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Abstract7

This paper presents a community effort to develop good practice guidelines for the validation8

of global coarse-scale satellite soil moisture products. We provide theoretical background, a re-9

view of state-of-the-art methodologies for estimating errors in soil moisture data sets, practical10

recommendations on data pre-processing and presentation of statistical results, and a recom-11

mended validation protocol that is supplemented with an example validation exercise focused12

on microwave-based surface soil moisture products. We conclude by identifying research gaps13

that should be addressed in the near future.14

1 Introduction15

The validation of soil moisture data sets aims to provide quantitative information about their16

quality by estimating systematic and random errors (JCGM , 2008). For satellite-derived prod-17

ucts, this task is far from trivial because high-quality reference data are rarely available at the18

coarse spatial resolution of space borne microwave instruments that are predominantly used for19

soil moisture retrievals (∼ 101 − 103 km2), and the retrieval quality is affected by numerous20

spatially and temporally variable factors (i.e. climatic, topographic and land cover conditions as21

well as instrument characteristics and the retrieval algorithm structure) (Ochsner et al., 2013;22

Crow et al., 2012; Molero et al., 2018).23

A host of methods exist to reconcile the distinct spatio-temporal characteristics of satellite24

and reference data sets (sampling and overpass times, penetration depths, representativeness25

errors, etc.; Wang et al., 2012; Albergel et al., 2008; Gruber et al., 2013a; Nicolai-Shaw et al.,26

2015; Colliander et al., 2017), which is required before calculating various performance metrics27

(correlation coefficients, root-mean-square-differences, triple collocation analysis, etc.; Entekhabi28

et al., 2010a; Albergel et al., 2013; Gruber et al., 2016a; Loew et al., 2017). Given the complexity29
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of the validation problem, however, ambiguous results for the quality and ranking of satellite30

soil moisture products can be found in the literature (e.g., Wagner et al., 2014) depending31

on which pre-processing and evaluation strategies were followed and which reference data were32

used. This paper is a community effort that addresses this issue and aims towards standardizing33

good practices for the validation of satellite-based near-surface soil moisture retrievals.34

Section 2 provides a review of on-going activities regarding the standardization of satellite35

soil moisture validation activities. Section 3 describes the most common reference data sources36

used for soil moisture validation. Section 4 discusses relevant theoretical aspects and the most37

common methods (including data pre-processing) for assessing soil moisture data quality. Section38

5 presents a community-agreed validation guidance protocol with an example implementation39

of that protocol provided in Appendix A. Finally, Section 6 discusses research gaps that should40

be addressed in the near future.41

2 Towards standardized validation practices42

Many efforts have been made to assess and standardize validation practices across Earth obser-43

vation (EO) communities (Zeng et al., 2015; Loew et al., 2017; Su et al., 2018). In this section44

we review activities most relevant for satellite soil moisture products.45

2.1 CEOS LPV46

The main authority that guides validation activities for satellite-retrieved data of biogeophys-47

ical variables is the Committee on Earth Observation Satellites (CEOS) Working Group on48

Calibration and Validation (http://ceos.org/ourwork/workinggroups/wgcv/; last access: 149

July 2019). Activities related to soil moisture are coordinated by its Land Product Validation50

(LPV) subgroup (https://lpvs.gsfc.nasa.gov/; last access: 1 July 2019). The CEOS LPV51

defines four validation stages (see Table 1) that represent the level of sophistication of validation52

protocols employed for a particular data product. Relevant for the work presented here is that53

reaching validation stage 3 requires the implementation of a sophisticated validation framework,54

as illustrated in Figure 1. In such a framework, standardized community-agreed methods that55

are ideally described in a “Validation Good Practice Document” should be employed using fidu-56

cial reference data (see Sec. 3) to generate standardized validation reports. With this paper we57

aim at providing such a document. The last validation stage 4 is reached once these validation58
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reports are updated on a regular (at least annual) basis.59

2.2 Quality Assurance Frameworks60

The CEOS endorses the Quality Assurance Framework for Earth Observation (QA4EO; http:61

