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a b s t r a c t 

The choice of gray gas absorption coefficient in the Rank Correlated Spectral Line Weighted-sum-of-gray- 

gases (RC-SLW) model is investigated. Several options are considered for calculating the gray gas absorp- 

tion cross-section from the bounding supplemental absorption cross-sections, including that determined 

by inversion of the F -variable using Gauss Quadratures, the Geometric Mean of the bounding values, the 

Arithmetic Mean, and finally, a value determined from the weighting of the bounding supplemental ab- 

sorption cross-sections using a variable interval fraction f . It is shown that an optimal value of the gray 

gas absorption coefficient can only be determined by accounting for the path length L . However, test 

cases and theoretical confirmation reveal that the Geometric Mean of the bounding supplemental ab- 

sorption cross-sections for the gray gas absorption coefficient is the preferred method. The Geometric 

Mean approach is also nominally twice as fast computationally as the Gauss Quadrature approach used 

in the original RC-SLW model formulation. Therefore, this approach may be viewed as an enhancement 

to the model. 

© 2021 Elsevier Ltd. All rights reserved. 
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. Introduction to SLW correlated methods 

The SLW method in its various forms, the Rank Correlated SLW 

ethod (RC-SLW), the Locally Correlated SLW method (LC-SLW), 

nd the SLW Reference Approach (RA-SLW), are computationally 

fficient global methods for modeling of radiation transfer in non- 

niform gaseous media. Their description and detailed construc- 

ion can be found elsewhere [1–3] . The main idea behind the SLW 

ethod is representation of the continuous gas absorption spec- 

rum by a histogram spectrum with just a few values of absorp- 

ion coefficient (gray gas absorption coefficients) and their weights 

efined by their contribution to the total radiation transfer. Pre- 

iction accuracy using the model depends on the number of gray 

ases used. 

Of the eight possible versions of the correlated SLW model [1] , 

t has been shown that only the RC-SLW spectral model does not 

equire specification of a gas reference thermodynamic state for 

ts construction. Further, the RC-SLW model consists of the fewest 

teps in its construction. However, it was discovered that despite 
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he simplicity, robustness, and accuracy of the RC-SLW model, the 

PU time associated with its application is noticeably higher than 

hat of the RA-SLW and LC-SLW methods [4] . Construction of the 

LW models is based on application of the Absorption-Line Black- 

ody Distribution Function (ALBDF), which is calculated in advance 

rom the high-resolution gas absorption spectrum, and stored in 

abulated form [5] . Both the direct ALBDF and its inverse are used 

n construction of the spectral models. Inversion of the ALBDF 

tored in tabulated form using multi-linear interpolation requires 

bout six times more CPU time than the calculation of the di- 

ect ALBDF. Because the RC-SLW method requires more calcula- 

ions of the inverse ALBDF than other correlated SLW methods, the 

otal CPU time associated with application of the RC-SLW method 

s greater. Discretization into gray gases in the RC-SLW spectral 

odel is based on application of nodes and weights of Gauss- 

egendre integral quadratures. The boundaries of the intervals de- 

ned by the weights and nodes are involved in calculating the lo- 

al absorption cross-sections through inversion of the ALBDF. How- 

ver, because the role of the quadrature weights and the nodes are 

ifferent, modifications of the RC-SLW method are explored here 

hich reduce the number of inversions of the ALBDF, enhancing 

he computational efficiency of the RC-SLW method. The effect of 

hese modifications on the predictive accuracy is also investigated. 

https://doi.org/10.1016/j.jqsrt.2021.107983
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Fig. 1. Construction of the original formulation of the RC-SLW model. 
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onstruction of the RC-SLW model 

SLW correlated methods are based on the assumption of cor- 

elated/comonotonic gas absorption cross-section in non-uniform 

edium [3] . The construction of the spectral model for the RC- 

LW model has been described in detail elsewhere (Solovjov et al., 

017). The details of construction of the original formulation of the 

C-SLW model is shown graphically in Fig. 1 . The sequence of cal- 

ulation steps for determining the gray gas absorption coefficients 

nd corresponding gray gas weights for the RC-SLW model may be 

ummarized as follows: 

1) Define partition of the F -variable for the full range F ∈ [0, 1]

into supplemental reference values: 

˜ F 0 = 0 and 

˜ F j = 

j ∑ 

k =1 

w k (1) 

F j = x j , j = 1 , 2 , ..., n (2) 

here x j > 0 are the positive abscissa (nodes) and w j , j = 1, 2, ...,

 are the corresponding weights of the Gaussian-Legendre quadra- 

ure for integration over the interval [ − 1, 1]. 

2) Determine the local partition of the C -variable by inversion of 

the ALBDF: 

˜ C loc 
j 

= C 
(

˜ F j , φloc , T b 
)
, j = 0 , 1 , ..., n and 

C j = C 
(
F j , φloc , T b 

)
, j = 1 , 2 , ..., n 

(3) 

3) Calculate the local gray gas coefficients: 

κ j = N 

loc Y loc C j , j = 1 , 2 , ..., n (4) 

here N 

loc is the local gas molar density and Y loc is the local gas

ole fraction. 

4) Determine the gray gas weights using the direct ALBDF at the 

local cross-sections ˜ C loc 
j 

: 

a j = F 
(

˜ C loc 
j , φloc , T loc 

)
− F 

(
˜ C loc 

j−1 , φloc , T loc 

)
, j = 1 , 2 , ...n (5) 

5) Finally, solve the local gray gas RTEs for the gray gas intensities 

I j : 

∂ I j ( s ) 

∂s 
= −κ j ( s ) I j ( s ) + κ j ( s ) a j ( s ) I b [ T ( s ) ] , j = 1 , 2 , ..., n (6) 

The total radiation intensities are then found by summation 

ver all gray gases I = 

n ∑ 

j=1 

I j . 
2 
The possible modifications of the RC-SLW model explored in 

his study are centered on the determination of the gray gas ab- 

orption coefficient (or gray gas absorption cross-section, C j ) out- 

ined in step (2). In principle, rather than the nodal value x j used 

n the Gauss-Legendre quadrature, any arbitrary value F j may be 

hosen in the interval of supplemental values ˜ F j−1 and 

˜ F j . The cor- 

esponding gray gas absorption cross-section C j is then determined 

y inverting the ALBDF at this arbitrary value F j . Alternatively, C j 
ay be chosen as some weighted average of the local supplemen- 

al absorption cross sections ˜ C j−1 and 

˜ C j , bypassing the need to 

nvert the ALBDF altogether. Modifications to the original formula- 

ion of the RC-SLW Model are investigated through four possible 

pproaches, outlined here. 

