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Abstract12

One of the most important components of an atmospheric radiation scheme is its treatment of gas13

optical properties, which determines not only the accuracy of its radiative forcing calculations14

fundamental to climate prediction, but also its computational cost. This paper describes a free15

software tool ‘ecCKD’ for generating fast gas-optics models by optimally dividing the spectrum16

into pseudo-monochromatic spectral intervals (known as k-terms) according to a user-specified17

error tolerance and the range of greenhouse-gas concentrations that needs to be simulated. The18

models generated use the correlated k-distribution method in user-specified bands, but can also19

generate accurate ‘full-spectrum correlated-k’ models that operate on the entire longwave or near-20

infrared parts of the spectrum. In the near-infrared, the large spectral variation in cloud absorp-21

tion is represented by partitioning the parts of the spectrum where gases are optically thin into22

2–6 sub-bands, while allowing k-terms for the optically thicker parts of the spectrum (where clouds23

and surface reflectance are less important) to span the entire near-infrared spectrum. Candidate24

models using only 16 and 32 k-terms in each of the shortwave and longwave are evaluated against25

line-by-line calculations on clear and cloudy profiles. The 32-term models are able to accurately26

capture the radiative forcing of varying greenhouse gases including CO2 concentrations span-27

ning a factor of 12, and heating rates at pressures down to 1 Pa.28

Plain Language Summary29

A crucial component of atmospheric computer models used to make climate projections30

and weather forecasts is the ‘gas optics scheme’, which represents the interaction of sunlight and31

infrared radiation with greenhouse gases. This paper describes a free software tool ‘ecCKD’ that32

uses a number of novel techniques to generate new gas optics schemes that are computationally33

faster than most existing schemes while still being very accurate. For example, the schemes are34

able to simulate variations in carbon dioxide concentration spanning a factor of 12 and methane35

concentration spanning a factor of 10. Users of ecCKD can generate schemes that are optimized36

for specific applications, such as short-term weather forecasting or simulating past climates. A37

special focus has been placed on the near-infrared part of the solar spectrum to ensure that the38

schemes work well when computing the interactions of sunlight simultaneously with gases and39

clouds, important to ensure that the impact of clouds on weather and climate is well simulated.40

1 Introduction41

Perhaps the most fundamental part of a climate model is the gas-optics module of its ra-42

diation scheme; in fact, one of the most influential (and indeed Nobel-prize-wining) studies of43

the climatic impact of increased greenhouse gases used a climate model consisting of little more44

than a radiation scheme coupled to a convective-adjustment scheme (Manabe and Wetherald, 1967).45

The correlated k-distribution (CKD) method (Goody et al., 1989; Lacis and Oinas, 1991) has emerged46

as the leading technique for treating the radiative effects of gases that is fast enough to use in 3D47

weather and climate models. Many models still use older alternatives; DeAngelis et al. (2015)48

reported a large spread in the magnitude of the near-infrared (NIR) water vapor feedback amongst49

14 climate models, but those using the CKD method were found to be much the most accurate50

compared to benchmark line-by-line (LBL) radiation calculations.51

CKD models are very time consuming to develop from scratch, so when writing a new ra-52

diation scheme one must usually incorporate one of the small number of off-the-shelf models,53

even though it may not be optimized for ones particular application. The perceived high com-54

putational cost of radiation schemes has spurred numerous ideas to accelerate them, such as re-55

placement of the radiation scheme (or only its gas-optics component) by a neural network (e.g.56

Ukkonen et al., 2020), or sub-sampling of model columns (Barker et al., 2021). The computa-57

tional cost of a radiation scheme scales with the number of pseudo-monochromatic calculations58

(hereafter referred to as ‘k-terms’ or spectral intervals) required to represent the entire spectrum,59

which is determined by the gas-optics scheme. Along with several other modeling centers, the60

European Centre for Medium-Range Weather Forecasts (ECMWF) uses the ‘RRTMG’ (Rapid61
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Radiative Transfer Model for General Circulation Models; Mlawer et al., 1997) CKD gas-optics62

model, which employs 112 terms in the shortwave and 140 in the longwave. However, there is63

a significant variation; Hogan et al. (2017) reported that the number of k-terms in seven global64

weather forecast models spanned more than a factor of 3.7. This leads us to ask: what is the min-65

imum number of k-terms that a CKD model needs while still being sufficiently accurate for weather66

and climate applications?67

This paper describes the ECMWF free-software tool ‘ecCKD’, which allows users to gen-68

erate CKD models tailored for their own applications. We aim to adopt some of the best features69

of CKD models reported in the literature. For example, Edwards and Slingo (1996) described70

a radiation scheme that is flexible in the sense that the spectral discretization and gas optical prop-71

erties are configured at run-time by a spectral file. Their use of the concept of ‘equivalent extinc-72

tion’ put additional constraints on the calculations required by the downstream solver such that73

the spectral file was, in practice, only compatible with the Edwards and Slingo (1996) radiation74

scheme. We use a self-describing netCDF file that consists of little more than a set of look-up75

tables, one per gas. While these files can be read by ECMWF’s ‘ecRad’ radiation scheme (Hogan76

and Bozzo, 2018), it would in principle be straightforward to interface them to other radiation77

schemes.78

The CKD method works by grouping non-contiguous parts of the spectrum, where the gaseous79

optical properties are similar, into a single pseudo-monochromatic spectral interval. One of the80

most interesting developments to the original CKD technique is the full-spectrum correlated-k81

(FSCK) approach (e.g. Modest and Zhang, 2002), based on the insight that for clear-sky radia-82

tive transfer, the parts of the spectrum grouped together in one interval can be very separated in83

wavelength, thus dispensing with the need for bands. Since fewer bands leads to fewer intervals84

overall, this is a powerful way to reduce computational cost. The FSCK idea has been prototyped85

for atmospheric applications in the shortwave (Pawlak et al., 2004) and longwave (Hogan, 2010).86

The ecCKD tool is capable of producing CKD models using either traditional bands or treating87

the whole spectrum in a single band. It can also produce hybrid models to address the challenge88

posed by the large spectral variation in surface albedo and cloud optical properties in the NIR.89

The classical CKD method involves reordering the absorption spectra separately for dif-90

ferent atmospheric conditions (pressure, temperature and H2O concentration) and assuming per-91

fect rank correlation between these spectra, implicitly allowing radiation to change wavelength92

as it traverses the atmosphere. We prefer each spectral interval of a CKD scheme to correspond93

to a unique set of wavelengths, independent of height, an approach taken by, for example, Ben-94

nartz and Fischer (2000), Hogan (2010) and Doppler et al. (2014). This has sometimes been re-95

ferred to as the uncorrelated k-distribution method, although we prefer to consider this as a vari-96

ant of the CKD method since its accuracy still relies on the high correlation of absorption spec-97

tra at each height, even though perfect rank correlation is not assumed. By reporting the spec-98

tral mapping in the spectral file, the optical properties of clouds and aerosols can be averaged ac-99

curately to each spectral interval. Furthermore, by allowing optical properties to be specified in100

individual spectral intervals, rather than only in bands, we overcome the challenge identified by101

Lu et al. (2011) that the optical properties of clouds and water vapor are correlated within a band.102

The paper is organized as follows. The steps of the method are described in section 2, and103

are illustrated via the production of two candidate CKD models in the shortwave and two in the104

longwave. Section 3 evaluates these models using independent LBL calculations for 50 indepen-105

dent clear-sky atmospheric profiles, and in section 4 the models are evaluated in cloudy skies.106

2 Method107

2.1 Overview108

The ecCKD tool performs a sequence of tasks shown in Fig. 1, each of which is config-109

urable by the user. Rather than computing atmospheric absorption spectra from scratch, ecCKD110

takes as input pre-computed absorption spectra from the Correlated K-Distribution Model Inter-111
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Figure 1. Flowchart illustrating the steps of the ecCKD method (white boxes), which make use of the large

CKDMIP datasets of Hogan and Matricardi (2020) and store intermediate information in smaller netCDF files

(light grey boxes), ultimately producing a look-up table (LUT) file for use in a radiation scheme. ‘MMM’

refers to the CKDMIP dataset containing the median, minimum and maximum profiles from a much larger

database.