//qa4eo.org/; last access: 1 July 2019) as a framework to facilitate the provision of traceable62

quality indicators which “shall provide sufficient information to allow all users to readily evaluate63

the ‘fitness for purpose’ of the data or derived product” (QA4EO , 2010). The QA4EO provides64

top-level guidance documents and templates that encourage the use of metrological principles65

(see Sec. 2.3).66

In 2014, the Quality Assurance for Essential Climate Variables (QA4ECV; http://www.67

qa4ecv.eu/; last access: 1 July 2019) project was initiated to developed a set of guidelines for68

the provision of traceble quality information taking in to account the key principles of QA4EO69

(Scanlon et al., 2017). To demonstrate how reliable and traceable quality information can70

be provided, quality assurance frameworks were developed for selected ECVs (not including71

soil moisture; e.g., Peng et al., 2017). The guidelines developed by QA4EO and QA4ECV72

are currently embraced by the Copernicus Climate Change Service (C3S; https://climate.73

copernicus.eu/; last access: 1 July 2019) in order to build quality assured, fully traceable74

Climate Data Records.75

In 2018, the Quality Assurance for Soil Moisture project (QA4SM; https://qa4sm.eodc.76

eu/; last access: 1 July 2019) was launched, specifically to create an online validation tool that77

employs a community-agreed validation protocol (which is described in this paper) for automat-78

ically and regularly generating soil moisture product validation reports, thereby addressing the79

CEOS validation framework requirements (see Figure 1).80

2.3 Metrology and traceability81

The CEOS and the QA4EO encourage the use of metrological principles for validation purposes,82

which are described in the “Guide to the expression of uncertainty in measurement” (GUM;83

JCGM , 2008). The GUM is a reference document of the metrological community that provides84

strict guidelines on how quality estimates of measurements should be obtained and reported.85

In essence, it states that, since they never perfectly represent the true state of the physical86

quantity being measured, all measurements should be complemented by uncertainty estimates87

that summarize their probability density function (pdf). Furthermore, it states that these88
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uncertainties should be obtained by propagating the uncertainties from all components that89

contribute to the measurement process in a way that is traceable back to the “International90

System of Units” (SI) standards, either through the standard method for the propagation of91

uncertainty (Parinussa et al., 2011; Merchant et al., 2017) or, if not possible analytically, through92

Monte Carlo simulations (JCGM , 2008).93

However, while being relatively straightforward in a laboratory or numerical environment,94

the traceable propagation of uncertainties in space borne remote sensing measurements and re-95

trievals thereof, in particular of soil moisture, faces two particular challenges. First, footprints of96

current microwave instruments used for retrieving soil moisture span over tens to thousands of97

square kilometers, thereby covering a large variety of climatic, topographic, and land cover condi-98

tions. Although certain large-scale homogeneous regions are used for calibrating instruments and99

determining Level 1 (L1) backscatter or brightness temperature uncertainties (e.g., rainforests100

or polar snow fields; Figa-Saldaña et al., 2002; Macelloni et al., 2006), it is virtually impossible101

to obtain global perfectly traceable uncertainty estimates representing all possible measurement102

conditions. Second, uncertainty propagation assumes that the models used to propagate uncer-103

tainties are themselves perfect (Parinussa et al., 2011). For satellite soil moisture retrievals, this104

is particularly problematic because uncertainties resulting from simplifications and assumptions105

in both the L1 processing (i.e. geometric correction and radiometric calibration) and the Level106

2 (L2) soil moisture retrieval algorithms cannot be accounted for. The soil moisture and other107

EO communities have established certain strategies to recover this broken traceability chain108

by validating the soil moisture estimates post retrieval against a range of reference data from109

various sources. Section 3 will discuss the requirements and current availability of such reference110

measurements suited for validation activities. Before entering those discussions, it is necessary111

to provide some relevant terminology.112

2.4 Terminology113

The CEOS and the QA4EO encourage the use of the terminology used within the metrological114

community as described in the “International Vocabulary of Metrology” (VIM; JCGM , 2012).115