auss Quadrature ( Original formulation ) 

As outlined previously, in the original formulation of the RC- 

LW method, the local value of the gray gas absorption cross- 

ections C 
j 

are calculated using the inverse ALBDF at the nodes of 

he Gaussian Quadratures (GQ) F 
j 

as 

 

loc 
j = C 

(
F j , φloc , T b 

)
(7) 

In the Gauss Quadrature approach, three inversions of the 

LBDF are required for each gray gas. In practice, this may be re- 

uced to two inversions since the inversion of ˜ F j−1 to find 

˜ C loc 
j−1 

ill have already been done for the previous gray gas as the gray 

ases are sequenced. The Gauss Quadrature approach will serve as 

he basis for comparison of the other modification approaches de- 

cribed next. 

eometric Mean 

The second approach involves calculation of the local value of 

he gray gas absorption cross-sections C 
j 

as the Geometric Mean 

GM) of the bounding supplemental local absorption cross-sections 
˜ 
 

loc 
j 

which are determined at step (2) of construction of the RC- 

LW spectral model 

 j = 

√ 

˜ C loc 
j−1 

˜ C loc 
j 

(8) 

The Geometric Mean approach avoids the additional inversion 

f the ALBDF at the nodal value x j required in the original Gauss 

uadrature formulation of the RC-SLW model. 

rithmetic Mean 

Another possible way to calculate the local values of absorp- 

ion cross-sections C 
j 

is the Arithmetic Mean (AM) of the bounding 
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Fig. 2. Partition of the local C -variable into the set of supplemental absorption cross-sections ˜ C 
j 
for use in finding the gray gas absorption cross-section (absorption coeffi- 

cient). 
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upplemental absorption cross-sections ˜ C loc 
j 

as 

 j = 

(
˜ C loc 

j−1 + 

˜ C loc 
j 

)
/ 2 (9) 

Similar to the Geometric Mean approach, calculating the gray 

as absorption cross-section using the Arithmetic Mean avoids the 

dditional inversion of the ALBDF at nodal value x j required in the 

riginal RC-SLW model Gauss Quadrature formulation. 

ariable Interval Fraction 

One may designate an arbitrary value of F j as a fraction f of the

nterval between the bounding supplemental ALBDFs from 

˜ F j−1 to 

˜ 
 j . The local absorption cross-section in the corresponding range 

˜ 
 

loc 
j−1 

≤ C 
j 
≤ ˜ C loc 

j 
for the entire interval of gray gas absorption cross- 

ections may be determined using the set of cross-sections C m 

j 

˜ 
 

loc 
j−1 ≤ C m 

j ≤ ˜ C loc 
j , m = 0 , 1 , ..., M (10) 

This set of cross-sections is convenient to generate using the 

ariable Interval Fraction approach by a uniform subdivision of the 

ray gas interval �F j = 

˜ F j − ˜ F j−1 

 

m 

j = 

˜ F j + 

m 

M 

(
˜ F j − ˜ F j−1 

)
(11) 

here M is the number of points in the interval subdivision, or 

ore simply in terms of the interval fraction f 

 

f 
j 

= 

˜ F j−1 + f 
(

˜ F j − ˜ F j−1 

)
(12) 

For a uniform subdivision in the interval ˜ C loc 
j−1 

≤ C m 

j 
≤ ˜ C loc 

j 
, 

he fraction becomes f = m/M . Then the local absorption cross- 

ections of the gray gases are found using the Inverse ALBDF as 

 

m 

j = C 
(
F m 

j , φloc , T b 
)

(13) 

 

f 
j 

= C 
(
F f 

j 
, φloc , T b 

)
(14) 

This subdivision of the gray gas intervals is shown graphically 

n Fig. 2 , where it is seen that the value of the local absorption

ross-section C 
j 

can lie anywhere between 

˜ C loc 
j −1 

and 

˜ C loc 
j 

. This de- 

nes the magnitude of the histogram absorption spectrum (shaded 

y the darkest gray in the figure). The choice of different absorp- 

ion cross-sections C 
f 
j 

yields a different shape of the histogram ab- 

orption spectrum in the SLW model construction. The lowest val- 

es of C 
f 
j 

(for f → 0) reduce or eliminate the peaks of the spectral

ines, giving greater weight to the wings of the spectral lines. 
3 
The ALBDF variable F j thus varies continuously in the inter- 

al as a function of the interval fraction f . Once a value of the

nterval fraction f has been selected, the value of F j is used in 

he inversion of the ALBDF to determine C j . This Variable Interval 

raction approach requires the additional inversion of the ALBDF 

nd thus represents no improvement in computational efficiency 

elative to the original formulation of the RC-SLW model. How- 

ver, this Variable Interval Fraction approach will permit the sys- 

ematic exploration of a possible optimal value of the absorption 

ross-section. 

. RC-SLW model predictions 

Three test cases with large gas temperature variation are 

sed here to compare the performance of the different ap- 

roaches outlined in the foregoing section for evaluating the 

ray gas absorption cross-section. These test cases consider both 

mission-dominated and absorption-dominated scenarios in the 

as medium. For the emission-dominated cases, the volume- 

verage gas emission (volume-average of the product of the Planck 

ean absorption coefficient and the blackbody emission at the gas 

emperature) exceeds the volume-average gas absorption (volume- 

verage of the product of the Planck mean absorption coefficient 

nd the blackbody emission at the wall temperature), and the re- 

erse is true for the absorption-dominated case. In most cases, 

mission-dominated scenarios are those for which the gas temper- 

ture is higher than that of the walls, and absorption-dominated 

ases are for those situations where the walls are hotter than the 

as. 

