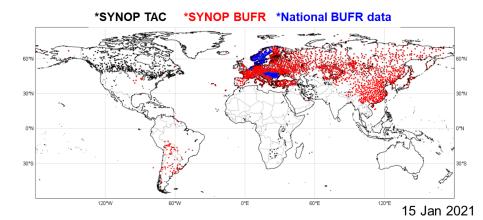
ECMWF-Met Office land surface data assimilation meeting 5 June 2023, University of Reading

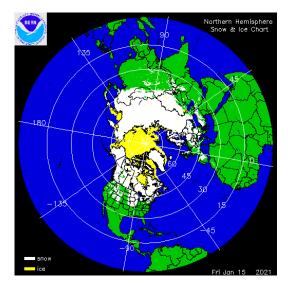
Recent snow DA development at ECMWF

Kenta Ochi, Patricia de Rosnay, Gabriele Arduini, Gianpaolo Balsamo

Snow data assimilation at ECMWF

Observations:


- Conventional snow depth data: SYNOP and National networks
- Snow cover extent: NOAA NESDIS/IMS daily product (4km)
 - Available daily at 23 UTC, assimilated in the next analysis at 00UTC

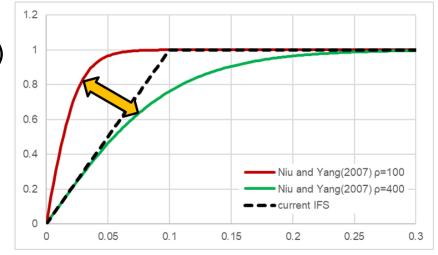


- Optimal Interpolation (OI)
 - Based on horizontal and vertical structure function in Brasnett (1999)
- The result of the data assimilation is used to initialize NWP

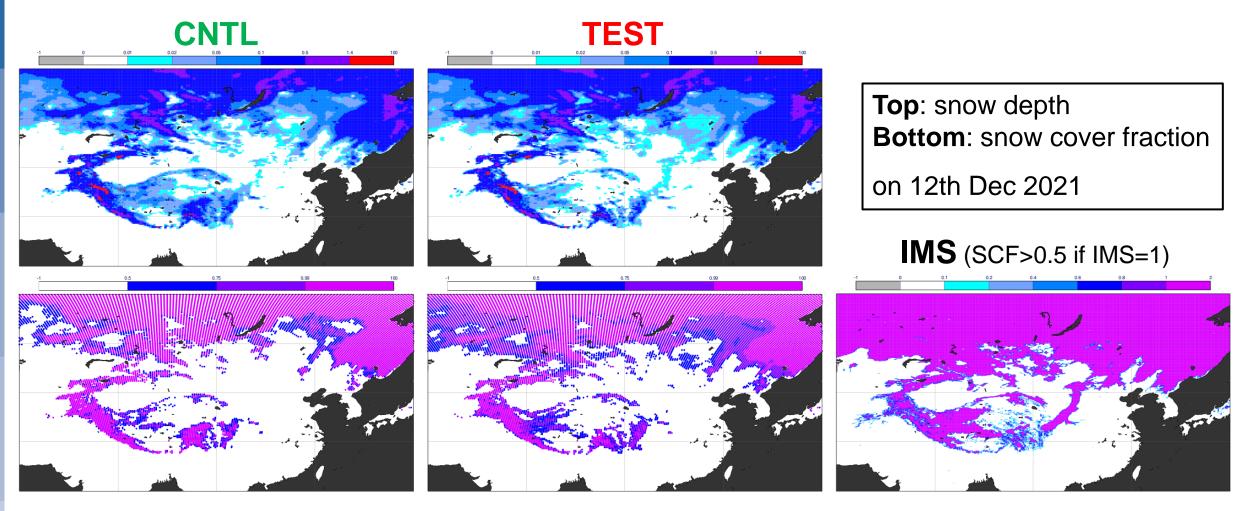
One of current issues:

- IMS assimilation below 1500m only, leading to excess snow depth on high mountains
- Especially on the Tibetan Plateau (Orsolini et al, 2019)

