SMOS/SMAP update & VOD assimilation

Pete Weston

ECMWF-MO Land Surface DA Teams Meeting, 5th June 2023

SMOS/SMAP update

- SMOS and SMAP Tbs continue to be monitored against NWP background
 - Automatic alerts recently implemented
 - Useful for picking up new RFI sources/data anomalies
- SMOS NN product assimilated into SEKF
 - ~16% of observations are rejected (mainly from fg_depar check)
 - Reduced to ~12% with adaptive bias correction (planned for 50r1)
 - Retraining required for new 49r1 land surface climatology and re-processed SMOS (2024)
- Future plans
 - Develop improved observation operator within CERISE
 - Exploit finer discretization of soil model in 50r1/2
 - Revisit Tb assimilation using improved observation operator

SMOS SMOS 190 channel: 0 Angle 30 - 40 Globa

SMOS multi-year monitoring

Monitor latest re-processed v724 SMOS L1C Tbs against stable ERA5 reference from 2010 to 2021

Seasonal biases successfully removed

- Key take aways for Tb assimilation:
 - Improved RFI screening (orange v blue)
 - Newly developed bias correction performs consistently (green v orange)
 - Data quality is consistent over entire lifetime (after RFI screening) potential assimilation into future reanalyses

Rescaling observed VOD to model LAI

- Using satellite VOD observations due to their temporal frequency and insensitivity to clouds
- VOD observations from SMOS (L-band) and AMSR2 (C-, X-band)
 - Basic quality control applied (e.g. RFI, mountains, wetlands)
 - Reformatted into Tco1279 GRIB files for ingestion into offline LDAS
 - Using observations from 2016-2021
- Model LAI taken from monthly CONFESS files (based on CGLS dataset):
 - LAI for high and low vegetation considered separately
- Computed CDF-matching parameters to rescale VOD to LAI:
 - 2016-2017 data used for rescaling (validated on 2018-2019)
 - Produced monthly CDF-matching parameter files for all combinations of VOD band and low/high LAI = 72 sets of params

Assimilating VOD to analyse LAI

- Changes to offline LDAS to:
 - Ingest VOD observations (L, C and X-band separately)
 - Perform rescaling, using pre-computed CDF-matching params
 - Extend control vector to include LAI (high and low)
 - Assimilate rescaled obs to update LAI dynamically
 - Analysed LAI ingested into offline surface model
- Experiments run from 2018-2021

Assimilating VOD to analyse LAI

- Performing diagnostics and comparisons to current climatology
- Current/next steps:
 - Read in LAI analysis in place of climatology in full IFS and run forecast-only experiments
 - Run verification to measure NWP impact of dynamically updated LAI compared to monthly climatology