Consider radiative transfer in a plane-parallel layer bounded 

y black walls and filled with a mixture of water vapor and car- 

on dioxide (remainder nitrogen). RC-SLW model and line-by-line 

enchmark solutions were carried out with the Multi-Layer analyt- 

cal method [6] using 100 spatial increments in the layer. The SLW 

ultiplication approach was used for modeling the gas mixture as 

 single gas [7] , and the ALBDF tabulated in Pearson et al. [5] was

sed. In all test cases studied here, the blackbody source tempera- 

ure was taken as the volume-average temperature of the medium, 

 b = T ave . Predictions were made for the three test cases using the 

auss Quadrature, Geometric Mean, Arithmetic Mean, and Variable 

nterval Fraction approaches for calculating the gray gas absorption 

ross-section. Results were generated for different number of gray 

ases, n , in the spectral model, and for different values of the in- 

erval fraction f used in the Variable Interval Fraction approach. 
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Fig. 3. Predictions for Test 1: a) Total divergence of the net radiative flux for n = 25, 

b) Total Relative Error as a function of interval fraction f , and c) Total Relative Error 

as a function of number of gray gases n . 
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The temperature and gas species mole fraction profiles for Test 

 and Test 2 are given by 

 ( x ) = T min + ( T max − T min ) sin ( πx/L ) (15a) 

 H 2 O ( x ) = Y min + ( Y max − Y min ) sin ( πx/L ) (15b) 

 C O 2 ( x ) = Y H 2 O ( x ) / 2 (15c) 

here the values of T min , T max , Y min , and Y max are specified for the

est cases. Hereafter, the Total Relative Error is defined as the lo- 

al absolute error relative to the line-by-line benchmark solution 

ntegrated over the layer width, normalized by the integrated total 

ux divergence for the benchmark prediction. 

est 1. In this test case the following parameters are used: 

 = 1 m, T min = 500 K, T max = 20 0 0 K, T max − T min = 150 0 K,

 min = 0.2, Y max − Y min = 0.2. The predicted local total radiative 

ux divergence using the GQ, GM, AM, and f = 0 approaches de- 

ned above for determining the gray gas absorption coefficient for 

 = 25 gray gases is shown in Fig. 3 a. The figure also shows the

ine-by-line (LBL) benchmark solution. Fig. 3 b shows the depen- 

ence of the Total Relative Error on the value of interval fraction f 

sed to determine the gray gas absorption coefficient for the num- 

er of gray gases ranging from n = 5 to 25, and Fig. 3 c illustrates

he dependence of the predictive accuracy on the number of gray 

ases for the GQ, GM, AM, and f = 0 approaches. 

Fig. 3 a reveals that all methods yield reasonable engineering 

ccuracy in the prediction of the local radiative flux divergence. 

ome modest error in the GQ, GM and AM predictions is noted in 

he center of the layer where the highest temperatures are found. 

uite surprisingly, the prediction for f = 0 is nearly indistinguish- 

ble from the line-by-line benchmark solution. 

Fig. 3 b shows generally that the Total Relative Error for all val- 

es of f decreases as the number of gray gases is increased. This 

s to be expected, since an increase in n captures more accurately 

he variations in the gas absorption spectrum. Fig. 3 b also reveals, 

enerally, that the maximum total error occurs for f = 0 and f = 1,

orresponding to C j = 

˜ C j−1 and C j = 

˜ C j , respectively. A local mini- 

um in the error is noted at some intermediate value of f for all

alues of n studied, and that intermediate value is observed to be 

pproximately f < 0.4. The value of the interval fraction f at which 

he total error reaches its minimum is dependent on the number 

f gray gases used, and that value of f decreases with increasing n . 

he figure shows, further, that as n is increased, the dependence 

f the Total Relative Error on f decreases. Indeed, predictions re- 

eal that for n > 100 the total error is nearly independent of f .

his is to be expected, since for n → ∞ , the RC-SLW method ap-

roaches its continuous limit given by the Generalized SLW model 

8] , and the difference between the bounding supplemental gray 

as absorption coefficients vanishes ˜ C j − ˜ C j−1 → 0 . Therefore, the 

alue of C loc 
j 

→ 

˜ C j ≈ ˜ C j−1 . 

Fig. 3 c reveals that the accuracy of the approach to determining 

he gray gas absorption cross-section is quite sensitive to the value 

f gray gas absorption coefficient in the interval [ ̃  C j−1 , ˜ C j ] used in 

he predictions. Consistent with the results of Fig. 3 a, the f = 0

redictions (for which C 
j 
= 

˜ C 
j−1 

) in Fig. 3 c show a decrease in error

ith increasing n for n < 25 gray gases. The Total Relative Error for 

he Gauss Quadrature, Geometric Mean, and Arithmetic Mean ap- 

roaches show little dependence on n for n > 8 - 10. The value of

inimum error for n → ∞ is finite, and subject to the correlated 

pectrum assumption underlying the RC-SLW method. Also shown 

n Fig. 3 c are predictions for n = 128 gray gases for the GQ, GM,

M, and f = 0 approaches. These predictions reveal that all meth- 

ds for calculating the gray gas absorption cross-section approach 
4 
he same Total Relative Error as n → ∞ . For this test case, nearly 

ine-by-line accuracy is achieved (with Total Relative Error < 1%) 

or f = 0 at n ≈ 6, but the error increases as n is further increased

shown by the data for n = 128). This indicates that the f = 0 ap-

roach exhibits a local minimum in Total Relative Error with in- 

reasing n , similar to the Geometric Mean Approach (for which the 

inimum total error occurs for n ≈ 6 – 7). Interestingly, the Geo- 

etric Mean approach yields accuracy for n ≈ 6 that rivals that of 

he f = 0 approach for n = 25. This non-monotonic dependence of 

otal error on number of gray gases for the RC-SLW model, partic- 

larly at low values of n , has been reported previously [9] . 

Table 1 summarizes the Total Relative Error for the four differ- 

nt approaches used in Test 1 with number of gray gases n = 5, 

5, and 128. Consistent with the results shown in Fig. 3 , the ac-

uracy of the f = 0 approach increases as n increases from 5 to 
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Table 1 

Total Relative Error,%, for the four different approaches used in Test 1 for calculating 

the gray gas absorption coefficient, GQ, GM, AM, and f = 0. 

Approach n = 5 n = 25 n = 128 

Gaussian Quadrature 5.1 5.2 5.2 

Geometric Mean 3.4 4.8 5.1 

Arithmetic Mean 13.9 5.4 5.2 

f = 0 22.0 1.7 4.0 

Table 2 

Total Relative Error,%, for the four different approaches used in Test 2 for calculating 

the gray gas absorption coefficient, GQ, GM, AM, and f = 0. 