Snow DA and related model changes proposed for CY49R1


	Current system	Proposed for CY49R1	
IMS mask	based on altitude (>1500m)	based on SDFOR* (>250m)	
IMS thinning	select 1 from every 36	select closest 1 to a gaussian grid of 40kr	
IMS snow depth (SD _{IMS})	5cm	3cm	
Condition to assimilate SD _{IMS}	IMS=1 & SD_{model} < 10^{-9} cm	IMS=1 & SD _{model} < 1cm	
Capping value for snow depth	1.4m	3.0m	
Vertical correlation length in OI	800m	500m	

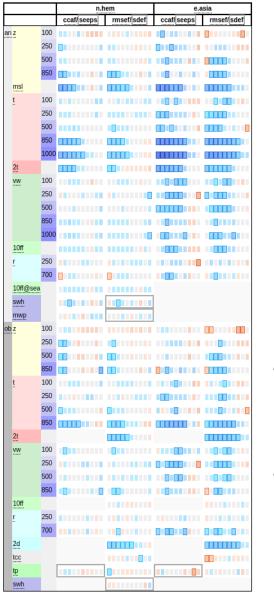
 To improve snow cover fraction for shallow snow, the SCF parameterization is changed to Niu and Yang (2007)

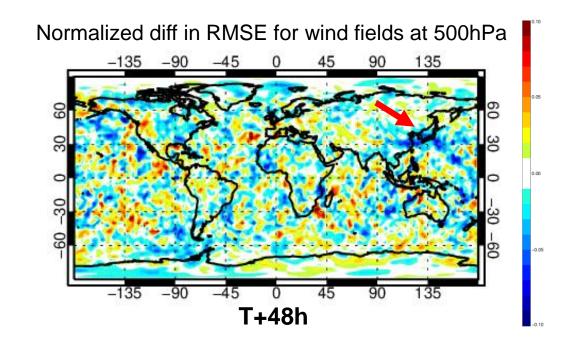

$$f_{sno} = \tanh\left(\frac{h_{sno}}{2.5z_{0g}(\rho_{sno}/\rho_{new})^m}\right)$$

• $z_{0q} = 0.1, \rho_{new} = 100, m = 1$ as with CLM4, CLM4.5

Impact on snow depth and snow cover fraction

- Snow depth is reduced by assimilating IMS on the Tibetan Plateau
- SCF is improved (increased) on the Tibetan Plateau and around snow lines by the SCF change




Impact on forecast skill in 2 winter seasons

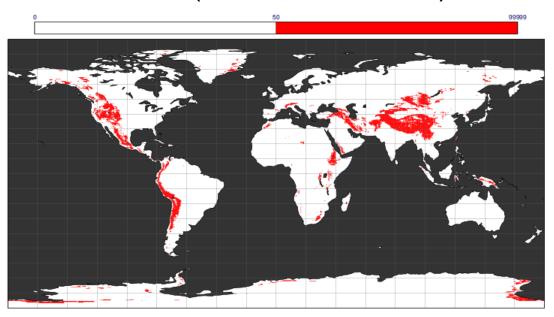
Winter 2020/21

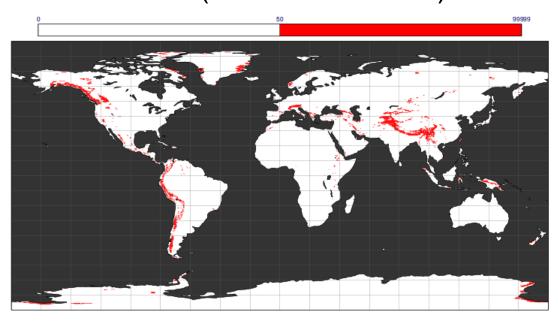
L			n.he		e.a	
L			ccaf/ seeps	rmsef/sdef	ccaf/ seeps	rmsef/sdef
an	Z	100				
		250				
		500				
		850				
	msl					
	t	100				
		250				
		500				
		850				
		1000				
	2t					
		100				
		250				
		500				
		850				
		1000				
	10ff					
	[250				
		700				
	10ff@sea					
	swh					
	mwp					
ob	z	100				
		250				
		500				
		850				
	t	100				
		250				
		500				
		850				
	2t					
	w	100				
		250				
		500				
		850				
	10ff					
	ï	250				
		700				
	2d					
	tcc					
	tp					
	swh					

