
Development constraints for (Open)IFS

Filip Váňa

filip.vana@ecmwf.int

OpenIFS user workshop, Stockholm, June 2014 – p. 1/21

Outline

Basic rules

Parallelization principles

Concept of NPROMA

Data structures

OpenIFS user workshop, Stockholm, June 2014 – p. 2/21

Basic code rules

IFS: Over 3 millions lines of code.

OpenIFS user workshop, Stockholm, June 2014 – p. 3/21

Basic code rules

IFS: Over 3 millions lines of code.

Coding rules and conventions (last revisited 2011)

OpenIFS user workshop, Stockholm, June 2014 – p. 3/21

Basic code rules

IFS: Over 3 millions lines of code.

Coding rules and conventions (last revisited 2011)

Platform independence - optimised for Scalar and Vector
platforms

OpenIFS user workshop, Stockholm, June 2014 – p. 3/21

Basic code rules

IFS: Over 3 millions lines of code.

Coding rules and conventions (last revisited 2011)

Platform independence - optimised for Scalar and Vector
platforms

Parallel code - allows parallel computation, supports MPI
and OpenMP standards

OpenIFS user workshop, Stockholm, June 2014 – p. 3/21

Basic code rules

IFS: Over 3 millions lines of code.

Coding rules and conventions (last revisited 2011)

Platform independence - optimised for Scalar and Vector
platforms

Parallel code - allows parallel computation, supports MPI
and OpenMP standards

MPI/OpenMP called only through MPL/OML modules
(wrappers), CDSTRING should be set to the name of the
caller routine

OpenIFS user workshop, Stockholm, June 2014 – p. 3/21

Basic code rules

IFS: Over 3 millions lines of code.

Coding rules and conventions (last revisited 2011)

Platform independence - optimised for Scalar and Vector
platforms

Parallel code - allows parallel computation, supports MPI
and OpenMP standards

MPI/OpenMP called only through MPL/OML modules
(wrappers), CDSTRING should be set to the name of the
caller routine

Bit reproducibility (with respect to different NPROMA
values and different no. of PEs)

OpenIFS user workshop, Stockholm, June 2014 – p. 3/21

Some more rules...

Source code written in FORTRAN (F90, F77) and C
(soon also C++)

OpenIFS user workshop, Stockholm, June 2014 – p. 4/21

Some more rules...

Source code written in FORTRAN (F90, F77) and C
(soon also C++)

DGEMM is only standard library routine (FC mode)

OpenIFS user workshop, Stockholm, June 2014 – p. 4/21

Some more rules...

Source code written in FORTRAN (F90, F77) and C
(soon also C++)

DGEMM is only standard library routine (FC mode)

Error trapping usable for operational applications

OpenIFS user workshop, Stockholm, June 2014 – p. 4/21

Some more rules...

Source code written in FORTRAN (F90, F77) and C
(soon also C++)

DGEMM is only standard library routine (FC mode)

Error trapping usable for operational applications

64 bit arithmetic and 64 bit addressing

OpenIFS user workshop, Stockholm, June 2014 – p. 4/21

Some more rules...

Source code written in FORTRAN (F90, F77) and C
(soon also C++)

DGEMM is only standard library routine (FC mode)

Error trapping usable for operational applications

64 bit arithmetic and 64 bit addressing

Spectral model = specific timestep organisation
(S → L−1

→ F−1
→ G → F → L → S)

OpenIFS user workshop, Stockholm, June 2014 – p. 4/21

Some more rules...

Source code written in FORTRAN (F90, F77) and C
(soon also C++)

DGEMM is only standard library routine (FC mode)

Error trapping usable for operational applications

64 bit arithmetic and 64 bit addressing

Spectral model = specific timestep organisation
(S → L−1

→ F−1
→ G → F → L → S)

All model arrays are decomposed in the same way.

OpenIFS user workshop, Stockholm, June 2014 – p. 4/21

Some more rules...

Source code written in FORTRAN (F90, F77) and C
(soon also C++)

DGEMM is only standard library routine (FC mode)

Error trapping usable for operational applications

64 bit arithmetic and 64 bit addressing

Spectral model = specific timestep organisation
(S → L−1

→ F−1
→ G → F → L → S)

All model arrays are decomposed in the same way.

No fixed ordering of model fields

OpenIFS user workshop, Stockholm, June 2014 – p. 4/21

Some more rules...