Approach n = 5 n = 25 n = 128 

Gaussian Quadrature 7.7 7.0 7.0 

Geometric Mean 4.5 6.5 6.9 

Arithmetic Mean 14.5 7.2 7.0 

f = 0 22.3 1.9 5.7 
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Fig. 4. Predictions for Test 2: a) Total divergence of the net radiative flux for n = 25, 

b) Total Relative Error as a function of interval fraction f , and c) Total Relative Error 

as a function of number of gray gases n . 
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5 gray gases. As noted previously, the dependence of the accu- 

acy on the value of f is expected to decrease as the number gray 

ases increases. Among all of the approaches studied for determin- 

ng C j , the Arithmetic Mean approach yields generally the worst 

ccuracy, with Total Relative Error that can exceed 10%. The Ge- 

metric Mean approach yields arguably the best overall accuracy 

ver the range of n explored, and is particularly accurate for a 

mall number of gray gases. The Geometric Mean approach is thus 

articularly attractive for engineering radiative transfer predictions, 

here a small number of gray gases would likely be employed. 

est 2. The second test is identical to the first with the excep- 

ion that a larger gas temperature and gas species mole frac- 

ion variation is imposed in the layer. The following parameters 

re used for Test 2: L = 1 m, T min = 500 K, T max = 2500 K,

 max − T min = 20 0 0 K, Y min = 0.2, Y max − Y min = 0.4. Results are

hown in Fig. 4 . The predicted local total radiative flux divergence 

sing the GQ, GM, AM approaches, and the prediction with f = 0 

or n = 25 is shown in Fig. 4 a, along with the LBL solution. Fig. 4 b

hows the dependence of the Total Relative Error on the interval 

raction f used to determine the gray gas absorption coefficient for 

 range of n , and Fig. 4 c illustrates the dependence of the predic-

ive accuracy on the number of gray gases for the GQ, GM, AM, and

 = 0 approaches. Behavior similar to that observed in Fig. 3 for 

est 1 is also found in the predictions for Test 2, with very little 

ncrease in error despite the significantly larger imposed gas tem- 

erature and species mole fraction differences in the layer. Fig. 4 c 

gain confirms that predictions for all methods (GQ, GM, AM, and 

 = 0) approach the same Total Relative Error as n increases, and 

hat both the Geometric Mean and f = 0 approaches exhibit a lo- 

al minimum in the total error dependence on n . For this test case, 

he local minimum in error for f = 0 occurs for n ≈ 23 gray gases.

Table 2 summarizes the Total Relative Error for the four differ- 

nt approaches used in Test 2 with n = 5, 25, and 128. As with

est 1, and consistent with the results shown previously in Fig. 4 , 

he zero interval fraction f = 0 approach yields improved accuracy 

s n increases (and predictions would be expected to be entirely 

ndependent of f as n → ∞ ). The agreement with the line-by-line 

enchmark for f = 0 is remarkable for this test case, given the wide

ariation in gas temperature. As with Test 1, the Geometric Mean 

pproach yields perhaps the best overall accuracy over the range 

f n explored. 

The following general observations may be made relative to the 

mission-dominated cases of Test 1 and Test 2. It is seen that the 

ccuracy of the predictions is sensitive to the choice of the gray gas 
5 
nterval fraction f . For n = 5, the minimum error is obtained for an

pproximate value f = 0.4 in Test 1, and f = 0.35 in Test 2. With

n increase in the number of gray gases, the predictive accuracy 

ecomes less dependent on the value of f . 

The results of the foregoing tests reveal, surprisingly, that the 

rediction accuracy using f = 0 at its minimum total error sur- 

asses that of all other approaches, and the prediction becomes 

lmost indistinguishable from the LBL solution at intermediate val- 

es of n , even for the extreme temperature difference of Test 2, 

 max − T min = 20 0 0 K. It must be acknowledged, however, that 

his observation cannot be generalized for all possible prediction 

cenarios. 

For the small number of gray gases used in practical engineer- 

ng calculations, the error prediction in the Arithmetic Mean ap- 

roach for determining the absorption cross-section is very large, 

nd it falls with an increase of the number of gray gases, approach- 
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Table 3 

Total Relative Error,%, for the four different approaches used in Test 3 for calculating 

the gray gas absorption coefficient, GQ, GM, AM, and f = 0.45. 

Approach n = 5 n = 25 

Gaussian Quadrature 11.2 10.0 

Geometric Mean 14.0 9.7 

Arithmetic Mean 26.2 10.1 

f = 0.45 10.6 9.9 
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Fig. 5. Predictions for Test 3: a) Total divergence of the net radiative flux for n = 25, 

b) Total Relative Error as a function of interval fraction f , and c) Total Relative Error 

as a function of number of gray gases n . 
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m

ng the error found for the Gaussian Quadrature and Geometric 

ean approaches. Finally, the results of Tests 1 and 2 suggest that 

he predictive accuracy using the Geometric Mean approach for de- 

ermining the gray gas absorption cross-section yields the best ac- 

uracy for a small number of gray gases, and in general (for these 

est cases studied), yields more accurate predictions than using 

he more computationally costly Gauss Quadrature approach of the 

riginal RC-SLW model formulation for any number of gray gases. 

est 3. In contrast to the previous two test cases where gas emis- 

ion was dominant relative to absorption, Test 3 presents a case 

here gas absorption is dominant in the radiative transfer. The fol- 

owing hyperbolic temperature and mole fraction profiles are im- 

osed in the layer for Test 3: 

 ( x ) = 

T min + T max 

2 

+ 

T max − T min 

2 

(
1 − 2 x 

L 

)3 

(16a) 

 H 2 O ( x ) = 

Y min + Y max 

2 

+ 

Y max − Y min 

2 

(
1 − 2 x 

L 

)3 

(16b) 

 CO 2 ( x ) = Y H 2 O ( x ) / 2 (16c) 

For this test case the maximum temperature is at the bound- 

ry, x = 0. The following parameters were used in Test 3: L = 2 m,

 min = 500 K, T max = 2500 K, T max − T min = 2000 K, Y min = 0.2,

 max = 0.4, Y max − Y min = 0.2. Predictions are shown Fig. 5 . Unlike

he trends observed for Tests 1 and 2, Fig. 5 a shows that the pre-

ictions for Test 3 using the GQ, GM, AM, and f = 0.45 approaches

sing n = 25 gray gases are very close to each other except at the

ight boundary. Consequently, none of the approaches for choosing 

he gray gas absorption coefficient considered adds significantly to 

he accuracy of the conventional Gauss Quadrature RC-SLW pre- 

iction except for a very small number of gray gases, n . The Total

elative Error for this test case, shown in Fig. 5 b, is significantly 

igher for all approaches than for Tests 1 and 2. The reduced ac- 

uracy of the RC-SLW model in general for absorption-dominated 

cenarios has been documented previously [10] . As seen in Fig. 5 b, 

he local minimum in Total Relative Error as a function of f ap- 

ears at the same value of f ( ≈ 0.45) for all values of n . Further,

ig. 5 b shows that the total error is nearly independent of interval 

raction f for n = 25. Fig. 5 c reveals that the Total Relative Error

n the Gauss Quadrature and f = 0.45 Test 3 predictions is nearly 

ndependent of the number of gray gases, as is that of the Arith- 

etic Mean prediction for n > 15 and Geometric Mean prediction 

or n > 7. The Arithmetic Mean exhibits the largest error and the 

reatest dependence on the number of gray gases. Finally, the re- 

ults of Test 3 reveal that for an increase in the number of gray 

ases, the influence of the choice of local absorption cross-section 

ecreases. 

