

Impact of microwave radiance assimilation over land using dynamic emissivity in the global NWP system of JMA

Keiichi KONDO^{1, 2}, Kozo OKAMOTO², Takeshi IRIGUCHI¹, Hideyuki FUJII³, Hiroyuki SHIMIZU¹, Kazumasa AONASHI⁴

> 1: JMA, 2: JMA/MRI, 3: JAXA , 4: Kyoto University

) 気象庁 Japan Meteorological Agency

4th IESWG on 6 April 2022 1

Motivation

- It is important to estimate land surface emissivity for the radiance assimilation in the NWP systems.
 - The emissivity spatiotemporally varies depending on surface conditions.
- In the current JMA global NWP system, the climatological atlas emissivity is used for the microwave (MW) radiance assimilation over land.
- JMA/MRI is working on applying a dynamic emissivity (DE, Karbou et al. 2006) method to the global NWP system of JMA to reduce uncertainty related to the radiative transfer calculation.
 - The DE method can dynamically estimate the emissivity.
 - Initial implementation of the DE method did not improve forecast scores.
 - Land surface temperature (LST) was additionally estimated by using satellite observations.

Dynamic Emissivity (Karbou et al. 2006)

- Radiative transfer equation under clear sky condition • $T_{b}(\nu,\theta) = T_{s}\varepsilon(\nu,\theta)\Gamma + \{1 - \varepsilon(\nu,\theta)\}\Gamma T_{a}^{\downarrow}(\nu,\theta) + T_{a}^{\uparrow}(\nu,\theta)$
 - Transmissivity: $\Gamma = exp\left\{\frac{-\tau(0,H)}{2}\right\}$ $T_a^{\downarrow}(\nu,\theta)$ $T_a^{\uparrow}(\nu,\theta)$ LST: T_s $T_{s} \varepsilon(\nu, \theta)$ emissivity: $\varepsilon(\nu, \theta)$

 $T_h(\nu, \theta)$: brightness temp. ν : frequency θ : zenith angle T_s : land surface temp. (LST) T_a^{\downarrow} : downwelling T_b T_a^{\uparrow} : upwelling T_b **Γ**: transmissivity

Step1: Estimated land surface temperature (LST) T_s

$$T_{s} = \frac{T_{b}(\nu,\theta) - (1 - \varepsilon_{atlas})T_{a}^{\downarrow}(\nu,\theta)\Gamma - T_{a}^{\uparrow}(\nu,\theta)}{\varepsilon_{atlas}\Gamma} \qquad \qquad T_{s} \text{ is estimated from observed } T_{b}, \text{ atmospheric model variables and monthly mean } \varepsilon_{atlas}.$$

Step2: Estimated emissivity $\varepsilon(\nu, \theta)$

$$\varepsilon(\nu,\theta) = \frac{T_b(\nu,\theta) - T_a^{\downarrow}(\nu,\theta)\Gamma - T_a^{\uparrow}(\nu,\theta)}{(T_s - T_a^{\downarrow}(\nu,\theta))\Gamma} \qquad \qquad \varepsilon(\nu,\theta) \text{ is estimated from observed } T_b \text{ and} \\ \text{atmospheric model variables.} \\ \text{We can use either estimated } T_s \text{ or model} \end{cases}$$

When T_s and ε are estimated simultaneously, different channels are used for them.

气象厅 Japan Meteorological Agency or model $T_{\rm s}$.

Target sensors of DE

23.800 GHz

31.400 GHz

50.300 GHz

52.800 GHz

54.400 GHz

54.940 GHz

55.500 GHz

f0 ± 217 MHz

89.000 GHz

57.290 GHz (=f0)

53.595 GHz ± 115 MHz

 $f0 \pm 322.2 \text{ MHz} \pm 48 \text{ MHz}$

f0 ± 322.2 MHz ± 22 MHz

f0 ± 322.2 MHz ± 10 MHz

 $f0 \pm 322.2 \text{ MHz} \pm 4.5 \text{ MHz}$

H₂O

O₂

02

02

O₂

02

02

02

 O_2

02

02

02

02

window

window

O (sea)

O (sea)

0

Ο

 \bigcirc

Ο

Ο

Ο

Ο

Ο

Ο

- Target sensors : AMSU-A, ATMS ٠
- LST is estimated at 50.3 GHz.
- DE is estimated at 31.4 GHz or 50.30 GHz (Bormann et al. 2017). •

2

3

4

5

6

7

8

9

10

11

12

13

14

15

DE is used at surface-sensitive CHs over land. • CH **Central frequency** Absorption

- 54.40 GHz (ch6)
- 54.94 GHz (ch7)
- ATMS
 - 54.40 GHz (ch7)
 - 54.94 GHz (ch8)

CHs. 4 and 5 are not assimilated over land.

Implementation of DE

• DE is implemented and tested in an experimental system based on the operational system of JMA.