comparison Project (CKDMIP; Hogan and Matricardi, 2020), performing LBL radiation calcu-112

lations on them as needed. The datasets are described in section 2.2, and the representation of113

gases in section 2.3. The user specifies the bands to be used (section 2.4), within which the spec-114

tra are reordered separately for each gas (section 2.5). Sections 2.6 and 2.7 describe how each115

band is partitioned into spectral intervals, also known as k-terms or g-points, according to a user-116

specified error tolerance. Section 2.8 then describes how an initial set of gas-absorption look-up117

tables (LUTs) is created for each gas and each k-term, which constitutes a functioning but pos-118

sibly inaccurate CKD model in the form of a file that can be used to configure the gas optical prop-119

erties in a radiation scheme. The subsequent steps then refine these LUTs; in the shortwave the120

absorptions are scaled so as to produce an exact profile of direct irradiances for each k-term for121

one particular representative atmosphere (section 2.9). In both the longwave and shortwave, a122

number of optimization steps are performed to refine the LUT coefficients in order to minimize123

the errors in irradiances and heating rates for a set of training profiles (section 2.10).124

2.2 Data125

The ecCKD tool makes use of the CKDMIP LBL spectral absorption dataset described by126

Hogan and Matricardi (2020), appropriate for the terrestrial atmosphere. The gases considered127

are H2O, O3, O2, N2, and the well-mixed greenhouse gases (WMGHGs) CO2, CH4, N2O, CFC-128

11 and CFC-12. Except for H2O, the molar absorption of all these gases can be considered in-129

dependent of their concentration, so a very wide range of climate scenarios can be considered130

by simply scaling the absorptions. According to Meinshausen et al. (2017), these five WMGHGs131

represent 94.5% of anthropogenic greenhouse warming in terms of longwave radiative forcing132

since 1750, and a further 38 more minor gases (representing the remaining 5.5% of radiative forc-133
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ing) can be adequately represented by using an increased ‘equivalent’ concentration of CFC-11.134

This approach is common in the various phases of the Coupled Model Intercomparison Project135

given that most or all climate-model radiation schemes are unable to represent all 43 WMGHGs136

listed by Meinshausen et al. (2017). However, there is no reason why other gases could not be137

added to ecCKD if LBL calculations were performed to provide additional absorption spectra138

in the appropriate format.139

As described by Hogan and Matricardi (2020), the spectral resolution of the dataset is vari-140

able, being finest in the strong absorption bands of CO2 because at mesospheric altitudes the CO2141

lines are only Doppler broadened and thus become very narrow. This results in a total of 7 211 999142

spectral points in the longwave and 3 126 494 in the shortwave. The resolution of the dataset in143

terms of pressure, temperature and H2O mole fraction is given in section 2.8, and the total vol-144

ume is around 1 TB.145

2.3 Gas representation146

Ultimately, a CKD model produced by ecCKD computes molar absorption coefficient ki147

(the absorption cross section per mole of all gases) in spectral interval i at pressure p and tem-148

perature T as the sum of the contribution from m gases, as follows:149

ki(p,T,ψ1 · · ·ψm) = k0
i (p,T ) +

l∑
j=1

k j
i (p,T )ψ j

+

n∑
j=l+1

k j
i (p,T,ψ j)ψ j +

m∑
j=n+1

k j
i (p,T )× (ψ j − ψ

ref
j ), (1)

where ψ j is the mole fraction of gas j. The four terms on the right-hand-side represent the four150

different ways that gases can be represented. The first is the background term, a 2D look-up ta-151

ble representing the combined contribution from all gases with a constant, pre-defined mole frac-152

tion. For a model intended for climate simulations, this would typically include only O2 and N2,153

but for a CKD model targeting present-day NWP we could include the contribution from WMGHGs.154

The fact that the LUT includes a dependence on pressure means that a pressure dependence of155

the concentration of these gases can be represented (e.g. as shown in Fig. 2 of Hogan and Ma-156

tricardi, 2020). The second term represents gases 1 to l, whose absorption varies linearly with157

mole fraction; in this case k j
i is the molar absorption coefficient of gas j, i.e. the absorption cross-158

section per mole of the gas. The third term represents gases l+1 to n whose absorption varies159

nonlinearly with concentration; in this case a 3D LUT is used for molar absorption coefficient,160

with an additional dependence on the mole fraction of the gas in question. In the terrestrial at-161

mosphere only H2O is in this category, and the representation here allows the contribution from162

the water vapor continuum (both self and foreign) to be treated completely with no need to sep-163

arate the line and continuum contributions to the absorption, as is done by many existing CKD164

models.165

The fourth term in (1) has what we refer to as a relative-linear dependence of absorption166

on mole fraction: a ‘reference’ mole fraction, ψref
j , is defined for the gas, typically the mean sur-167

face present-day concentration. The absorption by present-day concentrations of the gas is then168

folded into the background term, while the fourth term represents the additional absorption due169

to perturbations (which may be negative) of concentrations from ψref
j . This approach is useful170

for some minor greenhouse gases where one k-term may be approximating a large range of ab-171

sorptions, resulting in the transmittances behaving as if the dependence of k j
i on φ j is not perfectly172

linear. We have not found it necessary to use a full nonlinear treatment for these gases (as for H2O),173

but the relative-linear term can be thought of as a linearization around the present-day concen-174

tration.175

It is up to the user which of the four representations to use for each gas, and the choice de-176

pends particularly on what range of greenhouse-gas concentrations will need to be simulated by177

the target CKD model. The example models generated in this paper are intended to simulate the178
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climate scenarios proposed by Hogan and Matricardi (2020). In both the shortwave and longwave,179

we represent O2 and N2 absorption by the background term, CO2 and O3 absorption as linear terms,180

H2O as a nonlinear term, and CH4 and N2O as relative-linear terms. In the longwave, CFC-11181

and CFC-12 are represented by linear terms, while in the shortwave they are neglected (see Ta-182

ble 4 of Hogan and Matricardi, 2020). If ecCKD were to be applied to an extraterrestrial atmo-183

sphere then the choice of gases and how to represent them would need to be reconsidered, and184

if processes such as collision-induced absorption were important then in principle an additional185

term could be added to (1) representing absorption dependent on the concentration of two dif-186

ferent gases.187

2.4 Band selection188

The selection of bands is entirely specified by the user, while the partitioning of each band189

into k-terms is automated. Many CKD models select band boundaries in order to minimize the190

number of absorbing gas species in a band, to ensure that the assumption of random overlap of191

gas absorption is valid, or to cap the error due to assuming the Planck function to be constant across192

each band. Since ecCKD is not subject to these limitations (any number of gases can be handled193

with arbitrary overlap, and the Planck function is computed exactly for each k-term), the choice194

of bands is driven by (1) the need to represent spectral variations of the properties of clouds, aerosols195

and the surface, and (2) the needs of downstream users for irradiances in specific bands. The mod-196

els generated are given names of the form ecCKD-B-N, where B is the name of the band struc-197

ture and N is the total number of k-terms.198

In the longwave, the radiative effect of clouds is dominated by a fairly narrow range of wave-199

lengths in the infrared atmospheric window. We therefore hypothesize that adequate accuracy200

can be achieved without the use of bands, i.e. treating the entire longwave spectrum as a single201

band (the ‘FSCK’ band structure), provided that the optical properties of clouds are computed202

separately per k-term. This is verified a posteriori in section 4, where we also evaluate an ecCKD203

model generated with the ‘Narrow’ 13-band structure suggested by Hogan and Matricardi (2020).204

In the shortwave there are multiple concerns that suggest the need for bands, as illustrated205

in Fig. 2. We first define a ‘Window’ band structure with 19 bands (delimited by the vertical black206

lines) suitable for reference calculations in an atmospheric model, and then describe a simpler207

structure that exploits more of the efficiencies possible with ecCKD. From the point of view of208

gases, the important line absorption occurs almost entirely at wavelengths longer than 0.625 µm209

(wavenumbers less than 16 000 cm−1). At shorter wavelengths, continuum absorption and Rayleigh210

scattering dominate, and since these tend to vary monotonically with wavelength, the k-terms se-211

lected automatically by ecCKD in this range tend to span contiguous ranges of wavelength and212

therefore behave exactly as bands. From the perspective of Numerical Weather Prediction (NWP)213

and reanalysis applications, there are several specific bands that are useful for downstream prod-214

ucts, and it is preferable to specify them manually rather than leave ecCKD to place k-terms at215

arbitrary locations in wavelength. Photosynthetically Active Radiation (PAR) is a common prod-216

uct consisting of the surface downwelling irradiance in the range 0.4–0.7 µm. In order to gen-217

erate real-color imagery (similar to that produced by Lopez, 2020), this is further split at 0.5 and218

0.6 µm to define red, green and blue bands. The ecCKD tool works in wavenumber rather than219

wavelength, with shortwave bands specified to the nearest 50 cm−1, so the exact boundaries are220

at wavenumbers of 14 300, 16 650, 20 000 and 25 000 cm−1. The solar energy in each of these221

is shown in Fig. 2. The ‘Window’ band structure also uses 7 fine ultraviolet (UV) bands of width222

500 cm−1 (around 5 nm) for online calculation of UV index. For more specialist applications,223

additional bands could be considered such as finer visible bands for modeling of marine biology224

(e.g. Ciavatta et al., 2014) or additional UV bands for computing photolysis rates. The NIR part225

of the shortwave spectrum consists of a sequence of windows in the gas absorption within which226

the albedo of clouds and the surface tends to step down when moving to longer wavelengths. Since227

ecCKD imposes no constraints on the number of active gases in each band, we align the ‘Win-228

dow’ band structure to the location of the windows in order to best resolve the very large vari-229

ation in cloud and surface albedo.230
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Figure 2. Spectral features of surface and atmosphere informing shortwave band selection. The shading

indicates the zenith transmittance of the CKDMIP ‘median’ atmosphere due to both all gases (including

Rayleigh scattering) and H2O only. The red and dark blue lines depict the albedo of semi-infinite liquid and

ice clouds with effective radii of 10 and 30 µm, respectively, the latter assuming optical properties for the

Baum et al. (2014) ‘General Habit Mixture’. The cyan and green lines depict the albedo of fine snow and

vegetation (Acacia tree) from the ASTER dataset. The vertical lines delimit the 19 bands of the ‘Window’

band structure discussed in the text, the bar at the top showing the fraction of incoming solar energy in most

of them.