Table 3 summarizes the Total Relative Error for the four dif- 

erent approaches used in Test 3 with n = 5 and 25. In con- 

rast to the results of Tests 1 and 2, the four different approaches 

ield nearly the same accuracy with both n = 5 and 25. For this 

bsorption-dominated case, it appears that no enhancement to 

he RC-SLW model accuracy can be achieved with any of the ap- 

roaches for calculating the gray gas absorption coefficient. The 
6 
elatively poorer accuracy and generally different behavior in Test 

 compared to Tests 1 and 2 is centered on the dominance of lo- 

al gas absorption relative to gas emission in this problem. Indeed, 

s stated previously, the RC-SLW model in its original formulation 

s also seen to yield somewhat reduced accuracy in this problem, 

hich has been observed previously [11] . 

The total CPU time for the simulations of Test 1 is shown 

n Fig. 6 for the Gauss Quadrature, Geometric Mean, and Arith- 

etic Mean approaches. The CPU time for the f = 0 approach (not 

hown) is nominally the same as that for the Arithmetic Mean ap- 

roach. The CPU time results for Tests 2 and 3 are virtually the 

ame as for Test 1. 

It is noted in Fig. 6 that the computation time for the Geomet- 

ic Mean and Arithmetic Mean approach is significantly lower than 

hat for the Gauss Quadrature approach used in the original for- 

ulation of the RC-SLW model. This is the result of eliminating the 
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Fig. 6. Total CPU time for Test 1 as a function of number of gray gases for the Gauss 

Quadrature, Geometric Mean, and Arithmetic Mean approaches. 
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eed for the additional inversion of the ALBDF of the nodal value 

 j for each gray gas required in the original RC-SLW model formu- 

ation Gauss Quadrature approach. As stated previously, the ALBDF 

nversion is one of the most computationally costly steps in the 

C-SLW spectral model construction. Fig. 6 shows that the compu- 

ational savings for the Geometric Mean and Arithmetic Mean ap- 

roaches is nearly a factor of two. This finding is significant given 

hat the prediction of radiation transfer is invariably the most com- 

utationally demanding transport solution in a coupled modeling 

cenario. Thus, it appears that the Geometric Mean approach is 

referable both from an accuracy perspective (at least for a small 

umber of gray gases) and from the computation time perspective. 

. Estimating the optimal value of the gray gas absorption 

oefficient 

The results of the test cases shown in the foregoing section 

emonstrate generally a decrease in the Total Relative Error for the 

rediction of the radiative net flux divergence with an increase in 

he number of gray gases. In addition, the predictions for Tests 1 

nd 2 reveal a reduction of the optimal interval fraction f with an 

ncrease of number of gray gases. This corresponds to the mini- 

um Total Relative Error in the prediction of total flux divergence, 

hile the optimal value of interval fraction for n = 5 is f = 0.4 in

est 1 and f = 0.35 for Test 2. There is a theoretical foundation for

hese observations, which is now developed. 

One can apply the Generalized SLW approach [8] which per- 

its the description of the SLW method in terms of the absorp- 

ion coefficient because the detailed analysis in terms of absorption 

ross-section is not needed in further derivation. Using the origi- 

al notation F for the Absorption Line Blackbody Distribution Func- 

ion F- variable, 0 ≤ F ≤ 1, the partition of F into its supplemental 

alues ˜ F j for j = 1, 2, ..., n defines the gray gases, ˜ F j−1 ≤ F j ≤ ˜ F j .

ollowing the usual construction of the RC-SLW model, the local 

upplemental gray gas absorption coefficients are calculated with 

he help of the inverse ALBDF at the local thermodynamic state 

= { P, T , Y H 2 O , Y C O 2 } and at some blackbody source temperature T b 
s the value of the cumulative k -distribution function 

˜ 
 j = k 

(
˜ F j , φ, T b 

)
= NY C 

(
˜ F j , φ, T b 

)
, j = 1 , 2 , ..., n (17) 

The local supplemental values of the F- variable are then calcu- 

ated using the ALBDF at the local thermodynamic state φ and the 
7 
ocal blackbody source temperature T b = T as 

˜ 
 

loc 
j = F 

(
˜ C j , φ, T 

)
, j = 1 , 2 , ..., n (18) 

hich are used for calculation of the local gray gas weights 

 j = 

˜ F loc 
j − ˜ F loc 

j−1 , j = 1 , 2 , ..., n (19) 

To complete the construction of the RC-SLW spectral model the 

ocal values of the gray gas absorption coefficients κ j must be de- 

ned. In the original version of the RC-SLW model, they are cal- 

ulated using the nodes of the Gauss-Legendre quadratures F j as 

j = κ
(
F j , φ, T b 

)
= NY C 

(
F j , φ, T b 

)
, j = 1 , 2 , ..., n (20)

As stated previously, because this calculation requires inversion 

f the ALBDF, it is more computationally costly. One possibility to 

void this additional inversion of the ALBDF is to calculate the gray 

as absorption coefficients from the bounding local supplemental 

bsorption coefficients already defined using the Geometric Mean 

pproach as 

j = 

√ 

˜ κ j−1 ˜ κ j (21) 

Consider the total transmissivity of a gas isothermal homoge- 

eous layer of thickness L . For simplicity, to avoid confusion be- 

ween F and F loc and the too-frequent use of the superscript loc , 

ne can rename the local values F loc as G . To further simplify, one 

ay omit from the notation the dependence on φ and T b in κ( F , φ,

 b ), and use the continuous representation of the total transmissiv- 

ty using the Generalized SLW method as [8] 

( L ) = 

1 ∫ 
0 

e −κ( G ) L dG (22) 

Then the generalized SLW representation of the transmissivity 

s 

( L ) = 

n ∑ 

j=1 

G j ∫ 
G j−1 

e −κ( G ) L dG (23) 

For simplicity, one can write 

 j−1 = F 
(

˜ C j−1 , φ, T 
)

(24) 

 j = F 
(

˜ C j , φ, T 
)