Winter 2021/22

- Significant improvements in the NH, especially in East Asia
- Large impact of snow on forecast skill

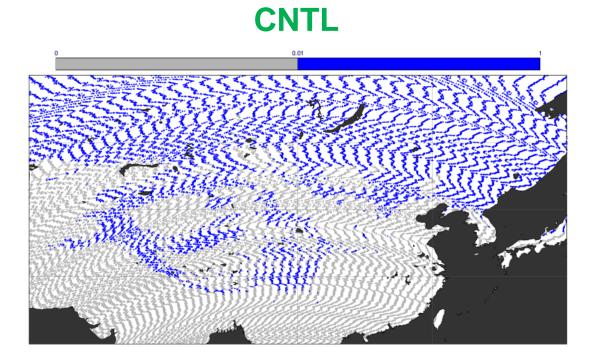
Summary and ongoing works

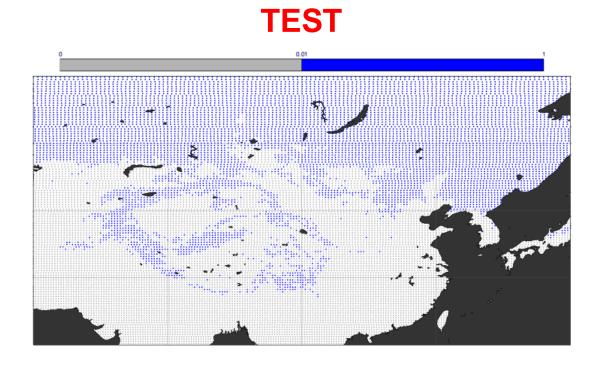

- Snow DA and related model changes have been tested for the next cycle
- The snow changes have large impact on forecast skill in the NH
 - Not only near surface temperature, but also in the mid-to-upper troposphere
- Ongoing works:
 - Implement snow DA in the offline LDAS for SEAS6 and ERA6-Land
 - ESA CCI Snow assimilation in ERA6
 - Snow DA in a unified multivariate ensemble-based LDAS (de Rosnay et al, 2022)



IMS mask

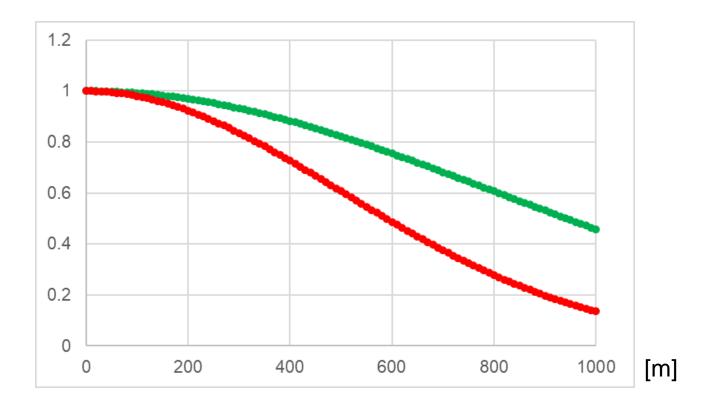
CNTL (altitude > 1500m)




TEST (SDFOR > 250m)

• IMS is not assimilated on the areas with red shading

Thinning for IMS



- Number of IMS is reduced from 251926 to 70125
- More effective and efficient use of IMS
 - Considering the current horizontal correlation in the OI

Vertical correlation function

$$\beta(\Delta z_{ij}) = \exp\left(-\left[\frac{\Delta z_{ij}}{h}\right]^2\right)$$
 \longrightarrow h is changed from 800m to 500m