- Impact investigations for DE
 - Monthly mean emissivity_{atlas}(CNTL) vs. DE (TEST1r)
 - Forecast scores were not improved because of the model LST.
 - Replace the model LST with the estimated LST in the DE method (TEST10).
 - 1. LST is estimated with observation brightness temperature using atlas emissivity.
 - 2. DE is calculated by using the estimated LST.

》 気象庁 Japan Meteorological Agency

Experimental settings

- Global NWP system of JMA (operational system as of Dec. 2019)
 - Hybrid 4D-Var
 - Outer model: TL959L100 (20 km)
 - Inner model: TL319L100 (55 km)
- Experiments

Name	Emissivity	LST
CNTL	Monthly mean	Model LST (operational settings)
TEST1r	DE	Model LST based on canopy temperature (LST _{canopy} is corrected to be consistent with MODIS)
TEST10	DE	Estimated from observation

• Period: 10 Jul. 2018 - 11 Sep. 2018

Forecast consistency with obs. and LST

Statistical verification of O-B (AMSU-A ch6, 12 UTC)

- Impact of DE
 - FG is closer to observations over the arid areas.
- TEST1r vs. CNTL
 - FG is degraded in the night due to $LST_{canopy.}$
 - TEST10 vs. CNTL
 - LST_{estimated} improves emissivity, and then the emissivity improves FG.

0.025

degraded

-0.025

Improved

Impact of DE for forecast scores

CNTL vs. TEST1r (DE + LST_{canopy})

CNTL vs. TEST10 (DE + LST_{estimated})

		FT = 1 - 11 day						>				
		NH(N90°-N20°)	TR(20°N-20°S)	SH(20°S-90°S)	JP(110-150,20-50)	NWP(100-180,0-60)		•	NH(N90°-N20°)	TR(20°N-20°S)	SH(20°S-90°S)	JP(110-150,20-50) NWP(100-180,0-60)
Z500	RMSE	<u>.</u>	` ▲ ♦ ▼♦▼▲▲▼♦▼ •	• A • A • • \$		• v 4 v 4 v •		RMSE	A = V V = = A A + = =	• • • • • • • • • • •		
	CC	▲ ▼♦ ▼ • • • ▼ • ▼ •	· · · · · · · · · · · · · · · · · · ·	••• ▲ •• ♦	▼♦■▲▲▼♦♦◦▲	V V A A V V A V V =	Z500	CC	A • V V • • A • A • •	• • • • • • • • • •	- * * \$ * * * * * * * *	
	ME	V A A D D D V D D D D D D D D D D		• ▼▲▼ • ▲♦ • • ▲▲	*****			ME	• • • • • • • • • •	• 🔺 • 🔻 • 📕 🔺 • 🔻 •	V • A V A A A A A A	·
т700	RMSE	•• A	Y ○ ○ ▼ ▼ ○ ▲ ▼ ▼ ▼ ▼	********				RMSE	V • A V • V A • A • •	$\diamondsuit \circ \forall \circ \blacktriangle \circ \blacktriangle \circ \bigstar \circ \forall \circ$	• * * 	▼▼▲▼���▼○○▲ ▼▼○� ■ ▲▲○◆
	CC	• • • • • • • • • • • • • • • • • • • •	V • • V V 	• 🔺 • • • • • • • • • • •	▼■▼■▼▲▲♦▼▲▲		T700	CC	****		• * * * • • * • * *	▼▼○▼���▼○▲▲ ▼○○◆
	ME	A V • V V • • • • • •	▲ • ▲ ▼ • ▼ • • • ▼ •	* • * * • • • * * * *	• * * • • • • * * * *	▲ ♦ ♥ ♥ ● ● ● ● ♥ ♥ ♥		ME	▲▼••••• ↓ ▼•		• • * * * • * * * • •	
	RMSE) • • A • ♦ V V V V		v • v v \$ A v v v • A	v • \$ v v • \$ v v v 		RMSE		• • • • • • • • •	◆◆▲ • • ▲ ▼ • ▲ ▼ •	·
T850	CC	• ▲ • • • • • • • • •	• • A • A • V V •		V • V V A • V V • A	v • \$ v \$ • • • v • 	T850	CC	A • VA • • A A 🔶 A •	V V • A • • V • •	**	· · · · · · · · · · · · · · · · · · ·
	ME	• • • • • • • • • • •	′ • • ▼ ▼ ▲ • ■ ▼ ▼ ♦ ♦	V • A \$ A A • • A • V	V • A • • A • V V V	• v v v v v v e		ME	• ▲ • ▼ ▼ ▼ • ▼ ♦ ▼ •	* * * • * • • * * * *	V · A A A • • A • •	• ▲ ▲ • ▼ ▼ ▼ ▼ ▼ ▼ • ▲ • ▼ ▼ ∲ ▼ • ▼ ▼ • ▲
Ws250	RMSE	• • • • • • • • •	Y = ♦ ▼ ▼ = ▲ ▼ ▼ = =		V V V 0 0 A 0 0 V V	• • • • • • • •		RMSE	• • • • • • • • • • • •			AVAAA = AA = AAAAAV =
	CC	• • • • • • • • • • •	\\\\\\\\\\\\\	◆ ▲▼ ◆ ▼▲ ◆ ▼▼▼▲	• v v • A A • v	$\bullet ~ \forall ~ \forall ~ \bullet ~ \blacktriangle ~ \bullet ~ \forall ~ \blacktriangle ~ \bullet ~ \bullet$	Ws250	CC	• • • • • • • • • •			▲▼ - ▲▲ - ▲▲ ▲▲ ▲▲ = ◆■ ◆▲▲ - • ▲
	ME	• • • • • • • • • • • • • • • •			• • • • • • • • • • •			ME		• • • • • • • • • • • •	▲▲▲ • • • • • ▼ ♦ •	
Ws850	RMSE	• 🔻 • • 🔻 🔺 • 🔶 👻 • •		VAV\$		▲ ▼ ▼ • • ■ • ▼ ♦ ▼ •	Ws850	RMSE	• A V V A • • • • V		V • V V A • \$ • A A A	
	CC	V V • • V 🔺 • 🔤 🔶 • •						CC			V • • • A A V • • A A	· · V · A · · V V V A V A · · V
	ME	A • • • • • • • • • • •		🔶 a a a a 🏘 🗸 a 💼 a a		$\blacktriangle \blacktriangle \circ \forall \circ \forall \circ \circ \diamondsuit \blacktriangle \forall$		ME	• ◆ ▲ ▲ • • • ◆ ▼ ▼ ▼		• • • • • • • • • • • •	
RH700	RMSE	♦ • • ▼			V V AV V • • • • A V		RH700	RMSE			***	
	CC	\$ = = V • • V • • • V	\	V • V A A V V \$ • • •	V V 0 0 A A 0 V	V V • • • • A V V A •		CC	• • • • • • • • • • •		* * * • • • • • * * • *	V = • V V A • • V • • • • • • • • • • • • •
	ME	• • • • • • • • • •	V A V • • • • • A • V	• • • • • • • • • • •	▲ ▼ ▲ = = ▼ ♦ = = = ▼	• V		ME	4 • • • • • • • • • • • • • • •	$\mathbf{\nabla} \circ \circ \circ \mathbf{A} \circ \mathbf{A} \circ \mathbf{A} \mathbf{A} \mathbf{\nabla}$	• • • • • • • • • • •	• v • = A\$v = AA\$\$v = v = *4\$
better (>99%) 🔶 better (>95%) 🔺 better (>68%) 🔹 neutral 👘 worse (>68%) 🍦 worse (>95%) 📲 worse (>99%)												