Source code written in FORTRAN (F90, F77) and C
(soon also C++)

DGEMM is only standard library routine (FC mode)

Error trapping usable for operational applications

64 bit arithmetic and 64 bit addressing

Spectral model = specific timestep organisation
(S → L−1

→ F−1
→ G → F → L → S)

All model arrays are decomposed in the same way.

No fixed ordering of model fields

all configurations share a single top-level call tree (the
control levels has to be preserved:
MASTER -> CNT0 -> CNT1 -> CNT2 -> CNT3 -> CNT4 -> STEPO

MASTER -> CNT0 -> CVA1 -> CVA2 -> CONGRAD -> SIM4D -> CNT3 -> ...)

OpenIFS user workshop, Stockholm, June 2014 – p. 4/21

Parallelization strategy

OpenIFS user workshop, Stockholm, June 2014 – p. 5/21

Parallelization strategy

MPI = Distributed memory parallelization

OpenMP = Shared memory parallelization

Mixed/hybrid MPI and OpenMP parallelization

Further distribution (for massive computer)

Use of accelerators

OpenIFS user workshop, Stockholm, June 2014 – p. 6/21

Parallelization strategy - MPI

Transposition strategy = complete data required is
redistributed at various stages of a timestep so that the
arithmetic computations between two consecutive
transpositions can be performed without any
inter-processor communication.

Transpositions never involve global communication, but
only communication within each subset.

Inter-processor communication is localised in a few
routines and rest of the model need have no knowledge
of this activity.

Communication is realised through relatively long
messages (1Mbytes)

(Short messages are bounded by latency of interconnect;

long messages are bounded by bandwidth of interconnect)

OpenIFS user workshop, Stockholm, June 2014 – p. 7/21

Parallelization strategy - MPI II.

Different types of blocking strategy:

MP TYPE = 1 blocked mode

MP TYPE = 2 buffered mode - MPI_BSEND can return before
the receive is called on the receiving processor. (This
allows to reuse/destroy the sending array.)

MP TYPE = 3 immediate mode - send and receive are
returned immediately as the comms are performed in the
background. Additional calls are then required to check
or wait for the completion of a comm. (Sending array can
be reused/destroyed only after MPI is confirmed to do
so.)

OpenIFS user workshop, Stockholm, June 2014 – p. 8/21

Parallelization strategy - MPI cont.

GP computation

NPROC Total number of processors to be used

NPRGPNS Number of PEs in the North-South direction

NPRGPEW Number of PEs in the East-West direction

LSPLIT Allows the splitting of latitude rows

OpenIFS user workshop, Stockholm, June 2014 – p. 9/21

Parallelization strategy - MPI cont.

GP computation

NPROC Total number of processors to be used

NPRGPNS Number of PEs in the North-South direction

NPRGPEW Number of PEs in the East-West direction

LSPLIT Allows the splitting of latitude rows

SL comms as a specific feature

squarer shape of domain =

reduced comm volume for

SL

SL on demand - targets (=

reduces) the area of comms

computed from VMAX2

OpenIFS user workshop, Stockholm, June 2014 – p. 9/21

Parallelization strategy - MPI cont.

Transformation
NPRTRW Number of processors in zonal/meridional decomposition

(usually NPRTRW=NPRGPNS)

NPRTRV Number of processors in vertical decomposition

(usually NPRTRV=NPRGPEW)

Decomposition along latitudes/longitudes * levels
(there’s no further independence across the fields).

This means that for example T511 with and 91 levels
reaches scalability limit for transformation at around
511*91=46501 MPI processes. GP decomposition of the
same domain (NGPTOTG=348528) with the chunk size
NPROMA=10 reaches its limit at around 348528/10 =
34852 MPI processes.)

OpenIFS user workshop, Stockholm, June 2014 – p. 10/21

Parallelization strategy - MPI cont.

Spectral SI calculation

decomposition along NPRTRN = NPRTRV - trivial as
there’s only vertical dependency for SI,

transpositions inside spectral space computation

OpenIFS user workshop, Stockholm, June 2014 – p. 11/21

Parallelization strategy - MPI cont.

Summary

OpenIFS user workshop, Stockholm, June 2014 – p. 12/21

Parallelization strategy - OpenMP

Parallelize Loops between MPI calls

High level (all GP computation processed within only 4
OpenMP parallel regions) and Loop level (leftovers like
I/O)

Strong sequential equivalence required to obtain bit-wise
identical results - if multiple threads combine results into
a single value, sequential order must be enforced (weak
SE allowed but optionally only)

Easy to implement but requires more maintenance to
remain thread-save (bugs can lurk unknown)

OpenIFS user workshop, Stockholm, June 2014 – p. 13/21

Parallelization - MPI+OpenMP

Best strategy so far

Helps balancing

Lower MPI overheads

Memory saving (if done properly!!!)

