# 27 April 2014



# 27 April 2014

## Obs and Fc IR10.8 Satellite images

### GOESIR10.8 20140427 12 UTC



#### ECMWF 1 Fc 20140427 00 UTC+12h:



### GOESIR10.8 20140428 0 UTC



#### ECMWF 1 Fc 20140427 00 UTC+24h:



# 27 April 2014



# **NEXRAD 18-20 LT**









# **Excercises for Open IFS**

- Run T255 from 20140427 00 + 30h
- Plot hourly precipitation rates
- Plot CAPE, CIN, 850 hPa Theta\_e (compute with metview) and 200 hPa wind: Determine area of maximum "Threat"
- Plot soundings (Tephigram) on point 9or are average) in threat area before and after "Tornadic event" to see convective adjustment
- Run T255 (a) without diurnal cycle option (RCAPDCYCL=0 in namcumf) and (b) without deep convection (LMFPEN=false in namcumf)

## **Hourly Rainfall rate**

### NEXRAD 27/04 6UTC



## OpenIFS 40r1 T255 27/04 6UTC



### NEXRAD 28/04 2 UTC



### OpenIFS 40r1 28/04 2 UTC



## CAPE and CIN (J/kg)

## OpenIFS 40r1 28/04 00 UTC



# Excercises for Open IFS (continued)

Evaluate diurnal cycle over Central Africa: plot hourly area average precip for the different runs: Area=[-20S-10N, 10-40E]

### WV6.2 20140427 12 UTC



#### ECMWF 1 Fc 20140427 00 UTC+12h:



WV6.2 20140427 12 UTC



ECMWF 1 Fc 20140427 00 UTC+12h:



