UNIVERSITY OF TWENTE.

Rooting satellite observations in land-atmosphere exchange processes

Z. (Bob) Su z.su@utwente.nl

https://research.utwente.nl/en/persons/bob-su

with contributions from Y. Zeng, H. Zhao, Y. Wang, L. Yu, J. Hofste, J. Wen+ (CUIST), Y. Ma+ (ITP/CAS)

in collaboration with P. de Rosnay, G. Balsamo (ECMWF), M. Ek (NCAR), P. Ferrazzoli (UR), M. Schwank (ETH), Y. Kerr (CESBIO), A. Cilliander (JPL)

FACULTY OF GEO-INFORMATION SCIENCE AND EARTH OBSERVATION

Digital Twin Earth – Observation Operator & Dynamic Model components

STEMMUS-SCOPE: Modeling integrated Photochemistry, Biochemistry and Transfer of Energy, Mass and Momentum in the Soil-Vegetation System

(Wang et al., 2021, GMD)

Water, Heat and Carbon fluxes and Optical-Thermal RT + Canopy Photochemistry

Simulation of Evapotranspiration

(Daily ET: (L) Maize at Yangling station; (R) Grassland at Vaira Ranch Fluxnet site)

Half-hourly transpiration (T), gross primary production (GPP), top of canopy solarinduced fluorescence (SIF) and leaf water potential (LWP) at Yangling station

What information does SIF carry on GPP and LWP? SIF: top of canopy solar induced fluorescence, GPP: Gross Primary Production, LWP: leaf water potential (DOY 199, Yangling station)

Rooting satellite observations in land-atmosphere exchange processes by considering plant hydraulics in water-soil-roots-leaves-atmosphere system

STEMMUS-SCOPE links energy, water & carbon processes to EO OPT/SIF/TIR observables (Wang et al., 2021, GMD)

Simulate/Retrieve States/Parameters/Fluxes with S-2, S-3, LSTM, CHIME, FLEX + MSG/MTG

UNIVERSITY OF TWENTE.

Rooting satellite observations in land-atmosphere exchange processes by considering the interface of **Air-To-Soil transition**

scientific data

Explore our content \checkmark Journal information \checkmark

nature > scientific data > data descriptors > article

Data Descriptor | Open Access | Published: 30 September 2020

Multiyear in-situ L-band microwave radiometry of land surface processes on the Tibetan Plateau

Z. Su 🖾, J. Wen 🖾, Y. Zeng, H. Zhao, S. Lv, R. van der Velde, D. Zheng, X. Wang, Z. Wang, M. Schwank, Y. Kerr, S. Yueh, A. Colliander, H. Qian, M. Drusch & S. Mecklenburg

CLAPµw - Microwave observations of land-atmosphere exchange processes (Community Land Active Passive Microwave Simulator)

An Integrated Air-Plant-Soil Process Model for Modelling MW Scattering-Emission

ATS-TVG-AIEM-CLM links energy, water & carbon processes to EO MW P/A observables

Simulate/Retrieve States/Parameters/Fluxes with S-1, ROSE-L, CIMR, SMOS/SMAP +ASCAT

> (Zheng et al., 2017, TGRS) (Zhao et al., 2021, JRS)

Simulated T_B^p vs ELBARA-III observed T_B^p during the late-monsoon period (*Base-: AIEM+TVG; ATS-: ATS+AIEM+TVG*)

Simulated T_B^p by the ATS-based models with fixed roughness parameters

(A) late-monsoon period, (B) post-monsoon period (SMOS-CMEM with $h_{SS}/h = 0.77$ and SMAP with $h_{SS}/h = 0.58$)

Seasonal variations of the Maqu ELBARA-III radiometry dataset

Observation simulation of future microwave systems

Towards a Digital Twin Earth – Water-Soil-Plant-Energy Interaction

CONCLUSIONS & OUTLOOK

- Process understanding based on measurements is of primary importance in modeling land-atmosphere exchanges
- Rooting satellite observations in land-atmosphere exchange processes by considering plant hydraulics in water-soil-plant-atmosphere system enables links of energy, water and carbon processes
- Our ability to directly use EO observables is fundamental to explore full potential of EO data
- Success of Digital Twin Earth must consider Observation Operator & Dynamic Process Exchanges
- These are all of essential importance for climate change, water and food security and achieving carbon neutrality

UNIVERSITY OF TWENTE.