Frees up processors for OS functions

But...

Deserves no ’critical’ regions

Need some special care with respect to geometry setup
when close to saturation limit (NPROMA requires further
optimisation w.r.t. number of threads)

OpenIFS user workshop, Stockholm, June 2014 – p. 14/21

NPROMA

Original code (designed for vector computers) coded with inner loops over

horizontal in groups of NPROMA to give long vectors

OpenIFS user workshop, Stockholm, June 2014 – p. 15/21

NPROMA

Original code (designed for vector computers) coded with inner loops over

horizontal in groups of NPROMA to give long vectors

No dependency in horizontal (important for avoiding memory conflicts)

OpenIFS user workshop, Stockholm, June 2014 – p. 15/21

NPROMA

Original code (designed for vector computers) coded with inner loops over

horizontal in groups of NPROMA to give long vectors

No dependency in horizontal (important for avoiding memory conflicts)

Physics and GP Dynamics computed in blocks of NPROMA

OpenIFS user workshop, Stockholm, June 2014 – p. 15/21

NPROMA

Original code (designed for vector computers) coded with inner loops over

horizontal in groups of NPROMA to give long vectors

No dependency in horizontal (important for avoiding memory conflicts)

Physics and GP Dynamics computed in blocks of NPROMA

Bit reproducible with different NPROMA & no. of PEs

OpenIFS user workshop, Stockholm, June 2014 – p. 15/21

NPROMA

Original code (designed for vector computers) coded with inner loops over

horizontal in groups of NPROMA to give long vectors

No dependency in horizontal (important for avoiding memory conflicts)

Physics and GP Dynamics computed in blocks of NPROMA

Bit reproducible with different NPROMA & no. of PEs

The same design now proven to be good for cache optimisation

OpenIFS user workshop, Stockholm, June 2014 – p. 15/21

NPROMA

Original code (designed for vector computers) coded with inner loops over

horizontal in groups of NPROMA to give long vectors

No dependency in horizontal (important for avoiding memory conflicts)

Physics and GP Dynamics computed in blocks of NPROMA

Bit reproducible with different NPROMA & no. of PEs

The same design now proven to be good for cache optimisation

NPROMA : Long for vector; short for scalar/cache

OpenIFS user workshop, Stockholm, June 2014 – p. 15/21

NPROMA

Original code (designed for vector computers) coded with inner loops over

horizontal in groups of NPROMA to give long vectors

No dependency in horizontal (important for avoiding memory conflicts)

Physics and GP Dynamics computed in blocks of NPROMA

Bit reproducible with different NPROMA & no. of PEs

The same design now proven to be good for cache optimisation

NPROMA : Long for vector; short for scalar/cache

So far only two such parameters: NPROMA & NRPROMA

OpenIFS user workshop, Stockholm, June 2014 – p. 15/21

NPROMA

Original code (designed for vector computers) coded with inner loops over

horizontal in groups of NPROMA to give long vectors

No dependency in horizontal (important for avoiding memory conflicts)

Physics and GP Dynamics computed in blocks of NPROMA

Bit reproducible with different NPROMA & no. of PEs

The same design now proven to be good for cache optimisation

NPROMA : Long for vector; short for scalar/cache

So far only two such parameters: NPROMA & NRPROMA

Memory saving and easy OpenMP implementation

OpenIFS user workshop, Stockholm, June 2014 – p. 15/21

NPROMA

Original code (designed for vector computers) coded with inner loops over

horizontal in groups of NPROMA to give long vectors

No dependency in horizontal (important for avoiding memory conflicts)

Physics and GP Dynamics computed in blocks of NPROMA

Bit reproducible with different NPROMA & no. of PEs

The same design now proven to be good for cache optimisation

NPROMA : Long for vector; short for scalar/cache

So far only two such parameters: NPROMA & NRPROMA

Memory saving and easy OpenMP implementation

Variability of NPROMA allows to keep control over memory conflicts (by

over-dimensioning)

OpenIFS user workshop, Stockholm, June 2014 – p. 15/21

NPROMA II.