However, there is a certain level of ambiguity in the existing EO literature, and even within116

the VIM and the GUM, regarding the usage of important terms such as errors, uncertainties,117

validation, and others. For a comprehensive summary of the most common definitions (from the118

VIM, the CEOS, and other sources) we refer the reader to Loew et al. (2017). For the purpose119
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of this paper we stress that:120

• the term error refers to the deviation of a single measurement from the true value of the121

quantity being measured (which is hence always unknown), whereas the term uncertainty122

refers to the probability distribution underlying an error. For validation purposes, this123

probability distribution is the actual quantity of interest;124

• according to the GUM, the uncertainty of a measurement generally contains both sys-125

tematic and random components. The laboratory environment of metrological practices126

typically allows for thorough measurement calibration, where it is assumed that systematic127

errors can be properly determined and corrected. Satellite soil moisture retrievals, how-128

ever, usually contain considerable systematic errors which, especially for model calibration129

and refinement, provide better insight when estimated separately. Therefore, we use the130

term bias to refer to systematic errors only and the term uncertainty to refer to random131

errors only, specifically to their standard deviation (or variance);132

• in the EO validation literature, bias is commonly defined as the temporal mean difference133

between two data sets. We follow the broader statistical definition of bias as auto-correlated134

error, or as a property of an estimator to systematically over- or underestimate some135

quantity (Dee, 2005). For better separability of its components, we use the terms first-136

order bias and second-order bias to refer more specifically to additive and multiplicative137

systematic errors, respectively (see Sec. 4.4.1);138

• the terms trueness, precision, and accuracy are popular antonyms for systematic errors,139

random errors, and the combined systematic plus random errors, respectively (JCGM ,140

2012). However, trueness and precision are very rarely used in the soil moisture validation141

literature and the term accuracy is often ambiguously used to refer to either systematic142

or random errors alone;143

• in Earth sciences, the term validation is often distinguished from the term evaluation such144

that validation is used to refer to bias or uncertainty assessment using highly accurate or145

at least well traceable in situ reference data (often misleadingly referred to as “ground146

truth”; see Sec. 4.2), whereas evaluation is used to refer to the comparison against other147

coarse-resolution satellite or modelled data with supposedly less well-defined uncertain-148

ties. However, technically, validation more specifically refers to quantitative data quality149
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assessment (Justice et al., 2000) whereas evaluation more broadly refers to “the process of150

judging something’s quality” (Loew et al., 2017). For simplicity, we use the term validation151

in this paper to refer to the process of estimating biases and uncertainties regardless of152

the reference data source used;153

• the concept of uncertainty is closely related to the concept of confidence intervals. Both154

aim at describing the pdf underlying an estimate, although the term uncertainty is more155

commonly used for describing the pdf behind an estimate that results from measurement156

errors (see Sec. 4.1), whereas the term confidence interval is more commonly used for157

describing the pdf behind statistical parameters (such as statistical moments or validation158

metrics that derive from these moments) that results from finite sample sizes (see Sec.159

4.5).160

3 Reference data161

The term fiducial reference measurements is often used to refer to a suite of independent, fully162

characterized, and traceable measurements that meet the requirements on reference standards163

as described by QA4EO (Fox , 2010), which should be used to assess the quality of EO prod-164

ucts. However, although highly accurate in situ soil moisture measurement techniques exist and165

uncertainties of the measurement devices can be reliably determined through laboratory and166

field calibration (Cosh et al., 2004, 2006; Rüdiger et al., 2010), using such point-scale measure-167

ments for validating satellite soil moisture data sets over large areas is a very difficult task owing168

to the coarse resolution of space borne microwave instruments and vast heterogeneities across169

landscapes (Famiglietti et al., 2008; Brocca et al., 2010a; Miralles et al., 2010; Crow et al., 2012;170