For faster radiation calculations, which is the primary focus of this paper, we define the sim-231

pler ‘RGB’ band structure consisting of the red, green and blue bands as above, but merging the232

UV and NIR each into single bands. Treating the entire NIR (wavelengths longer than around233

0.7 µm) in a single band is essentially the FSCK approach taken by Pawlak et al. (2004), but it234

would clearly be a poor approximation to treat clouds and surface properties as spectrally con-235

stant in this region. Therefore, ecCKD offers the capability to use ‘sub-bands’, which we demon-236

strate in section 2.7 and evaluate in cloudy skies in section 4: only parts of the NIR gas-absorption237

spectrum that are optically thin enough for clouds and the surface to be important are partitioned238

into sub-bands, while the wavenumbers corresponding to optically thick parts of the spectrum239

are treated as a single band.240

2.5 Reordering the spectrum241

The longwave and shortwave parts of the spectrum are considered separately. The first task242

shown in Fig. 1 is to reorder the spectrum of each gas in order of increasing absorption within243

each band. We seek a unique mapping independent of height, and therefore aim to sort the high-244

resolution CKDMIP spectra in terms of the approximate height of the peak cooling in the long-245

wave and peak heating in the shortwave. We use the ‘median’ atmosphere from the CKDMIP246

‘MMM’ dataset, which is described by Hogan and Matricardi (2020) and contains the profiles247

of the median, minimum and maximum temperature, H2O and O3 from the 25,000-profile dataset248

of Eresmaa and McNally (2014). This is combined with present-day (2020) greenhouse gas con-249

centrations. In the longwave we follow a method very similar to that proposed by Hogan (2010):250

for each gas a LBL radiative transfer calculation is performed with all other gas concentrations251

set to zero and an idealized profile of temperature increasing linearly with the logarithm of pres-252

sure from −100◦C at 0.01 hPa to +15◦C at 1000 hPa; this ensures that the height of the peak cool-253

ing varies monotonically with the strength of the absorption, which is not guaranteed with a more254

realistic temperature profile. Sorting is in order of the height of peak cooling rate. This method255

fails for low column optical depths, τ, where heating rate peaks at the surface, so when τ < 0.5256
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we sort by τ instead. In the shortwave a simpler approach is taken: the spectra are ordered by the257

height at which the optical depth from top-of-atmosphere (TOA) reaches 0.25, which is the height258

at which direct radiation for a solar zenith angle of 60◦ will have fallen to around 60% of the TOA259

value. The accuracy of the final CKD model is fairly insensitive to the exact value of threshold260

optical depth; we find that changing it to 0.5 has a negligible effect on the results. Figure S1 in261

the Supporting Information depicts NIR H2O molecular absorption versus cumulative probabil-262

ity at different pressure levels, and illustrates that, despite imperfect rank correlation of the ab-263

sorption spectra between levels, the procedure above ensures that at a particular pressure the ab-264

sorption coefficients are most accurately reordered for the wavenumbers that contribute most to265

the solar heating at that pressure.266

The result of the reordering is written into a spectral-order file for each gas, containing the267

integer rank r of each wavenumber point. Suppose the entire spectrum contains N discrete wavenum-268

bers indexed 1 to N, and a particular band corresponds to wavenumbers indexed m to n. The ranks269

rm to rn will consist of the integers m to n but reordered. In the following sections we follow pre-270

vious authors and introduce a coordinate variable for the reordered spectrum, g. In ecCKD, this271

simply maps the integer ranks for the bands to the range 0–1, i.e. an element of the reordered spec-272

trum with integer rank r in a particular band would have g(r) = (r − rm)/(rn − rm).273

2.6 Partitioning g space for individual gases274

The next step shown in Fig. 1 is to partition each band into k-terms, each corresponding275

to a fixed set of wavenumber points. In a radiation scheme, each k-term would be treated by an276

independent quasi-monochromatic radiative transfer calculation, so generally more terms cor-277

respond to a more accurate but more computationally costly scheme. We use a refined version278

of the algorithm described by Hogan (2010): first the spectrum is partitioned separately for each279

gas in each band (described in this section), then the partitions for each gas are merged taking280

account of the spectral overlap of gases (described in section 2.7).281

For each gas and band we need to find the number of intervals, n, into which g space (de-282

fined in the previous section) is to be divided, and their boundaries g0, g1 · · · gn, with the upper283

and lower bounds already defined as g0 = 0 and gn = 1. Most previous papers require the user284

to specify n and define the boundaries according to a fixed mathematical rule such as Gaussian285

Quadrature (e.g. Kato et al., 1999), but this is not adaptive to the spectra of individual gases. In286

ecCKD, the user provides a single error tolerance, and the tool attempts to partition g space such287

that the error associated with each g interval is approximately equal to this tolerance. The smaller288

the tolerance, the more g intervals will be needed and a greater overall accuracy should be achieved.289

The appendix describes a general algorithm for partitioning g space given a function E(gi−1, gi)290

that returns the error associated with treating the wavenumbers corresponding to the range gi−1291

to gi by a single quasi-monochromatic radiation calculation. This function is similar to a cost func-292

tion in estimation theory, and following Hogan (2010) is formulated as the mean squared error293

in heating rate over l layers, but with an additional term (weighted by f ) penalizing errors in sur-294

face and TOA irradiances:295

E(gi−1, gi) =

l∑
j=1

w j
(
HCKD

j − HLBL
j

)2

+ f
[(

FCKD
↑TOA − FLBL

↑TOA

)2
+
(
FCKD
↓surf − FLBL

↓surf

)2
]
, (2)

where HCKD
j and HLBL

j are the heating rates predicted by the ecCKD and line-by-line models in296

layer j, while F↑TOA and F↓surf are the upwelling irradiance at TOA and the downwelling irradi-297

ance at the surface, respectively. In order to weight the stratosphere and troposphere on an ap-298

proximately equal basis, we follow Hogan (2010) and weight the vertical profile by the square-299

root of pressure, i.e. the weight term is given by w j = (p1/2
j+1/2− p1/2

j−1/2)/p1/2
l+1/2, where p j+1/2300

is the pressure at the interface between layers j and j + 1, and pl+1/2 is the surface pressure.301
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Since this function is called multiple times by the algorithm described in the appendix, it302

cannot be too computationally costly, so partitioning is performed using only a single profile. For303

temperature and the concentration of the target gas, we again use the ‘median’ present-day CK-304