(25) 

Now consider the transmissivity of the j th g ray gas term 

j ( L ) = 

G j ∫ 
G j−1 

e −κ( G ) L dG (26) 

According to the Mean Value Theorem, there exists a value G L 

uch that 

G j ∫ 
 j−1 

e −κ( G ) L dG = 

(
G j − G j−1 

)
e −κ( G L ) L (27) 

hen 

 

−κ( G L ) L = 

1 (
G j − G j−1 

) G j ∫ 
G j−1 

e −κ( G ) L dG (28) 

Now consider the graphical interpretation shown in Fig. 7 . The 

orresponding value of the local j th gray gas absorption coefficient 

s 

j = κ( G L , φ, T ) (29) 
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Fig. 7. The local gray gas absorption coefficient based on transmissivity of the gas layer (noting that κ = NYC ). 
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Consider the gray gas transmissivity averaged over the interval 

 j − G j −1 

1 

G j − G j−1 

G j ∫ 
G j−1 

e −κ( G ) L dG 

= e −κ( G j−1 ) L 1 

G j − G j−1 

G j ∫ 
G j−1 

e −[ κ( G ) −κ( G j−1 ) ] L dG 

 exp 

⎧ ⎨ 

⎩ 

−κ
(
G 

j−1 

)
L + ln 

⎡ 

⎣ 1 − 1 

G j − G j−1 

G j ∫ 
G j−1 

(
1 − e −[ κ( G ) −κ( G j−1 ) ] L 

)
dG 

⎤ 

⎦ 

⎫ ⎬ 

⎭ 

(30) 

Now denote a variable ξ

= 

1 

G j − G j−1 

G j ∫ 
G j−1 

(
1 − e −[ κ( G ) −κ( G j−1 ) ] L 

)
dG (31) 

Following the derivation of André [12] , it is seen that with a 

ufficient number of gray gases (or the practically irrelevant case of 

anishing L ), the term [ κ( G ) − κ( G j -1 )] L is small, and consequently,

he value of ξ → 0. The linear approximation near 0 can then be 

sed, namely ln (1 − ξ ) ≈ −ξ , yielding 

1 

G j − G j−1 

G j ∫ 
G j−1 

e −κ( G ) L dG 

= exp 

⎧ ⎨ 

⎩ 

−κ
(
G j−1 

)
L − 1 

G j − G j−1 

G j ∫ 
G j−1 

(
1 − e −[ κ( G ) −κ( G j−1 ) ] L 

)
dG 

⎫ ⎬ 

⎭ 

= e [ −κ( G j−1 ) L − ξ] (32) 

With an increase in the number of gray gases and for mod- 

rate gas pathlengths, the difference between the gray gas ab- 

orption coefficients at the interval boundaries vanishes, yielding 
8 
( G j ) − κ( G j −1 ) → 0. Then, Eq. (32) reduces to 

1 

G j − G j−1 

G j ∫ 
G j−1 

e −κ( G ) L dG 

≈ exp 

⎡ 

⎣ − L 

G j − G j−1 

G j ∫ 
G j−1 

κ( G ) dG 

⎤ 

⎦ ≈ e −κ( G j−1 ) L ≈ e −κ( G j ) L (33) 

This result confirms, not surprisingly, that the dependence of 

he optimal value G L on the interval fraction f thus vanishes for 

 → ∞ . This finding is consistent with the predictions for all three 

est cases presented previously ( Figs. 3 – 5), where the dependence 

f the Total Relative Error on f was found to decrease with an in- 

rease in the number of gray gases. 

The optimal value of G L in the limit of very large path length L 

ay also be identified. Beginning with Eq. (28) , the objective is to 

nd the asymptotic limit of G L for L → ∞ . Normalizing the variable 

f integration, Eq. (28) may be written as 

 

−κ( G L ) L = 

1 

G j − G j−1 

G j ∫ 
G j−1 

e −κ( G ) L dG = 

1 ∫ 
0 

e −κ( X ) L dX (34) 

The integral on the right-hand side of Eq. (34) may be written 

s a weighted sum (as, for example, a Lobatto quadrature in which 

he endpoint weight w 0 is not null): 

1 
 

0 

e −κ( X ) L dX = w 0 e 
−κmin L + w n +1 e 

−κmax L + 

n ∑ 

i =1 

w i e 
−κ( X i ) L (35) 

here κmin = κ( G j −1 ) and κmax = κ( G j ). Eq. (35) may be written

s 

 

−κ( G L ) L = 

1 ∫ 
0 

e −κ( X ) L dX = w 0 e 
−κmin L 

[ 

1 + 

w n +1 

w 0 

e −( κmax −κmin ) L 

+ 

n ∑ 

i =1 

w i 

w 0 

e −( κ( X i ) −κmin ) L 

] 

(36) 
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Operating on the left-hand and right-hand sides of the equality 

n Eq. (36) by –ln (negative of the natural logarithm) and dividing 

y L yields: 

( G L ) = κmin −
1 

L 
ln ( w 0 ) + 

1 

L 
ln 

[ 

1 + 

w n +1 

w 0 

e −( κmax −κmin ) L 

+ 

n ∑ 

i =1 

w i 

w 0 

e −( κ( X i ) −κmin ) L 

] 

(37) 

In the limit as L → ∞ , Eq. (37) yields 

lim 

 →∞ 

κ( G L ) = κmin (38) 

Thus, for very large pathlength the optimal absorption coeffi- 

ient is the minimum value in the interval κ( G L ) = κ( G j −1 ), and

his limit is independent of the number of gray gases used. This 

imiting behavior will be confirmed through alternate analysis in a 

ection to follow. 

.1. Bounds for the optimal gray gas absorption coefficient 

Although it was shown in the previous section that the de- 

endence of optimal gray gas absorption coefficient in the interval 

˜ j−1 < κ j < ˜ κ j on interval fraction f decreases with an increase in 

he number of gray gases n , it would be useful to identify bounds 

n the optimal value in this interval for finite number of gray 

ases. Indeed, it is possible to determine theoretically the bounds 

n the optimal gray gas coefficient in this interval. Consider the 

 

th gray gas transmissivity of the pathlength L averaged over the 

nterval �G = G j − G j −1 

�G ( L ) = 

1 

�G 

∫ 
�G 

e −κ( G ) L dG (39) 

The reordered absorption coefficient κ( G ) = κ( G , φ, T ) is a

trictly increasing function of G from κ( G j −1 ) to κ( G j ). Therefore,

or a given pathlength L 

�G ( L ) = 

1 

�G 

∫ 
�G 

e −κ( G ) L dG ≤ e −κ( G j−1 ) L (40) 

This result is illustrated graphically in Fig. 8 , where e −κ( G j−1 ) L is 

lotted a function of κ and G along with the relevant distributions 

( F , φ, T b ) and κ( G , φ, T ). 