Nicolai-Shaw et al., 2015; Molero et al., 2018).171

For satellite validation purposes, numerous field and airborne campaigns have been carried172

out to obtain reliable satellite footprint scale reference data and to quantitatively assess the173

potential spatio-temporal representativeness (see Sec. 4.2) of single or small sets of in situ soil174

moisture stations (De Rosnay et al., 2006; Brocca et al., 2012; McNairn et al., 2015). Addition-175

ally, validation activities are complemented with land surface model output and other satellite176

products for comparison to get as complete a picture as possible of a product’s error character-177

istics (Brocca et al., 2010b; Draper et al., 2013; Al-Yaari et al., 2014; Dorigo et al., 2015; Kerr178

et al., 2016; Miyaoka et al., 2017). The various reference data sources and their limitations are179
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discussed below. A list of publicly available reference data sources that are commonly used for180

satellite soil moisture validation is provided in Table 2.181

3.1 Field campaigns182

Field campaigns are labour-intensive studies that use highly accurate measurement techniques183

to obtain reliable and traceable representations of larger scale average soil moisture. Unfortu-184

nately, these campaigns provide only some snapshots in time, whereas the validation of satellite185

products requires long and consistent time series (see Sec. 4.4). Therefore, some field cam-186

paigns have identified and set up a limited number of permanent measurement stations (<15) at187

temporally stable locations (Vachaud et al., 1985; Starks et al., 2006) that sufficiently capture188

sub-pixel heterogeneities, allowing the continuous observation of satellite footprint-scale areas189

with sufficient and well characterized accuracy.190

Ground measurements are often supplemented with airborne observations, which can be used191

to either directly validate the L1 satellite measurements or the derived soil moisture retrievals192

over a much larger area, allowing to evaluate spatial soil moisture variability across multiple193

satellite grid cells. Moreover, they can provide valuable information about soil moisture (or194

backscatter/brightness temperature) sub-pixel variability.195

Early field campaigns were focused on understanding large-scale soil moisture dynamics with196

aircraft support such as HAPEX-MOBILHY (Noilhan et al., 1991), BOREAS (Cuenca et al.,197

1997), and the Washita’92 campaigns (Jackson et al., 1995), assessing the potential of soil198

moisture monitoring as a part of hydrologic modeling. This evolved into satellite associated199

field campaigns such as the 1997 Southern Great Plains Hydrology Experiment (SGP97) and200

the Soil Moisture Experiments (SMEX) in 2002-2004 in the United States (Jackson et al., 1999,201

2005; Bindlish et al., 2006, 2008), the National Airborne Field Experiments (NAFE) in Australia202

(Panciera et al., 2008), the Australian Airborne Calibration/Validation Experiments for SMOS203

(AACES; Peischl et al., 2012), the Canadian Experiment in Soil Moisture (CANEX-10; Magagi204

et al., 2013), and the CAROLS airborne campaigns (Albergel et al., 2011; Zribi et al., 2011).205

These campaigns established a protocol for the synchronous collection of ground-based soil206

moisture measurements with airborne microwave instrumentation, which were supplemented207

with long-term in situ monitoring stations, thus providing long-term high density validation208

sites for satellites.209

In the process of developing standardized data collection protocols, these field campaigns210
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specifically focused on the investigation of the spatial distribution of soil moisture and its evo-211

lution with drying or wetting, the soil moisture variability across scales, and the statistical212

relationship between spatial standard deviation and extent scale. These parameters drive the213

potential representativeness of in situ measurements for coarse soil moisture product validation214

and their knowledge hence allows the determination of the number of ground samples required215

to obtain sufficiently reliable validation reference data (Famiglietti et al., 2008).216

3.2 In situ networks217

A large number of in situ soil moisture networks exist worldwide with different quality and218

spatial sampling densities as well as varying sensing depths (Dorigo et al., 2011b; Babaeian219

et al., 2019). For validation purposes, the soil moisture community distinguishes between dense220

networks, which have a large number of soil moisture stations located within single satellite221

footprints, and sparse networks, where footprint-scale areas usually contain only a single or very222

few soil moisture stations, although the quantitative cut-off between the two is not well-defined.223

The overall global coverage of in situ soil moisture networks (accessible and suited for satellite224

soil moisture validation) is unevenly distributed across the globe and particularly scarce in the225

tropical regions, the Southern Hemisphere and boreal regions (Fig. 2; Ochsner et al., 2013).226