DMIP atmosphere. The partitioning needs to account for the presence of other gases, which can305

dominate in some parts of the spectrum. This tends to reduce the error associated with represent-306

ing the target gas and therefore reduces the number of g intervals required, but depends on the307

concentration of these other gases. We use the minimum concentration of these gases that the CKD308

model is intended to simulate. For H2O and O3 we use the ‘minimum’ concentration profile from309

the CKDMIP MMM dataset. The minimum concentrations of the WMGHGs depends on what310

application the CKD model is to be used for. For a CKD model to be used solely in NWP, it is311

appropriate to simply use present-day concentrations for the WMGHGs. For simulation of past312

and future climate, we use the ‘Glacial Maximum’ values proposed by Hogan and Matricardi (2020),313

i.e. the minimum concentrations found in the last million years.314

In the longwave, the LBL radiative transfer calculation is performed with the present-day315

concentration of the target gas and the ‘minimum’ concentrations of all other gases, and when316

the function E(gi−1, gi) is called, the LBL terms in (2) are computed simply by summing the LBL317

spectral irradiances from the wavenumbers corresponding to the requested range of g. A single318

zenith angle is used in each hemisphere, equivalent to the two-stream method but without scat-319

tering. The ‘CKD’ terms in (2) are computed by first averaging the optical depths of the target320

gas across the wavenumbers corresponding to the requested range of g, but retaining the full spec-321

tral resolution for the other gases. This way (2) quantifies the error purely associated with ap-322

proximating the target gas. The user can select the method used to average the optical depths of323

the target gas, the default being a linear average of the layer transmittances weighted by the Planck324

function at the temperature of the layer.325

In the shortwave, the radiative transfer calculations are limited to the direct (unscattered)326

solar beam, which contains almost all of the sensitivity to gas absorption, and reduces compu-327

tational cost. Thus, the upwelling terms in (2) are omitted and the heating rates consider only heat-328

ing by the direct beam. Optical depths are averaged weighting by the TOA incoming solar spec-329

tral irradiance, which following Hogan and Matricardi (2020) is taken to be the 1986–2018 av-330

erage of the Coddington et al. (2016) climate data record.331

Shortwave partitioning includes the option to use sub-bands in the NIR, as introduced in332

section 2.4. Since H2O dominates in the NIR, this can be achieved by dividing H2O alone into333

sub-bands. Each of the high-resolution spectral points in the NIR band has both a wavenumber334

and a g value indicating the H2O absorption strength in the NIR region. The spectral points with335

g < gcrit, where gcrit is some user-specified critical value, are deemed to be optically thin enough336

that sub-bands are needed, so these points are further grouped according to their wavenumber337

into user-specified sub-bands, although within the sub-bands the ordering by g is preserved. For338

g ≥ gcrit, H2O is optically thick enough that no grouping by wavenumber is needed. This is il-339

lustrated graphically at the end of the next section.340

2.7 Partitioning g space for multiple gases341

After each of the gases have had their reordered spectra partitioned into intervals in g space,342

they are combined to obtain a final set of k-terms. This is achieved using the ‘hypercube parti-343

tion method’ of Hogan (2010): for m active gases in a particular band we consider an m-dimensional344

unit hypercube where dimension j represents the g space for gas j. Figure 3a provides a visu-345

alization of two of these dimensions (corresponding to H2O and CO2) for the entire longwave346

spectrum, where each red dot represents an individual wavenumber. To generate an FSCK model,347

our task is to divide this space up into subregions (rectangles in the 2D case), each representing348

a k-term, such that the wavenumber points that lie within the subregion are treated together in349

a single quasi-monochromatic radiative transfer calculation. Consider the case where the error350

tolerance chosen in section 2.6 leads to the following numbers of g intervals for each gas: nH2O =351

14, nCO2 = 12, nO3 = 5, nCH4 = 3 and nN2O = 2. If we defined a k-term as the intersection of352
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Figure 3. Scatterpot of the entire (a) longwave and (b) near-infrared spectra, where each point corresponds

to a wavenumber in the high-resolution LBL dataset, and the axes show the normalized rank (g) of the CO2

and H2O absorption for that wavenumber as defined in section 2.5. The scales are linear for g < 0.9 and

g > 0.9999, and logarithmic in 1 − g in the range 0.9 < g < 0.9999. The equivalent pressures of peak

heating and cooling for atmospheres containing only one gas are shown to the top and right of each axis. The

numbered rectangles indicate the k-term into which the wavenumbers are grouped for the ecCKD-FSCK-32

longwave model and the near-infrared band of the ecCKD-RGB-32 shortwave model, where missing numbers

correspond to k-terms specializing in gases other than CO2 or H2O. Panel c shows how points with weak gas

absorption in the lower-left rectangle in panel b are allocated to 12 k-terms, grouped into five sub-bands in

order to resolve spectral variations in cloud, aerosol and surface properties.

a single g interval from each gas, the number of k terms required would be the product of the num-353

ber of g intervals: 5040 in this case, far too many for a weather or climate model. Hogan (2010)354

described an automated procedure to optimally partition the hypercube, which recognises that355

usually the absorption of one gas dominates over all the others. For example, the red points to-356

wards the right of Fig. 3a represent wavenumbers for which CO2 absorption is much stronger than357

H2O, and therefore there is no need to resolve variations in H2O absorption. In this algortihm,358

the first k-term (numbered 1 in Fig. 3a) consists of the intersection of the first g interval for each359

gas, i.e. the weakest absorption. The remaining k-terms are assigned in order of the approximate360

pressure level of their peak heating or cooling, and each correspond to one of the remaining g361

intervals for one of the gases, thereby ‘specializing’ in that gas. For example, terms 11, 15 and362

16 specialize in CO2, although it should be stressed that the (weaker) contribution to the absorp-363

tion from other gases is still included via (1). Note that the missing numbers in Fig. 3a represent364

terms specializing in other gases that exist outside the plane depicted in this 2D slice; for exam-365

ple, term 2 is for O3 and term 8 is for CH4. If the number of intervals required to partition g space366

for gas j is n j, then the number of k-terms required for m gases is ntotal = 1 +
∑m

j (n j − 1),367

which is 32 in the case in Fig. 3a. The method supports arbitrary spectral overlap of the spectra368

of individual gases, and is an improvement on the approach of Ritter and Geleyn (1992), which369
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(a) Longwave ecCKD-FSCK-16 model
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(b) Shortwave ecCKD-RGB-16 model
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(c) Longwave ecCKD-FSCK-32 model
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(d) Shortwave ecCKD-RGB-32 model
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Figure 4. The contribution of each part of the spectrum to each k-term in four of the CKD models con-

sidered in the text. The fractions sum to unity along each row. The main gas represented by each k-term is

indicated on the right-hand-side of each panel, although in principle all gases can contribute to the optical

depth for all k-terms. The first (least optically thick) k-term in each band or sub-band is marked ‘All’ since its

boundaries are determined by all gases.

requires ntotal = 1+
∑m

j n j terms and makes the assumption that the spectra of individual gases370

are randomly overlapped. The reader is referred to Hogan (2010) for a more detailed description371

of the hypercube partition method, and a visualization of the partitioning in the 3D case.372

Figure 4c illustrates the contribution of each part of the longwave spectrum to the k-terms373

of the ecCKD-FSCK-32 model described above, with the gas it is specializing in shown on the374

right. The ‘full-spectrum’ nature of this CKD model is clear from widely separated parts of the375

spectrum being represented by single quasi-monochromatic k-terms; for example, term 28 rep-376

resents strong CO2 absorption from both the 4.3 µm and the 15 µm CO2 bands. Vectorization and377

computational efficiency favor ntotal being a power of two, so we have chosen the error tolerances378

to obtain 16 or 32 k-terms.379

The 32-term shortwave model in Fig. 4d is very different. The vertical black lines delin-380

eate the user-specified ‘RGB’ bands explained in section 2.4. The partitioning algorithm finds381

that only one k-term is required for each of the red, green and blue bands, and only four for the382

entire ultraviolet. Terms 30 and 31 each combine the effects of similar levels of O3 absorption383

on opposite sides of the Hartley band, which peaks at around 40 000 cm−1. The partitioning of384

the NIR band is visualized in Fig. 3b, and as explained in section 2.6, the intersection of 0 <385

gH2O < gcrit with the weakest-absorbing g interval for all the other gases (light blue in the fig-386

–11–



manuscript submitted to Journal of Advances in Modeling of Earth System

ure) is treated separately, where a user-specified value of gcrit = 0.7 has been chosen in this case.387

As shown in Figs. 3c and 4d, these wavenumbers are grouped into sub-bands at the additional388

wavenumber partitions of 5350, 7150, 8700 and 10650 cm−1 (bounding most of the NIR win-389

dows in Fig. 2). Each sub-band is then partitioned into g intervals using the algorithm in the pre-390

vious section, resulting in k-terms 1–12 that are able both to resolve spectral variations in clouds391

and the surface, and to represent variable H2O absorption. The k-terms 13–25 represent regions392

of strong H2O absorption (g ≥ gcrit) or strong absorption by one of the other gases. The ecCKD-393

RGB-16 shortwave model in Fig. 4b takes the same approach but with reduced k-terms via the394

use of gcrit = 0.65 and only one additional wavenumber partition at 7150 cm−1.395

2.8 Creating initial look-up table396

This step creates a first estimate of the LUTs in (1) using the ‘Idealized’ CKDMIP dataset,397

and indeed we use the same points (described in section 3.3 of Hogan and Matricardi, 2020): 53398

logarithmically spaced points in pressure from 0.007 to 1100 hPa with 10 points per decade; 6399

points in temperature, 20 K apart; and 12 logarithmically spaced points in H2O mixing ratio with400