Let G L be the solution of the following implicit equation (which 

lso has a unique solution) 

�G ( L ) = e −κ( G L ) L (41) 

At this point it is useful to recall a mathematical statement 

ermed Jensen’s Inequality for a convex function 	 [13] [ 

1 

�G 

∫ 
�G 

f ( G ) dG 

] 

≤ 1 

�G 

∫ 
�G 

	[ f ( G ) ] dG (42) 

The exponential function 	( G ) = e −κ( G ) L is a convex function 

ith respect to the variable G , as seen in Fig. 8 . Thus, for the con-

inuous function f ( G ) = e −κ( G ) L Jensen’s inequality yields 

�G ( L ) = 

1 

�G 

∫ 
�G 

e −κ( G ) L dG ≥ e 
− 1 

�G 

∫ 
�G 

κ( G ) L dG 

= e −κ( G p ) L (43) 

In Eq. (43) , G P is the solution of the implicit equation 

( G P ) �G = 

∫ 
�G 

κ( G ) dG (44) 
9 
nd ∫ 
G 

κ( G ) dG = κP (45) 

s the j th gray gas Planck mean absorption coefficient. According to 

he Intermediate Value Theorem, Eq. (45) for a monotonic function 

( G ) has a unique solution. Here, we designate κ( G L ) as the value

f the gray gas absorption coefficient which yields an exact value 

f the gray gas transmissivity τ�G ( L ) for the interval G j −1 < G <

 j . Then, combining Eqs. (40) , (43) , and (45) , and taking into ac-

ount the monotonicity of the exponential function, bounds for the 

ptimal value of the gray gas absorption coefficient are obtained (
G j−1 

)
≤ κ( G L ) ≤ κ( G P ) (46) 

Therefore, the proper choice of the gray gas absorption co- 

fficient κ j should be in the interval defined by the inequality 

f Eq. (46) . One can confirm with a representative example that 

he Geometric Mean κGM 

= 

√ 

κ( G j−1 ) κ( G j ) used to determine the 

ray gas absorption coefficient satisfies this criterion, but the Arith- 

etic Mean does not. Indeed, in general, 

GM 

= 

√ 

κ
(
G j−1 

)
κ
(
G j 

)
≤

[
κ
(
G j−1 

)
+ κ

(
G j 

)]
/ 2 = κAM 

(47) 

Consider the model spectrum reordered absorption coefficient 

( G ) with a log-uniform dependence on the variable G typical for 

he real absorption coefficients 

( G ) = κ
(
G j−1 

)[ 

κ
(
G j 

)
κ
(
G j−1 

)
] 

G −G j−1 
G j −G j−1 

, G j−1 ≤ G ≤ G j (48) 

or which the analytical calculations can be performed. Now, 

ssume arbitrarily a decade increment between the gray gases 

which is reasonably representative of actual RC-SLW calculations) (
G j 

)
= 10 κ

(
G j−1 

)
(49) 

Then the upper bound for the optimal local absorption coeffi- 

ient is 

( G P ) = 

1 

�G 

∫ 
�G 

κ( G ) dG = 

κ
(
G j 

)
− κ

(
G j−1 

)
ln 

[
κ
(
G j 

)
/ κ

(
G j−1 

)] ≈ 3 . 9 κ
(
G j−1 

)
(50) 

nd the local absorption coefficients determined with the Geomet- 

ic Mean and the Arithmetic Mean are 

GM 

= 

√ 

κ
(
G j−1 

)
κ
(
G j 

)
≈ 3 . 16 κ

(
G j−1 

)
(51) 

AM 

= 

[
κ
(
G j−1 

)
+ κ

(
G j 

)]
/ 2 = 5 . 5 κ

(
G j−1 

)
(52) 

Therefore, in this example, comparison of values in Eqs. (49) –

52) yields (
G j−1 

)
< κGM 

< κ( G P ) < κAM 

< κ
(
G j 

)
(53) 

This finding is significant, as it defines for the first time the 

ounding interval for the gray gas absorption coefficient that pro- 

ides greatest accuracy in RC-SLW model predictions. According to 

q. (53) the use of the Geometric Mean absorption coefficient κGM 

lways falls within the bounds identified theoretically for the op- 

imal gray gas coefficient. Further, it is seen that the Arithmetic 

ean Absorption coefficient κAM 

is always outside the bounds for 

he optimal absorption coefficient (for finite number of gray gases, 

ince all approaches converge to the same gray gas absorption co- 

fficient as n → ∞ ). Therefore, the Geometric Mean κ is the 
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Fig. 8. The bounds of the local gray gas absorption coefficients. 
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referred choice for the local gray gas absorption coefficient in RC- 

LW modeling, and the Arithmetic Mean κAM 

cannot be recom- 

ended. 

It may also be shown from Eqs. (46) and (53) that the opti- 

al value of the RC-SLW model gray gas absorption coefficient al- 

ays corresponds to an interval fraction f < 0.5 in the supplemen- 

al ALBDF interval ˜ F j−1 to ˜ F j . These conclusions are consistent with 

he principal findings in the predictions of Tests 1 – 3: i ) The Ge- 

metric Mean approach for determining the gray gas absorption 

oefficient, κGM 

, is significantly more accurate than the Arithmetic 

ean, κAM 

, for any number of gray gases; and ii ) The optimal value

f the gray gas absorption coefficient is always found for a fraction 

 < 0.5 in the interval ˜ F j−1 to ˜ F j . In the next section a more pre-

ise estimate of the local absorption coefficient with respect to the 

ptimal value κ( G L ) will be explored. 

.2. Relationship between G L and the geometric mean 

From Eq. (28) , the value of the absorption coefficient which 

ields the exact j th gray gas transmissivity of the pathlength L is 

( G L ) = −1 

L 
ln 

⎡ 

⎣ 

1 

G j − G j−1 

G j ∫ 
G j−1 

e −κ( G ) L dG 

⎤ 

⎦ (54) 

One can now denote the ratio of the maximum value to the 

inimum value of the absorption coefficient in the j th gray gas in- 

erval [ κ( G j −1 ), κ( G j )] as 

 = κ
(
G j 

)
/ κ

(
G j−1 

)
(55) 

Then the assumed log-uniform variation Eq. (48) of the re- 

rdered absorption coefficient in this interval is written as 

( G ) = κ
(
G j−1 

)
r 

G −G j−1 
G j −G j−1 , G j−1 ≤ G ≤ G j (56) 
10 
The Planck mean gray gas absorption coefficient from Eqs. 