3.2.1 Dense networks227

To meet the requirements on fiducial reference data (Fox , 2010), the SMAP Calibration and228

Validation (Cal/Val) Team defined certain criteria for dense measuring networks, so-called core229

validation sites, ensuring that they provide a traceable representation of footprint-scale soil230

moisture and therefore allow for a reliable assessment of satellite soil moisture data quality.231

Currently, 18 densely stationed and thoroughly calibrated in situ measurement sites fulfill these232

requirements (Jackson et al., 2012; Colliander et al., 2017), operated by independent SMAP233

Cal/Val partners.234

These SMAP Cal/Val partners have a diverse heritage. Some networks were deployed for235

Cal/Val of the AMSR-E product (Jackson et al., 2010) or SMOS (Djamai et al., 2015), while236

others evolved from hydrologic monitoring networks (Bogena et al., 2018) or from some other237

purpose such as aircraft validation projects like AIRMOSS (Moghaddam et al., 2010). During the238

SMAP project, several networks were selected as potential candidate sites for Cal/Val activities.239

The candidate networks whose accuracy versus physically collected volumetric soil moisture was240
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already demonstrated and documented in a traceable manner, were promoted to core validation241

sites. To date, these sites are considered to provide the best possible ground reference data for242

satellite footprint-scale soil moisture dynamics (Colliander et al., 2017).243

3.2.2 Sparse networks244

A host of other operational and experimental in situ sites exist worldwide, operating soil mois-245

ture measurement stations that are potentially suited for soil moisture validation yet with a246

considerably smaller station density and often lacking information on their coarse-scale repre-247

sentativeness and their own inherent error characteristics (Gruber et al., 2013a; Chen et al.,248

2017). Nonetheless, these sites are valuable to complement core validation sites due to their249

considerably larger spatial coverage across a variety of climatic regimes and biomes (see Sec. 4).250

An important source for data from sparse networks is the International Soil Moisture Network251

(ISMN; Dorigo et al., 2010, 2011b), which is a data hosting facility that harmonizes soil moisture252

measurements from in situ networks worldwide, applies automated and uniform quality control253

procedures to flag suspicious measurements (Dorigo et al., 2013), and distributes them on their254

website (http://ismn.geo.tuwien.ac.at/; last access: 1 July 2019) on a cost-free basis in255

a common format. The ISMN was established by ESA in the framework of SMOS Cal/Val256

activities. Currently, it contains data from more than 2400 stations worldwide, operated across257

59 different measurement networks (see Figure 2) including historical networks that are no longer258

operational.259

3.3 Model simulations260

Due to the limited coverage and representativeness of ground reference data, validation activ-261

ities are complemented with soil moisture simulations from land surface models (LSMs) as an262

alternative reference data source (Lahoz and De Lannoy , 2014). Model simulations can provide263

spatially complete global soil moisture maps at a spatial (grid) resolution similar to that of satel-264

lite footprints, but they may still contain considerable representativeness errors (see Sec. 4.2)265

originating from simplifications of sub-grid heterogeneities, a scale-mismatch of the underlying266

atmospheric forcing data, errors in the model parameterization, or simply because the meaning267

of the modelled “soil moisture” is different. Moreover, biases and uncertainties in model simu-268

lations are highly variable and often also not well quantified (Koster et al., 2009; Albergel et al.,269

2013), making it difficult to separate satellite retrieval errors from modelling errors in a direct270
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comparison (see Sec. 4).271

Some examples of readily available global model-based data sets that have been used for272

satellite soil moisture validation activities (Albergel et al., 2012; Al-Yaari et al., 2014; Kerr et al.,273

2016; Dorigo et al., 2017; Gruber et al., 2017; Miyaoka et al., 2017) include simulations from274

NASA’s Global Land Data Assimilation System (GLDAS; Rodell et al., 2004), NASA’s Modern-275

Era Retrospective analysis for Research and Applications (MERRA) land data products (Reichle276

et al., 2011, 2017a), and the European Center for Medium-Range Weather Forecasts (ECMWF)277

