠	•	٠	v	ינ	•	•			
ci	٠	•	۸	۸							•	•	▼	۵	
		Increase	e				Decreas	e							
ref=1 (max=10)		Sig. inci	rease (9	5%)		∇	Sig. dec	rease (9	95%)						

HLO+SLVF: Impact on monthly forecasts

- Tco319 hindcasts 1989-2016
- Score the change in bias-corrected RMS error
- No significant impact on tropospheric scores

- Statistically significant impact on tropical 50 hPa winds & temperatures to 1 month due to improved QBO
 - Significant impact on extra-tropical 50 hPa temperatures up to 11 days ahead

Long-range forecasts

QBO scorecard 48r1 vs. 47r3 scoring zonal mean equatorial U wind

The gains in skill for stratospheric winds continue into the long-range forecast

Multi-layer snow scheme – improved coupling

- New snow scheme with up to 5 layers, replacing single-layer snow scheme
- Improved the coupling with the atmosphere and the soil underneath

Temperature profile in the near-surface atmosphere, snow and soil layer at Sodankyla, Finland

Multi-layer snow scheme – improved snow forecast

- Improved snow depth in short-range forecasts
- Snow depth bias reduces for increased forecast range

RMS difference between multi-layer and single-layer snow scheme in analysis increments (12h forecast – analysis), January 2020

ECCIVE EUROPEAN CENTRE FOR MEDIUM-RANGE WEATHER FORECASTS

RMSE difference of forecasts at day 5 (compared with synop station), Winter 19/20

Multi-layer snow scheme – improved 2-metre temperature

Reduced fraction of large errors in ensemble

Fraction of CRPS errors in 2-metre Temperature > 5K in ensemble forecasts, Winter 2019/2020

Multi-layer snow reduces errors

High impact weather – "Freezing drizzle" in 48r1

Freezing drizzle (= supercooled warm-rain process at sub-0°C temperatures)

- Often light but prolonged precipitation can create icy surface, hazardous weather!
- Different formation process to freezing rain, pre-48r1 freezing drizzle is not predicted in the IFS
- New/revised microphysics in **48r1 allows freezing drizzle prediction**
- New WMO code 12 in "Precipitation Type" parameter, will appear in ENS Precip-Type Meteograms

New parameters for precipitation type

"Precipitation type" is only valid at the output time,

New parameters store the "**most frequent**" and "**most severe**" precipitation type occurrence in the last 1 hour, 3 hours or 6 hours depending on forecast lead time

6 new parameters:

Precipitation type (most severe) in the last 1/3/6 hours **Precipitation type (most frequent)** in the last 1/3/6 hours

Precipitation types in the IFS and order of severity

Code	Precipitation Type	Severity
3	Freezing rain	7
12	Freezing drizzle	6
6	Wet snow	5
5	Snow	4
8	Ice pellets	3
7	Mixture of rain and snow	2
1	Rain	1
0	No precipitation	0

Scorecard, RD Esuite, 2020-06-03 – 2020-08-16 and 2020-12-03 – 2021-02-13, HR 00/12, ENS 00 only

				n.hem			s.hem					
			ccaf	crps	spread	ccaf	crps	spread	ccaf	crps	spread	
	an z	50										
		100										
		250										
		500										
		850										
	msl											
	t	50										
		100										
		250										
		500										
		850										
	ff	50										
		100										
		250										
		500										
		850										
	r	250										
		700										
ENS	<u>2t</u>											HR
	10ff@sea											
	swh											
	mwp											
	obz	50										
		100										
		250										
		500										
		850										
	<u>.</u>	50										
		250										
		500										
		850									······	
	ff	50										
		100										
		250			0 0000000000000000000000000000000000000							
		500										
		850										
	r	250										
		700										
	<u>2t</u>											
	<u>2d</u>											
	tcc											
	10ff											
	tp											
	swh											

			<u>n.h</u>	em	s.h	em	tropics			
_			ccaf/ seeps	rmsef/sdef	ccaf/ seeps	rmsef/ sdef	ccaf/ seeps	rmsef/sde		
an z	-	50								
		100								
		250								
		500								
		850								
ŗ	nsl									
t		50								
	-	100								
		250								
		500								
		850								
		1000								
-		1000								
-	<u>2, t</u>									
2	/w	50								
		100								
		250								
		500								
		850								
		1000								
1	LOff									
ŗ	:	250			00					
		700								
1	10ff@sea									
5	swh									
r	nwp									
bb z		50								
	-	100								
		250								
		200								
		300								
		850								
t		50								
		100								
		250								
		500								
		850								
4	<u>2t</u>									
2	<u>/w</u>	50			0.0.0.0.0					
		100								
		250								
		500								
		850								
1	LOff									
r		250								
		700								
	2d						00			
+							22			
4										
ţ	£.									
5	swh									

48r1, 2020-06-03 – 2020-08-16 and 2020-12-03 – 2021-02-13, ENS 00 – Improved SFC scores

2d|0|europe|crps|ob

48r1, ENS TC forecasts: Position

ECMWF EUROPEAN CENTRE FOR MEDIUM-RANGE WEATHER FORECASTS

48r1, 47r3

48r1, ENS TC forecasts: Intensity

Normalised difference (-Ve worse than Ctrl/+Ve better than Ctrl) of abs intensity fcst error

- red-h-h

ECCMWF EUROPEAN CENTRE FOR MEDIUM-RANGE WEATHER FORECASTS

48r1, 47r3

48r1: Extended range

EUROPEAN CENTRE FOR MEDIUM-RANGE WEATHER FORECASTS

Change to extended-range forecast configuration in 48r1

aci		ICI	ea	56		e	115	ei	יומח			
	Weekly means - CRPSS heka- heka											
	● Pos. sign.		s. not sign Hem.		•	Neg. sign. Neg. not sign. Tropic						
	w	w2	w3	w4		w1	w2	w3	w4			
tp	•	•	•	•		•	•	•	•			
t2m			•	•		•	•	•	•			
sten	ıр ·		•	•		+	•	•	•			
sst								•	•			
mslp	•	•		•		•	•	•	•			
t50		•	•	•		•	•	•	•			
u50		•	•			1		•				
v50		•	•	•			•	•	•			
sf20	0 ·	•	•	•		•	•	•	•			
vp20	• 00	•	•	•		+	•	•	•			
t200	•	•	•	•		•	•	•	•			
u200	• 0	•	•	٠.		•	•	•	•			
v200	•	•	٠	٠.		•	•	•	•			
z500	•	•	•	1		÷.,	•	•	•			
t500	•	•	•	•		•	•	•	•			
u500	• 0	•	•	•		•	•	•	•			
v500	•	•	•	•		•	•	•	•			
t850	•	•	•	•		•	•	•	•			
u850	• 0	•	•	•		•	•	•	•			
v850	• 0	•	•	•		•	•	•	•			

Impact of increase of ensemble size

Tropical storm strike probability week 4 forecast Start date:7/1/2021 – verification 1-7 Feb. 2021

50+1 members

48r1 Implementation timeline

For more information and further updates "watch"

https://confluence.ecmwf.int/display/FCST/Implementation+of+IFS+Cycle+48r1

NOAA

Cycle 48r1: Delivering an operational 9 km medium-range global ensemble!

20200913 00 UTC + 41 h EUROPEAN CENTRE FOR MEDIUM-RANGE WEATHER FORECASTS