Yellow : improved Gray : degraded

- CNTL and TEST1r are comparable.
- Forecast scores are degraded around the Japan.

• TEST10 is improved, and better than CNTL and TEST1r.

Improvement of forecast RMSEs (against ECMWF analysis, FT=24 hr)

• Verification at 300 hPa where weighting functions for AMSU-A chs. 6, 7 have a peak.

• Forecasts get close to the analysis of ECMWF which has already implemented the DE.

Observation impact from FSOI

• FSOI: Forecast Sensitivity Observation Impact (Langland and Baker 2004)

- Forecast is improved by assimilating \mathbf{y}_o
 - Observation \mathbf{y}_o reduces forecast error.
- FSOI can quantitatively diagnose observation impact for every observation.
 - FSOI<0: beneficial
 - FSOI>0: non-beneficial

- FSOI is diagnosed by JMA global NWP system without DE in Aug. 2018 (equivalent system of CNTL).
- Globally beneficial impacts.
 - Especially, in the SH the impacts are large.
- Area with non-beneficial impact over the northern Africa corresponds to the area improved by the FDE.
 - This suggests that the non-beneficial impact may be improved by DE.

気象庁 Japan Meteorological Agency

Summary

- The DE method was tested in JMA global NWP system for MW temperature sounders over land to improve analysis and forecast.
 - Impact of DE
 - The FG with DE is closer to the observation.
 - The area improved by DE are the areas with non-beneficial impact of FSOI.
 - Over the arid areas in the night, the FG is degraded due to poor accuracy of LST_{canopy} which would include model bias.
 - To prevent the degradation of FG, LST is also estimated with atlas emissivity.
 - After LST is estimated, the DE is calculated by using the estimated LST.
 - Impact of estimated LST in the DE method.
 - The FG gets closer to the observations at the channels using the DE in the night.
 - In the DE method, the LST is important because the emissivity is calculated by the LST.
 - 24-hr forecast using DE gets consistent with the ECMWF analysis mainly in the northern Africa.
- Future plans
 - QC parameter for precipitation detection over land will be determined using a precipitation product (GSMaP).

THANK YOU VERY MUCH!