

Global Broker setup for WIS2

Rémy Giraud 13/10/2022

WIS2 Principles

WIS 2.0

WIS 2.0 is a collaborative system of systems using Webarchitecture and open standards to provide simple, timely and seamless sharing of trusted weather, water and climate data and information through services."

WMO Information System (WIS 2.0)

1963 World Weather Watch

1970s Global Telecommunication System2007 WMO Information System (WIS)

2019 WMO Reform (Earth System Approach)2021 WMO Unified Data Policy / GBON

WIS 2.0

... system of systems using Web-architecture and open standards to provide simple, timely and seamless sharing of trusted data and information ...

- Open Standards (OGC, W3C, IETF, ...)
- Open Source (use off the shelf tools)
- Data sharing through Web and publication/subscription (pub/sub) protocols
- Cloud ready (turn-key solutions)
- Web APIs (Application Programming Interface)

GTS vs. WIS2

- On the GTS and the WIS, available data is <u>pushed</u> by the producing centre as soon as it is available to a <u>static</u> list of recipients.
- In turn, those <u>push</u> again that same data to subsequent users, etc.
- Resulting in many hops (delays and availability risks) and many changes to adapt the manually maintained routing tables.
- The WIS 2.0 solution by using off the shelf software aims at:
 - Moving from a <u>static push model</u> to a <u>dynamic pull model</u>
 - Improving the reliability of the distribution of real time data
 - Reducing the number of hops between the producer and the user
 - Allowing a dynamic selection for the user of the required data
 - Allowing the producer to provide new data rapidly and easily
 - Using the same solution for data from all WMO Programmes

WIS2: Pub/Sub solution

- Using MQTT 3.1.1 or 5.0 protocols National Center will publish a short message describing the available data and the method (URL) to access it
- Global Brokers are subscribing to these announcements and Global Cache download the data for further redistribution
- This solution will:
 - Gradually replace the GTS for weather data
 - Provide a solution for all WMO programs

WIS2 Global Services

The planned Global Services:

- Global Brokers: using off the shelf MQTT Broker will allow distribution of messages announcing availability of new data
- Global Cache: following reception of message from the broker, it will download data from National Center (if data of global interest) and make it available for downstream consumers
- Global Catalog: will keep a record of all metadata. Through API, search engines, dedicated portal, datasets will be discoverable
- Global Monitoring: using OpenMetrics (Prometheus) all WIS2 services will be monitored and KPI will be produced

WIS2 architecture with redundancy

The anti-loop tool:

- Subscribes to as many brokers as needed. The brokers might be "linked" to a WIS2node, a Global Cache or another Global Broker
- Publishes only to its Global Broker

The publication to the local Global Broker only occurs if the "msg_id" is unknown to the "anti-loop system" of the particular Global Broker.

This ensures that the subscribers to the Global Brokers will only see each message only once per Global Broker

The ${\tt msg_id}$ is positioned by the originating center or the cache after having downloaded and stored the data.

The $\mbox{msg_id}$ is an identifier to enable the anti-loop mechanism

As a consequence the same data/file will be "linked" to various msg id (origin and one per cache)

A user subscribing to two brokers will receive two messages with the same msg_id per data source holding the data (origin or cache). So potentially 2 messages on the topic .../origin/... and 2 x messages on the topic .../cache/... (x = number of caches having the data)

The bridging function of MQTT is not sufficient to interconnect the various brokers.

msg id is a generic term to identify the message. Generating and comparing efficiently unicity of this id will be key for the performance of the anti-loop tool.

Meteo-France Global Broker – Pilot phase

A focus on Météo-France setup

The Broker

- A cluster of 3 instances of VerneMQ broker running on EWC
 - VerneMQ is one of the state of the art MQTT broker
 - Implemented in Erlang
 - Having clustering capabilities
 - MQTT 3.1.1 and MQTT 5.0 compliant
- Only the anti-loop software is <u>publishing</u> to it
- All interested clients are <u>subscribing</u> to the broker
- The anti-loop function
 - A prototype of the anti-loop system written using NodeRed:

The Anti-Loop function

- The function is available as an open-source docker container:
 - https://hub.docker.com/repository/docker/golfvert/wis2globalbrokernode red
- The source code is availableon github:
 - https://github.com/golfvert/WIS2-GlobalBroker-NodeRed
- How does it work:
 - It is required to run one container per WIS2 Node client
 - The anti-loop container subscribes to announcement made by the WIS2 Node
 - Using a redis database it checks if the same message id has already been seen
 - If not, it publishes the message locally to the local cluster of broker
 - Metrics are published using the agreed solution (Prometheus)

Deployment architecture

A first analysis

- Thanks to the help of the EWC team at ECMWF the setup has been rather smooth nevertheless quite manual
- At the moment (on the test EWC hardware installed at Reading), part of the environment (load balancing and firewall) is managed by ECMWF
- With the target system in Bologna, it is expected that Météo-France will manage the system end to end and the deployed will be automated using horizon API or terraform
- An evolution toward Infrastructure as code