Land Surface Reanalysis (ERA-Interim/Land) data sets (Balsamo et al., 2015).278

3.4 Satellite products279

A multitude of soil moisture products from different satellite sensors (Babaeian et al., 2019)280

are commonly used as additional coarse resolution reference data sets for validation purposes,281

either for consistency assessment through direct comparison (Al-Yaari et al., 2014; Burgin et al.,282

2017), or within triple collocation analysis (Dorigo et al., 2010; Draper et al., 2013, see Sec. 4).283

Like model simulations and sparse networks, they typically lack reliable and traceable bias and284

uncertainty characterization. Also, available satellite sensors observe at different wavelengths,285

polarizations, and incidence angles and have therefore a varying sensitivity to soil moisture286

(Ulaby et al., 2014). Hence, the information gleaned from a direct comparison is limited (see287

Sec. 4.4.2). Furthermore, different satellite retrieval products (and model simulations) can use288

similar ancillary information such as temperature and/or vegetation information in a radiative289

transfer model, resulting in correlated errors (Gruber et al., 2016b) which may complicate a fair290

data comparison (see Sec. 4.4.2). Comprehensive lists of commonly used and publicly available291

satellite soil moisture products, including some validation information where available, can be292

found at https://lpvs.gsfc.nasa.gov/producers2.php?topic=SM (last access: 1 July 2019)293

and in Babaeian et al. (2019).294

4 Theory295

This section provides the theoretical background for error characterization and how it relates to296

satellite soil moisture validation, including the assumptions, limitations and pre-processing steps297

involved. Although our main focus here is the validation of near-surface satellite soil moisture298

products, many of the principles discussed below can be equally applied to assess the quality299
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of soil moisture products from other sources, as well as of other biogeophysical variables (Loew300

et al., 2017).301

4.1 Errors302

A measurement error ex is defined as the deviation of a measurement x, in our case a satellite303

soil moisture retrieval, from the true state t of the quantity under observation (JCGM , 2008):304

ex = x− t (1)

Important for understanding errors is that the “truth” is a hypothetical concept. For the case305

of space borne microwave measurement instruments, actual satellite footprints are overlapping306

elliptical areas with strong signal intensity gradients from the footprint center outwards (de-307

pending on the antenna gain pattern) and varying surface property dependent vertical support308

(Ulaby et al., 2014). Horizontal footprint boundaries are commonly defined as the -3 dB region309

(i.e. the antenna main beam region that covers 50% of the signal’s power). Products derived310

thereof are typically sampled onto spatial grids with sharp boundaries between grid cells and a311

constant layer depth to facilitate further geospatial analysis (Bartalis et al., 2006; Brodzik et al.,312

2012; Bauer-Marschallinger et al., 2014). The “true” soil moisture signal that drives the mi-313

crowave measurement and the subsequent gridded soil moisture retrieval will therefore never be314

the real average soil moisture of the grid cell to which a measurement is assigned. Moreover, for315

validation purposes, the unknown “truth” is approximated by reference data, which themselves316

contain errors and may also be driven by a soil volume that is different from the satellite grid317

cell they are supposed to represent (see Sec. 3).318

4.2 Representativeness319

The difference between the true soil moisture that actually affects a (microwave) measurement320

associated with a particular grid cell and the true soil moisture within that grid cell is often321

referred to as representativeness error (Gruber et al., 2016a). However, it is worth noting that322

representativeness errors have different definitions (Van Leeuwen, 2015). The remote sensing323

community mostly assigns them to the mismatch between the spatial support of a measurement324

and the spatial resolution of the defined sampling grid, sometimes also referred to as scaling325

error (Miralles et al., 2010; Crow et al., 2012; Gruber et al., 2013a; Molero et al., 2018). In326
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the modelling community, representativeness errors mostly refer to a model’s lacking ability to327

represent reality and, as such, to imperfections in the model structure and in parameterization328