2 points per decade. As shown in Fig. 1, the creation of the LUT involves reading in the loca-401

tion of the k-terms, i.e. a file containing the indices of the wavenumber points in the high-resolution402

spectrum that contribute to each term. The layer optical depths in the Idealized dataset for the403

relevant wavenumber points are averaged to each k-term separately for each gas, weighting by404

the local Planck function in the longwave and the solar spectral irradiance in the shortwave. As405

in section 2.6, the default averaging method is linear in layer transmittance for a zenith angle of406

60◦. The minimum and maximum values from the relevant wavenumber points are also stored407

and used to bound the possible values in the optimization step described in section 2.10. The fi-408

nal step in the creation of the LUT is to convert from layer optical depth to molar absorption co-409

efficient as used in (1).410

The LUT file contains additional variables that are added at this point and remain unchanged411

by the subsequent steps shown in Fig. 1. The fraction of the spectrum contributing to each k-term412

(i.e. the information shown in Fig. 4) is provided to enable subsequent averaging of cloud, aerosol413

and surface properties to k-terms, with a resolution of 10 cm−1 in the longwave and 50 cm−1 in414

the shortwave. In the longwave we provide the Planck function for each k-term as a LUT ver-415

sus temperature between 120 and 350 K at 1 K intervals, computed by simply integrating the Planck416

function over the wavenumber points contributing to each k-term. In the shortwave we provide417

the solar spectral irradiance for each k-term. Also provided is the Rayleigh molar scattering co-418

efficient, computed for each wavenumber using the Bucholtz (1995) formula and averaged across419

the parts of the spectrum contributing to each shortwave k-term weighted by the solar spectral420

irradiance.421

2.9 Scaling shortwave look-up table entries422

At this point, the LUT entries have been computed only from consideration of the spec-423

troscopy at the local pressure level, and do not necessarily perform well in radiative transfer travers-424

ing multiple levels. One of the reasons for this in the shortwave is that each k-term represents the425

average of a range of absorption strengths that are highly correlated in the vertical. As the so-426

lar beam traverses the atmosphere, radiation in the more optically thick parts of the spectrum is427

attenuated more rapidly. This means that lower in the atmosphere the optically thick parts are less428

important and the effective average molar absorption coefficient for the k-term should be lower429

than the one computed weighting by the TOA solar spectral irradiance, as in section 2.8. A sim-430

ilar effect occurs in the longwave, so in both parts of the spectrum non-local effects need to be431

considered in order to derive the optimum LUT entries. This section describes the first part of432

this refinement in the shortwave, while section 2.10 describes a subsequent more general opti-433

mization performed in both the shortwave and longwave.434

For a single atmospheric profile of temperature, pressure and gas concentrations, it is pos-435

sible to derive a profile of layer optical depths for each k-term that reproduces the LBL profile436

–12–



manuscript submitted to Journal of Advances in Modeling of Earth System

of direct-beam shortwave irradiance exactly, for a particular value of the cosine of the solar zenith437

angle µ0. If we define Fj+1/2 as the LBL direct irradiance at the interface between layers j and438

j+1 (counting down from TOA) integrated over the parts of the spectrum corresponding to an439

individual k-term, then the Beer-Lambert law states that Fj+1/2 = Fj−1/2 exp(−τ j/µ0). This can440

be inverted to obtain τ j, the effective optical depth of layer j.441

In the ‘scale LUT’ step in Fig. 1 we take this approach using the ‘median’ present-day pro-442

file from the CKDMIP ‘MMM’ dataset and µ0 = 1/2, yielding a profile of τ j values for each443

k-term. The same values are computed using the ecCKD v0 LUT, and the ratio of the LBL and444

ecCKD optical depths is calculated to provide a correction factor that varies with pressure and445

k-term. The correction factor is then interpolated to the pressure grid of the LUT and all the mo-446

lar absorption coefficients in the file are multiplied by it, producing v1 of the LUT. We have made447

some significant assumptions here: that the absorption of all gases should be modified by the same448

proportion, and that the correction factor does not vary with the other dimensions of the LUT (tem-449

perature and H2O mixing ratio). Nonetheless, shortwave radiative transfer calculations using the450

v1 LUT are significantly more accurate than v0, and there is still the opportunity (described in451

the following section) for a global optimization of all the coefficients in the LUT.452

2.10 Optimizing look-up table entries453

The final task is to optimize the coefficients of the LUTs in order to minimize the errors454

in predicted irradiance and heating-rate profiles in a set of training profiles in a least-squares sense.455

The need for this step in terms of non-local dependencies was explained at the start of section456

2.9, but it also tunes the coefficients to mitigate any errors caused by simplifications in the for-457

mulation of the CKD model. For example, (1) assumes that the average optical depths from each458

individual gas in a k-term can be simply summed, whereas Zhang et al. (2003) argued that a more459

complex formulation was necessary (including much narrower bands) to treat non-random spec-460

tral overlap in the parts of the spectrum contributing to a k-term. We find that this complexity and461

additional cost is unnecessary if the coefficients can be optimized as described in this section.462

We improve the basic method of Hogan (2010) in a number of ways. As shown in Fig. 1,463

the optimization may be performed in several steps, as we have found that better performance464

is achieved if the major gases are optimized first, with minor gases being optimized individually465

in subsequent steps. We define the state vector x to contain all the variables to be optimized in466

one of these steps, specifically the natural logarithm of all the non-zero entries in the look-up for467

each gas being optimized. With 53 points in pressure, 6 in temperature, 12 in H2O concentra-468

tion and (for example) 32 k-terms, this leads to 122 112 state variables for H2O and 10 176 for469

each other gas. The cost function to be minimized is given by470

J = (x− xa)
TB−1(x− xa) +

p∑
j=1

E j. (3)

The first term ensures the stability of the minimization by penalizing the squared differences be-471

tween the state vector and the a priori LUT elements xa, i.e. those from the previous step in Fig.472

1. The error covariance matrix B provides a complete description of the weighting of this term,473

with its diagonal elements containing σ2
a, the square of the user-specified root-mean-squared (RMS)474

error in xa. We find the best results for σa = 8 in the longwave and σa = 2 in the shortwave,475

allowing the natural logarithm of the LUT elements to stray significantly from their prior values476

in the optimization, although in practice the RMS difference between the elements of x before477

and after optimization for an individual gas is around 0.25. The off-diagonal elements of B spec-478

ify error covariances between LUT values, and have the important effect of spreading informa-479

tion provided by the training profiles into adjacent parts of the LUT. We model the error corre-480

lation coefficient of adjacent LUT coefficients along the pressure, temperature and H2O-concentration481

axes as ρ, and coefficients n steps apart along these axes as ρn. No correlation is assumed between482

k-terms or gases. Even though B is large, its inverse is very sparse and the first term in (3) is ef-483

ficient to compute. Empirically we find that ρ = 0.8 provides the best results.484
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The second term in (3) expresses the sum of the squared errors in heating rates and irra-485

diances at TOA and the surface over p atmospheric profiles, where E j has the same form as in486

(2) but rather than penalize errors for individual g intervals, we penalize errors in both broadband487

values and (when FSCK is not being used) in individual bands, with the weighting between the488

two under user control. In practice, broadband irradiances are improved by some compensation489

of errors between bands, but without the irradiance in individual bands being noticeably com-490

promised.491

The cost function is minimized using the quasi-Newton ‘L-BFGS’ algorithm of Liu and492

Nocedal (1989), which requires the vector of gradients ∂J/x to be computed. This is achieved493

by coding the entire algorithm in C++ using the combined automatic differentiation, array and494

optimization library ‘Adept’ (Hogan, 2014), version 2.1 of which also includes an implementa-495

tion of the L-BFGS algorithm. We use a bounded version of L-BFGS, constraining the individ-496

ual absorption coefficients in x to lie between the minimum and maximum possible values com-497

puted in section 2.8. An optimization step typically takes several tens of minutes to complete.498

Naturally, for a CKD model to be used in climate projections we wish to calculate not only499

the most accurate profiles of irradiances and heating rates, but also the radiative forcing associ-500

ated with perturbations to both major and minor greenhouse gases. Unfortunately, if all gases are501

optimized simultaneously, the scheme tends to adjust minor gases to try to offset errors in ma-502

jor gases. This problem can be overcome via several separate optimization steps as shown in Fig.503

1, first for the major gases and then the minor. We acknowledge that the multi-step approach is504

somewhat ‘ad hoc’ and there is scope to improve it in future versions of the software, but as will505

be shown in section 3, it does produce models that can accurately compute radiative forcing.506

In the case of CKD models targeting climate applications (such as those depicted in Fig.507