44) and (45) is 

( G P ) = 

1 

G j − G j−1 

G j ∫ 
G j−1 

κ( G ) dG = κ
(
G j−1 

) r − 1 

ln r 
(57) 

One may now denote the fraction of the interval [ κ( G j −1 ), 

( G P )] for the bounds of the exact value κ( G L ) estimated by the

nequality of Eq. (46) as a function of the pathlength L for differ- 

nt values of r as 

f L = 

κ( G L ) − κ
(
G j−1 

)
κ( G P ) − κ

(
G j−1 

) (58) 

The local gray gas absorption coefficient obtained as the Geo- 

etric Mean of the values G j −1 and G j is then 

GM 

= 

√ 

κ
(
G j−1 

)
κ
(
G j 

)
= κ

(
G j−1 

)√ 

r (59) 

Now let the interval fraction [ κ( G j −1 ), κ( G P )] associated with

he absorption coefficient calculated as the Geometric Mean of the 

ray gas interval boundary values be 

f GM 

= 

κGM 

− κ
(
G j−1 

)
κ( G P ) − κ

(
G j−1 

) = 

(√ 

r − 1 

)
ln r 

r − 1 − ln r 
(60) 

Note that this ratio does not depend on pathlength L . A com- 

arison of f L and f GM 

as a function of the pathlength L for different

alues of the ratio r is shown in Fig. 9 . In generating this figure,

alues of κ( G P ) were fixed for all curves. The value of κ( G j -1 ) was

hen determined from Eq. (57) for a given r , following which κ( G j )

as calculated from Eq. (55) . It may be noted that an increase in

he number of gray gases corresponds to a decrease in the ratio 
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Fig. 9. The interval ratios f L and f GM as a function of the pathlength L for different 

values of the ratio r . 

r  

v

r

r

c  

F

c

d

T

m

fi

o

o

v  

f  

b

g

g

l

e

a

s

e

s

t

c

s

s

g

t

i

m

p

m

c

m

t

4

i

t

s

i

i

m

A

w

u

a

d

a

c

f

i

s

c

c

r

o

c

G

h

f

m

o

i

T

u

D

c

i

C

o

o

a

R

 

 

 

 

 

 = κ( G j ) / κ( G j−1 ) . As seen in Fig. 9 , as L → ∞ , the variable inter-

al fraction corresponding to optimal accuracy approaches f = 0, 

egardless of the interval fraction ratio r used (or alternatively, 

egardless of the number of gray gases used). For more practi- 

al finite values of L ( i.e., L neither very large nor very small),

ig. 9 shows that the Geometric Mean provides a value of the lo- 

al gas absorption coefficient which is always within the bounds 

efined by Eq. (46) for any value of the ratio r = κ( G j ) / κ( G j−1 ) . 

he value of gray gas absorption coefficient based on the Geo- 

etric Mean is thus always acceptable, with good accuracy con- 

rmed by the test cases presented previously. Further, the results 

f Fig. 9 confirm the theoretical result derived previously that the 

ptimal gray gas absorption coefficient approaches the minimum 

alue in the interval G L → G j −1 corresponding to f = 0 as L → ∞
or any value of r ( i.e. , any number of gray gases). However, it must

e emphasized that for finite pathlengths of interest in most en- 

ineering problems, Fig. 9 shows that the optimal value of gray 

as absorption coefficient depends on L . This dependence on path- 

ength makes determination of the optimal gray gas absorption co- 

fficient difficult to generalize. Because the Geometric Mean κGM 

lways lies in the bounds identified for the optimal gray gas ab- 

orption coefficient, it is therefore preferable among all approaches 

xplored, but cannot be considered as the choice yielding exact re- 

ults for all possible scenarios. This analysis also reveals that fur- 

her improvement of the RC-SLW spectral model should include 

onsideration of the pathlength L in determining the gray gas ab- 

orption coefficient. Finally, note that the exact choice of the ab- 

orption coefficient κ( G L ) is exact only for prediction of the gray 

as transmissivity. It is not necessarily the best choice for predic- 

ion of the total divergence of the net radiative flux. 

As it follows from this analysis, assuming gray gas coefficients 

ndependent of L is probably not optimal, and further, using the 

inimum value C j = 

˜ C j−1 is only applicable for very large domain 

hysical lengths. The Geometric Mean approach is the preferred 

ethod, since it provides overall the best accuracy at the lowest 

omputational cost. There remains the potential to find an opti- 

um value of the local gray gas absorption coefficient for predic- 

ion of the total divergence of the net radiative flux. 

. Conclusions 

The sensitivity of the choice of gray gas absorption coefficient 

n the Rank Correlated SLW model has been explored. Several op- 
11 
ions were considered for specifying the gray gas absorption cross- 

ection from the bounding supplemental absorption cross-sections, 

ncluding i ) that determined by inversion of the F -variable us- 

ng Gauss Quadratures (the original formulation of the RC-SLW 

ethod), ii ) the Geometric Mean of the bounding values, iii ) the 

rithmetic Mean, and finally, iv ) a value determined from the 

eighting of the bounding supplemental absorption cross-sections 

sing a variable interval fraction f . It is shown theoretically that 

n optimal value of the gray gas absorption coefficient can only be 

etermined by accounting for the path length L . However, theory 

lso shows that the optimal choice of gray gas absorption coeffi- 

ient is always found for an interval fraction f < 0.5. Predictions 

or test cases presented here, confirmed by theoretical foundation, 

ndicates that application of the Geometric Mean of the bounding 

upplemental absorption cross-sections for the gray gas absorption 

oefficient is the preferred choice for determining the absorption 

oefficient compared to the alternatives. In general, this approach 

esults in improved accuracy of prediction of the total divergence 

f the net radiative flux, and reduces the computation time for 

onstruction of the spectral model by a nominal factor of two. The 

eometric Mean approach can therefore be considered as an en- 

ancement of the original RC-SLW model formulation. Finally, it is 

ound that for finite number of gray gases, the use of the Arith- 

etic Mean for calculating the gray gas absorption coefficient is 

utside the bounds of optimal gray gas absorption coefficient, lead- 

ng to inaccuracies in the prediction of the local flux divergence. 

herefore, the Arithmetic Mean approach is not recommended for 

se. 
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