Illustration of NPROMA influence to model performance

OpenIFS user workshop, Stockholm, June 2014 – p. 16/21

Data structures

Model arrays decomposition

usually no decomposition over levels and fields
Example for GP arrays:

Model Data(1:Decomp 2D Field,1:NFLEVG,1:NFIELDS)

⇒

Model Data(1:NPROMA,1:NFLEVG,1:NFIELDS,1:NGPBLKS)

various places (GFLS) use different decomposition ⇒

transpositions are moving data between processors to
form a new decomposition

OpenIFS user workshop, Stockholm, June 2014 – p. 17/21

Data structures - GP space

GMV
prognostic variables involved in the SI

only attribute is field pointer (MU, MV,...)

three modules:

YOMGV : contain the main GP arrays (GMV, GMVT1, GMV5, GMV_DEPART, GMVS,

GMVT1S, GMV5S, GMVS_DEPART)

TYPE_GMVS: type descriptor to address the GMV arrays: (YT0, YT9, YT1, YPH9, YT5,

YAUX)

GMV_SUBS: Contains subroutines used for setting up GMV

usage (inside parallel regions):

DO JLEV=1,NFLEVG

DO JROF=KST,KPROF

PGMVT1(JROF,JLEV,YT1%MU)=PGMVT1(JROF,JLEV,YT1%MU)-POMVRL(JROF)

PGMVT1(JROF,JLEV,YT1%MV)=PGMVT1(JROF,JLEV,YT1%MV)-POMVRM(JROF)

ENDDO

ENDDO

OpenIFS user workshop, Stockholm, June 2014 – p. 18/21

Data structures - GP space II

GFL

all other variables

can be GP or SP

plenty of attributes - very flexible field definition through namelist

...

OpenIFS user workshop, Stockholm, June 2014 – p. 19/21

Data structures - GP space II

GFL

all other variables

can be GP or SP

plenty of attributes - very flexible field definition through namelist

...

SL buffers

PB1(NASLB1,NFLDSLB1) buffer for interpolations

PB2(NPROMA,NFLDSLB2,NGPBLKS) buffer to communicate non lagged to lagged dynamics

NASLB1 (over) number of columns in the core+halo region

NFLDSLB1 number of fields times vert. dimension in PB1

NFLDSLB2 number of fields times vert. dimension in PB2

OpenIFS user workshop, Stockholm, June 2014 – p. 19/21

Data structures - Spectral space

Module YOMSP contains:

SPA1(NFLSUR,2) mean wind (in LAM only)

SPA2(NSPEC2, NS2D) 2D spectral arrays

SPA3(NFLSUR, NSPEC2,NS3D) 3D spectral arrays

They are not NPROMA arrays!!!

NFLSUR (over) number of vertical level

(bank conflict!)

NSPEC2 number of spectral coefficients

NS3D, NS2D number of 3D/2D spectral fields

OpenIFS user workshop, Stockholm, June 2014 – p. 20/21

Future code evolution

IFS = Integrated Forecast System
Same source code used in forecast and assimilation
tasks: One executable allowing for different functionality.

OpenIFS user workshop, Stockholm, June 2014 – p. 21/21

Future code evolution

IFS = Integrated Forecast System
Same source code used in forecast and assimilation
tasks: One executable allowing for different functionality.

OOPS = Object-Oriented Prediction System

Isolate the data assimilation from the complexity of
the model and observation operator

OOP - abstract layer in C++ and model specific layer
mostly coded in Fortran.

One executable for complete set of tasks - saving in
I/O handling, extended parallelism,...

OpenIFS user workshop, Stockholm, June 2014 – p. 21/21

	Outline
	Basic code rules
	Basic code rules
	Basic code rules
	Basic code rules
	Basic code rules
	Basic code rules

	Some more rules...
	Some more rules...
	Some more rules...
	Some more rules...
	Some more rules...
	Some more rules...
	Some more rules...
	Some more rules...

	Parallelization strategy
	Parallelization strategy
	Parallelization strategy - MPI
	Parallelization strategy - MPI II.
	Parallelization strategy - MPI cont.
	Parallelization strategy - MPI cont.

	Parallelization strategy - MPI cont.
	Parallelization strategy - MPI cont.
	Parallelization strategy - MPI cont.
	Parallelization strategy - OpenMP
	Parallelization - MPI+OpenMP
	NPROMA
	NPROMA
	NPROMA
	NPROMA
	NPROMA
	NPROMA
	NPROMA
	NPROMA
	NPROMA

	NPROMA II.
	Data structures
	Data structures - GP space
	Data structures - GP space II
	Data structures - GP space II

	Data structures - Spectral space
	Future code evolution
	Future code evolution