4), the first step optimizes the coefficients of H2O, O3, CO2 and the background term in (1). The508

background term represents not only O2 and N2, but also the present-day ‘reference’ concentra-509

tions of CH4 and N2O, with these gases all treated at this stage as having a constant mixing ra-510

tio with pressure. The training data consist of LBL calculations performed on the 50 ‘Evaluation-511

1’ CKDMIP profiles (covering a wide range of temperature, H2O and O3 concentrations), each512

of which is used with six CKDMIP CO2 scenarios (surface concentrations from 180 to 2240 ppmv),513

i.e. a total of 300 profiles. In practice, the effectiveness of the optimization is limited by how well514

the training profiles span parameter space, and with only 50 base profiles, the error covariance515

matrix is key for spreading information. This is why steps to improve the initial LUT, such as516

the scaling described in section 2.9 are important despite the optimization afterwards.517

In the second step the coefficients of CH4 are optimized using LBL calculations on the CK-518

DMIP scenarios in which CH4 is perturbed from 350 to 3500 ppbv. To avoid the CH4 coefficients519

being tuned to correct for remaining errors in the previous step, we train on the difference in heating-520

rate profiles and irradiances between perturbed and present-day CH4 calculations, which is equiv-521

alent to bias-correcting the present-day CKD calculations from the previous step. This ensures522

the CH4 coefficients are optimized to give the most accurate radiative forcing when perturbed523

from present-day concentrations. The third step takes exactly the same approach but optimizes524

the N2O coefficients training on the Evaluation-1 profiles in which concentrations are perturbed525

in the range 190–540 ppbv. In the shortwave this yields the ‘final’ LUT ready for use in a radi-526

ation scheme. In the longwave we perform one further step to optimize the coefficients of CFC-527

11 and CFC-12.528

3 Clear-sky evaluation529

In this section we evaluate the gas-optics models generated in the previous section in clear530

skies. The CKDMIP Evaluation-2 dataset is used, which consists of LBL calculations on 50 in-531

dependent profiles, including ones with extremes of temperature, ozone and humidity. Surface532

longwave emissivity and shortwave albedo are spectrally constant at 1.0 and 0.15, respectively,533

the latter being the approximate mean albedo of the Earth’s surface. This approach is the same534
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Figure 5. Evaluation of clear-sky longwave irradiances and heating rates from two ecCKD models for

the 50 independent profiles of the CKDMIP Evaluation-2 dataset with present-day concentrations of the

WMGHGs. Panels a, d and g show quantities from the reference LBL calculations, while panels b, e and h

show the corresponding biases in the ecCKD calculations using an identical radiative transfer solver with four

angles per hemisphere. The shaded regions encompass 95% of the errors (estimated as 1.96 multiplied by

the standard deviation of the error). Panels c and f depict instantaneous errors in upwelling TOA and down-

welling surface irradiances. The statistics of the comparison are summarized in the lower right, including the

root-mean-squared error (RMSE) in heating rate (weighted by the cube-root of pressure) in two ranges of

pressure indicated by the horizontal dotted lines in panel h.

as that of Hogan and Matricardi (2020) to evaluate the RRTMG gas-optics model, except that they535

used the CKDMIP Evaluation-1 dataset.536

Figure 5 evaluates the performance of the longwave ecCKD-FSCK-16 and -32 models, for537

present-day greenhouse gas concentrations. Even though relatively few k-terms are used com-538

pared to other CKD models, the errors are small; the root-mean-squared (RMS) error in heating539

rates from the surface to the upper stratosphere (4 hPa) is only 0.15 and 0.11 K d−1 for the 16-540

and 32-term models, respectively, approximately doubling in the mesosphere. Figure S2 eval-541

uates these models before the optimization step described in section 2.10, and the much larger542

errors highlight the importance of the optimization.543
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Figure 6. Comparison of reference LBL and ecCKD calculations of the instantaneous longwave clear-sky

radiative forcing from perturbing each of the five WMGHGs from their present-day (2020) values at (a–e) top

of atmosphere and (f–j) the surface, averaged over the 50 profiles of the CKDMIP Evaluation-2 dataset. The

black circles correspond to scenarios 5–22 proposed by Hogan and Matricardi (2020).

Figure 6 evaluates the instantaneous radiative forcing associated with perturbing the five544

main greenhouse-gas concentrations from their present-day values. Note that the CFC-11 con-545

centrations here correspond to artificially increased values to approximately represent 38 further546

greenhouse gases (Meinshausen et al., 2017). In large part, both models capture the forcing as-547

sociated with large perturbations to concentrations, including up to eight times preindustrial con-548

centrations of CO2. The 16-term model performs slightly worse in some scenarios, tending to549

underestimate the magnitude of the surface forcing associated with reducing CO2 concentrations550

to glacial-maximum values of 180 ppmv, as well as struggling with the extreme CH4 concentra-551

tions. As can be seen in Figs. 4a and 4c, the improvement of the 32-term model for CH4 can be552

attributed to its use of two CH4-specific k-terms, rather than just one.553

Figure 7 presents the corresponding present-day evaluation of irradiances and heating rates554

for the shortwave ecCKD-RGB-16 and -32 models. Again, the errors are modest given the small555

number of k-terms, with the RMS error in heating rates from the surface to 4 hPa being 0.1 and556

0.06 K d−1 for the 16- and 32-term models, respectively. The much larger mid-mesosphere heating-557

rate error for the 16-term model is associated with its poorer representation of the 4.3 µm CO2558

band; Figs. 4b and 4 show that it used only three CO2-specific k-terms, compared to five for the559

32-band model. This also explains the difference in how well the two models capture the short-560

wave CO2 forcing shown in Fig. 8. This figure also indicates that the CH4 forcing in the two mod-561

els is similar; in fact neither model uses CH4-specific k-terms, but rather includes the optical-depth562

contribution of CH4 in all the other k-terms. The 16-term model also has no N2O-specific k-terms563

and Fig. 8 shows that this leads to it tending to overestimate the N2O forcing by around a fac-564

tor of two (although the magnitude of the shortwave forcing of this gas is only a tenth of the long-565

wave). The 32-term model introduces a single N2O-specific k-term and is able to achieve a much566

greater accuracy. The Supporting Information provides an evaluation of earlier versions of these567

models just after being initially created (Fig. S3) and after the scaling step described in section568

2.9 (Fig. S4), highlighting the importance of both the scaling and optimizations steps. Figure S5569

evaluates the performance of individual bands of the final ecCKD-RGB-32 model, confirming570

that the weighting of broadband irradiance in the optimization does not compromise the accu-571

racy of individual bands.572
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Scenario: Present-day (2020)

CKD model: ecCKD-RGB-32

Bias TOA upwelling: -0.27 W m
-2

Bias surface downwelling: -0.20 W m
-2

RMSE TOA upwelling: 0.32 W m
-2

RMSE surface downwelling: 0.75 W m
-2

RMSE heating rate (0.02-4 hPa):  0.130 K d
-1

RMSE heating rate (4-1100 hPa):  0.057 K d
-1

Figure 7. Similar to Fig. 5 but for the shortwave. The reference LBL calculations in panels a, d and g are

for all 50 CKDMIP Evaluation-2 profiles at five values of the cosine of the solar zenith angle, µ0 (0.1, 0.3, 0.5,

0.7 and 0.9). The subsequent evaluation considers all 250 combinations. The five clusters of points in panels c

and f correspond to the five values of µ0.

To explore the trade-off between efficiency and accuracy, Fig. 9 depicts the biases and RMS573

errors in TOA and surface irradiances, as well as heating rates, for CKD models generated with574

between 8 and 64 k-terms. Naturally the errors tend to decrease with more terms, although be-575

yond around 32 terms the improvement is only very modest. Similar behaviour was reported by576

Hogan (2010) for atmospheres containing single gases, which he hypothesized to be due to im-577

perfect rank correlation of the spectra at different heights. This implies we have hit the funda-578

mental limit of the correlated-k method, at least for the FSCK and RGB band structures. It is also579

noticeable how much larger the errors in surface irradiances (both bias and RMS error) are when580

evaluating against independent data rather than against the training data used for the optimiza-581

tion step. This suggests the training dataset is not large enough to tightly constrain all corners582

of the LUT, and for this reason when generating CKD models to use in the ECMWF model we583

train on both CKDMIP datasets (‘Evaluation-1’ and ‘Evaluation-2’).584

4 Cloudy-sky evaluation585

As discussed in section 2.4, clouds, aerosols and the surface can exhibit significant spec-586

tral variations in optical properties. One of the features of ecCKD is that each k-term has a unique587
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Figure 8. As Fig. 6 but for the instantaneous shortwave radiative forcing by CO2, CH4 and N2O. The

results for the five solar zenith angles have been averaged, so the values shown here represent a daytime

average.

Table 1. Summary of the properties of the two atmospheric profiles used to evaluate the representation

of liquid and ice clouds in section 4. Both are taken from the CKDMIP dataset. The size distribution of the

liquid cloud was modeled as a gamma distribution with a shape parameter of 2.

Profile Liquid cloud Ice cloud

Cloud effective radius 10 µm 30 µm
Cloud pressure range 726.6–907.1 hPa 184.5–404.6 hPa
Optical properties Mie theory Baum et al. (2014)
Origin Evaluation-2 profile 29 Evaluation-1 profile 28
Location 31.4◦S, 3.5◦W 38.9◦N, 25.6◦W
Date and time 19 March 2014, 18 UTC 11 March 2014, 00 UTC
Surface pressure 1017.4 hPa 1021.6 hPa
Surface temperature 22.2◦C 14.7◦C

mapping to specific parts of the spectrum (see Fig. 4), and this mapping is available to downstream588

applications (such as the ecRad radiation scheme) so that optical properties can be averaged sep-589

arately for each k-term. Nonetheless, the use of the FSCK approach means that individual k-terms590

can represent widely separated points in the spectrum. In this section we test the impact on the591

accuracy of calculations of the radiative effect of liquid and ice clouds, using two real-world pro-592

files from the CKDMIP dataset, summarized in Table 1. Each cloudy layer of the the original pro-593

file has been divided into 10 and the relative humidity increased to 100%. Twenty-six LBL cal-594

culations have been performed on each profile, for water paths ranging from 10−4 to 10 kg m−2
595

(plus an additional clear-sky calculation), with a vertically constant cloud mixing ratio between596

two pressure bounds. The optical properties of liquid clouds are computed using Mie theory at597

396 wavenumbers from 5 to 50 000 cm−1, while the ice properties are taken from the Baum et al.598

(2014) ‘General Habit Mixture’ available at 445 wavenumbers between 101 and 50 251 cm−1.599

When used in LBL calculations, the mass-extinction coefficient, single scattering albedo and asym-600

metry factor are interpolated linearly in wavenumber space, but clamped when used at wavenum-601

bers outside the range provided. The radiative transfer calculations use a no-scattering solver in602
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Figure 9. Various metrics of the accuracy of ecCKD models as a function of the number of k-terms for (top

row) longwave FSCK models and (bottom row) shortwave models, as evaluated using (dashed lines) 900 pro-

files used as part of the training (i.e. the 50 CKDMIP ‘Evaluation-1’ profiles with greenhouse gases perturbed

in 18 CKDMIP scenarios), and (solid lines) an indendent set of profiles (i.e. the 50 CKDMIP ‘Evaluation-2’

profiles with the same greenhouse gas scenarios). ‘RMSE’ denotes root-mean-squared error. The shortwave

models use the ‘RGB’ band structure except for the 8-term model which uses only two bands on either side

of 16000 cm−1. The number of sub-bands used in the NIR band of the RGB models has been chosen to be

commensurate with the overall accuracy of the scheme; thus the 12-term model uses does not use sub-bands,

the 16-term model uses two, the 20- and 24-term models use three, those with 28–40 terms use five and the

48- and 64-term models use six.

the longwave, and the two-stream method with a solar zenith angle of 60◦ in the shortwave, both603

from the CKDMIP software package. The plane-parallel approximation is adopted, i.e. clouds604

are taken to be horizontally uniform with a cloud fraction of unity.605

The equivalent ecCKD calculations use a version of the ecRad offline radiative transfer pack-606

age that supports ecCKD gas-optics models, and a radiative transfer solver equivalent to that used607

for the LBL calculations. Cloud optical properties are computed by averaging the same Mie and608

Baum et al. (2014) data according to the parts of the spectrum corresponding to each individual609

k-term (as shown in Fig. 4). Following the approach of Edwards and Slingo (1996), we consider610

both ‘thin’ and ‘thick’ spectral averaging. The former is appropriate in the optically thin limit611

and simply involves averaging of the mass-extinction coefficient, the mass-absorption coefficient,612

and averaging asymmetry factor weighted by scattering coefficient. The latter is more appropri-613

ate in the optically thick limit and is intended to provide the exact cloud albedo in the limit of614

infinite optical depth (although in practice it is not exact in this limit except in the absence of gas615

absorption). For a little extra accuracy, we apply delta-Eddington scaling (Joseph et al., 1976)616

before performing the spectral average. A further weighting is used in the averaging to approx-617

imately represent the energy at each wavenumber; in the longwave we use the Planck function618

at a representative atmospheric temperature of 0◦C and in the shortwave at an effective solar tem-619

perature of 5777 K. In the longwave, no benefit was found from using a different reference tem-620

perature for liquid and ice clouds. Of primary interest is the accuracy of the fast FSCK and RGB621
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Figure 10. Error in cloud radiative effect (CRE) due to spectral discretization of RRTMG and the vari-

ous ecCKD models, for a low-level liquid cloud with effective radius 10 µm in Profile 29 of the CKDMIP

Evaluation-2 dataset. Panel a depicts the longwave cloud radiative effect (i.e. the change to net irradiance

due to cloud) at top-of-atmosphere (TOA) and the surface as a function of LWP, for the LBL calculations.

Panels b and c depict the error in these quantities for the various CKD models, and for thin and thick spectral

averaging. Panels d–f show the same but in the shortwave with a solar zenith angle of 60◦. Panel g shows the

‘cloud absorption effect’, i.e. the absorption by the entire atmosphere, and by the cloud layer alone, minus the

corresponding clear-sky absorptions. Panels h and i show the error in these quantities for the CKD models.

models with 16 and 32 k-terms, which we compare to results from the longwave ecCKD-Narrow-622

64 and shortwave ecCKD-Window-64 models, which use much narrower bands (see section 2.4623

and Fig. S6). Also shown will be results from the RRTMG gas-optics model (140 k-terms in the624

longwave and 112 in the shortwave) using the same cloud optical properties, but since no infor-625

mation is available on the exact wavenumbers used for each of its k-terms, the optical properties626

are averaged to its 16 longwave and 14 shortwave bands.627

Figure 10a depicts the LBL calculations of ‘true’ longwave cloud radiative effect at TOA628

and the surface for the liquid-cloud profile versus water path, with the error in these quantities629

for various gas-optics models shown in Figs. 10b and 10c. The errors for all models are less than630

2 W m−2. The cCKD-Narrow-64 model performs best, although the errors associated with the631

two FSCK models are still small, being up to around 5% for ecCKD-FSCK-16 and 2% for ecCKD-632

FSCK-32. Naturally, the use of narrow bands enables the spectral variation of cloud optical prop-633
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erties to be represented, but it is nonetheless surprising how well the FSCK models perform when634

they consider the entire longwave spectrum in a single band. This is because (as revealed by the635

LBL calculations shown in Fig. S7) over 92% of the radiative effect of this cloud at the surface636

and TOA is in the 8–13 µm (769–1250 cm−1) longwave atmospheric window, within which the637

variation of cloud optical properties is quite modest, and certainly much less than in the NIR. Out-638

side the longwave atmospheric window, clouds make a much weaker contribution to longwave639

cloud radiative effect either because of the much stronger gas absorption or the much weaker Planck640

function. The top row of Fig. 11 shows the equivalent evaluation for the ice cloud profile, where641

the errors for all longwave gas-optics models are even less, both in an absolute and a relative sense,642

due to ice particles having less variation in their optical properties than liquid droplets across the643

longwave spectrum (see Fig. S8). Figures S9 and S10 show good performance in longwave heat-644

ing profiles for all models. Overall, these results indicate that the longwave FSCK method is a645

viable approach for use in weather and climate models, although further work would be required646

to confirm this result in very dry atmospheres where windows open in the far infrared, and where647

spectral variations in surface emissivity may also become important.648

The middle row of Fig. 10 depicts the equivalent evaluation but in the shortwave where the649

magnitude of the radiative effect of low clouds is much larger. The best performing models are650

clearly ecCKD-RGB-32 and ecCKD-Window-64 using ‘thick’ averaging, with errors of no more651

than 1 W m−1 (0.4%) for any value of liquid water path. This provides a posteriori justification652

for the use of five NIR sub-bands in Fig. 4d, bounded at the points shown in Fig. 2 where cloud653

optical properties tend to change most rapidly. The ecCKD-RGB-16 model incurs a larger er-654

ror due to its employing only two sub-bands. The result for ice clouds in the middle row of Fig.655

11 show the most accuracy for ecCKD-Window-64 and slightly less for ecCKD-RGB-32 and RRTMG.656

Figures 10e and 11e suggest that for all gas-optics models the most accurate calculations are achieved657

using thick rather than thin spectral averaging, except for ice clouds with IWC less than around658

0.03 kg m−2 where thin averaging is slightly more accurate.659

The bottom rows of Figs. 10 and 11 consider the effect of the cloud on shortwave absorp-660

tion, both by the entire atmosphere and by the cloud layer alone. Again, the ecCKD-Window-661

64 and ecCKD-RGB-32 models with thick averaging performs best, although Figs. S9 and S10662

show that the latter is poorer at simulating the vertical profile of shortwave absorption. An in-663

teresting features of Fig. 11g is that the effect of the ice cloud is to increase shortwave absorp-664

tion in the cloud layer itself, as would be expected, but to reduce absorption overall by reflect-665

ing sunlight that would otherwise have been absorbed by gases lower in the atmosphere. Thus,666

the sign of the impact of the cloud on whole-atmosphere absorption is dependent on two com-667

peting effects, and while the absolute magnitude of the errors shown in whole-atmosphere and668

cloud-layer absorption (Figs. 11h and 11i) are similar, the relative error in the latter is much larger;669

indeed, the ecCKD-RGB-16 model with thin averaging predicts that the effect of the ice cloud670

on atmospheric absorption is to increase rather than to decrease it.671

5 Conclusions672

In this paper, we have introduced a free software tool ‘ecCKD’ for generating fast correlated-673

k-distribution (CKD) gas-optics models for use in the radiation schemes of atmospheric mod-674

els. The CKD models generated are both accurate and efficient, needing considerably fewer k-675

terms than most others in the literature. This is achieved via the use of algorithms to optimally676

partition the k distribution for each gas, and to optimize the look-up table coefficients for each677

gas in order to minimize errors against hundreds of training profiles (extending the approach of678

Hogan, 2010). In the shortwave, the introduction of ‘sub-bands’ enables the full-spectrum correlated-679

k (FSCK) approach to treat the entire NIR as a single band, while still enabling the large spec-680

tral differences in cloud and surface albedo to be resolved.681

The tool has been demonstrated by generating and testing CKD models with only 16 and682

32 k-terms in each of the shortwave and longwave, i.e. nearly a factor of 8 and 4 times fewer, re-683

spectively, than the total number used operationally at ECMWF. When evaluated against inde-684
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Figure 11. As Fig. 10 but for an ice cloud with an effective radius of 30 µm in Profile 28 of the CKDMIP

Evaluation-1 dataset.

pendent data, the 32-term models are shown to be very accurate in clear skies, with RMS heating-685

rate errors of less than 0.18 K d−1 from the troposphere to the mid-mesosphere. The radiative686

forcing of the main anthropogenic greenhouse gases is captured accurately, including CO2 vary-687

ing over a factor of 12 and CH4 over a factor of 10. The 32-term models have been found to per-688

form well when run online in the ECMWF forecast model, to be explored in a future paper. The689

16-term models are naturally somewhat less accurate, but would be suitable for short forecasts690

such as 12-hour forecasts performed repeatedly in a data-assimilation cycle in which efficiency691

is paramount.692

We have used LBL calculations for profiles containing liquid and ice clouds with a large693

range of water contents to verify the accuracy of the FSCK approach in cloudy situations. In the694

longwave, provided that cloud properties are averaged over each k-term rather than per band, er-695

rors in irradiances calculated using the 32-term model are less than 0.7 W m−2, an important demon-696

stration of the viability of the longwave FSCK approach for cloudy terrestrial atmospheres. In697

the shortwave, the use of sub-bands in the NIR gives the 32-term ecCKD model comparable ac-698

curacy to RRTMG but using only 25 rather than 78 terms in the NIR. A 64-term shortwave ec-699

CKD model with an explicit band for each NIR window and a total of 48 terms in the NIR is found700

to be considerably more accurate than either RRTMG or the 32-term ecCKD model in cloudy701

skies.702
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The tool described in this paper offers a number of opportunities for users of radiation schemes.703

Principally, it allows optimized CKD models to be generated for specific applications, from present-704

day NWP to palaeoclimate simulations of periods when atmospheric composition was very dif-705

ferent. Moreover, the fact that the CKD models generated tend to be faster while of similar ac-706

curacy to existing models frees up computer time to improve the accuracy of other parts of the707

radiation scheme, such as the use of more than two streams (e.g. Fu et al., 1997), inclusion of 3D708

effects (e.g. Hogan et al., 2016), and calling the scheme more frequently in time and space (e.g.709

Hogan and Bozzo, 2018). Additionally, the use of a simple look-up table to compute optical depths710

(Eq. 1) makes it straightforward to incorporate the CKD models into different types of radiation711

scheme, including explicit 3D solvers (e.g. Jakub and Mayer, 2016). It would also be possible712

to add the capability for ecCKD to generate CKD models suitable for satellite data assimilation713

by simply replacing (2) by a cost function that penalizes only errors in TOA radiances.714

Appendix A Equipartition algorithm715

Section 2.6 outlined the partitioning of a reordered spectrum into intervals such that each716

interval was associated with around the same mean-squared error in a radiation calculation, and717

less than a user-specified tolerance Etol. The 1D space to be partitioned is denoted g and ranges718

from 0 to 1. We seek the boundaries of n intervals, denoted g0, g1 · · · gn, such that the following719

two conditions are satisfied:720

E(gi−1, gi) ≤ Etol for all i; (A1)
F ≤ Ftol, (A2)

where the error E(gi−1, gi) is a non-differentiable user-supplied function, and the second con-721

dition states that the fractional range of errors, F = [max(E)−min(E)]/Ē, should be no larger722

than the user-supplied tolerance Ftol, typically 0.02. In our case, E(gi−1, gi) is given by (2) and723

involves LBL calculations with a computational cost proportional to the width of the interval gi−724

gi−1. Therefore, a good partitioning algorithm should not require an excessive number of cal-725

culations of E, especially ones for wide g intervals. We are not aware of an off-the-shelf algo-726

rithm for performing this partitioning, so this appendix describes our solution to the problem. While727

it is not likely to be the fastest possible algorithm, it almost always converges to a solution that728

satisfies the conditions above.729

The first task is to find the number of intervals required, n, in order that condition (A1) is730

satisfied. This is achieved by partitioning g space starting at the lower end such that for each in-731

terval (except possibly the last), 0.95Etol ≤ E ≤ Etol. We start with a test value of g1 = 0.75732

and compute E(0, g1), noting that there is a lower bound on g1 of 0 where E(0, 0) = 0. If the733

result is less than 0.95Etol then a new lower bound for g1 has been found, and the next test value734

is selected by extrapolating (but not beyond g1 = 1) from the old and new lower bounds to where735

we would expect E(0, g1) = Etol assuming a linear variation of E with g1. On the other hand,736

if E(0, g1) > Etol then an upper bound for g1 has been found, and the next test value is found737

by linearly interpolating between the lower and upper bounds on g1. The new test value is used738

to compute E(0, g1) and the process is repeated until either 0.95Etol ≤ E ≤ Etol, or g1 = 1739

and E ≤ Etol. If there is remaining g space to partition then the process is repeated to compute740

g2 and so on, until the process returns gn = 1. We now know how many intervals are required,741

and have candidate values for gi, but usually the error associated with the final interval, E(gn−1, 1),742

is significantly less than all the other errors.743

The second task is to find the interior boundaries of the intervals (g1, g2 · · · gn−1) such that744

condition (A2) is satisfied. Note that the outer boundaries are already fixed at g0 = 0 and gn =745

1. In the simple case of n = 2 we have only a single value to find, g1; it is straightforward to746

progressively refine this value until (A2) is satisfied. In the more general n > 2 case, we use747

the candidate values of gi from the first task above to compute the cumulative error as748

C(gi) =

i∑
j=1

E(g j−1, g j). (A3)
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A new set of candidate values g′i is found by attempting to repartition the total error, C(1), evenly749

amongst the n intervals. This is achieved by using linear interpolation into the C function to com-750

pute the g′
i values such that C(g′i) = iC(1)/n. The errors are recomputed and the process is re-751

peated until (A2) is satisfied. If at any iteration the fractional range F increases then the itera-752

tion is not successful and instead a ‘shuffle’ step is performed. This consists of looping through753

adjacent pairs of intervals and adjusting the g point between them until their errors agree to within754

2%. Thus, for intervals 1 and 2 we adjust g1 until E(g0, g1) and E(g1, g2) satisfy (A2), then do755

the same for intervals 2 and 3 and so on up to intervals n−1 and n, followed by a pass back down756

to intervals 1 and 2. This is usually enough that subsequent partitioning iterations using (A3) lead757

to a reduction of F . Any further shuffle operations proceed in the opposite direction through g758

space as the previous one.759
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