(e.g., unresolved sub-grid scale processes). For the purpose of data validation, it is practical329

to use a definition that potentially allows us to separate representativeness errors from other330

error sources upon estimation. Therefore, recall that the general definition of error in Eq. (1)331

requires the choice of a “truth”, which is the soil moisture state within a target volume (grid332

cell) that one aims to estimate as accurately as possible. We define representativeness errors333

as those deviations of a product from that chosen “true” state, which are related to real soil334

moisture variations. They can occur, for example, if the actual measurement footprint of a335

satellite extends beyond the grid cell boundaries associated with the “truth”, if an inadequate336

soil parameterization in a radiative transfer model causes the soil moisture retrievals to represent337

deeper soil layers than the intended “truth”, or if point-scale ground measurements are used338

as a reference for grid cell-scale soil moisture dynamics. As such, representativeness errors of339

different data sets may be correlated even if the products are otherwise independent.340

In summary, representativeness errors have important implications for validation in that341

they limit the information one can glean from the comparison between products, even if a342

chosen reference product is itself highly accurate (see Sec. 4.4.1). Since the temporal and343

spatial resolution and sampling of satellite and available reference measurements hardly ever344

match, (relative) representativeness errors will often reach considerable magnitudes (Miralles345

et al., 2010; Crow et al., 2012). To minimize their influence, several pre-processing steps are346

typically applied, which are discussed in the following section together with other pre-processing347

steps that are necessary before validation metrics can or should be calculated.348

4.3 Pre-processing349

Pre-processing steps necessary for validation aim to find match-ups in space and time between350

measurements that have different spatial resolutions, are sampled on to different grids, and/or351

are acquired at different times. Additionally, depending on the reference data choice, statis-352

tical rescaling methods are often applied to minimize the impact of representativeness errors.353

Moreover, data pre-processing typically involves the masking of unreliable satellite retrievals354

and reference measurements. Lastly, data sets are sometimes decomposed into different fre-355

quency components in order to separately assess a product’s ability of accurately representing356

short-term, seasonal, and inter-annual soil moisture variability (Draper and Reichle, 2015).357
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4.3.1 Data masking358

Satellite-derived soil moisture products are typically accompanied by a set of quality flags. They359

can be indicators of suspected contamination of the microwave signals or problems during the360

retrieval. Typical examples are indicators for the probability of frozen soil, dense vegetation361

coverage, radio frequency interference (RFI), or urban or water contamination, to name a few362

(e.g., Parinussa et al., 2011; Naeimi et al., 2012; Kerr et al., 2012; de Nijs et al., 2015). The363

validation of a product should be based only on those retrievals that are considered “good” for364

later application. While masking data points using binary “use / do not use” flags is straight-365

forward, some quality flags require the decision of a threshold below or above which individual366

retrievals are masked out (e.g., the probability of RFI occurrence or the water body fraction),367

which implies a trade-off between data quality and measurement density. Typically, data pro-368

ducers provide recommendations for these thresholds. In addition to the quality flags inherent369

in the soil moisture products, auxiliary static and/or dynamic data from land surface models or370

other sources are often used to mask out retrievals that can be considered unreliable, although371

it should be kept in mind that these sources themselves - and hence quality flags derived thereof372

- are subject to errors. The most commonly used masking criteria are based on surface and/or373

air temperature and snow height and/or snow water equivalent estimates obtained from land374

surface models, or vegetation estimates from satellite sensors or models (Al-Yaari et al., 2014;375

Dorigo et al., 2015; Gruber et al., 2017). Note that reference data sets, in particular in situ376

measurements, also often undergo quality control procedures and provide quality flags, which377

should be used to mask out unreliable measurements before using them to validate satellite378

retrievals (as is the case for example for the ISMN; Dorigo et al., 2013).379

When comparing biases or uncertainties of different soil moisture products, the masking380

procedures applied to these data sets should be identical in order to compare the quality of381

retrievals from measurements that were taken under the same (or at least similar) conditions.382

However, if quality flags that are tailored to one data set are applied to another, some of the383

products may appear better or worse than they would when using only their own inherent384

quality control. This is especially true if the flags of one product are much more conservative385

than those of another. Most product comparison studies do not take this issue into account. One386

possible approach to address it would be to compare biases and uncertainties from collocated387

periods also with those in periods where only some products provide unflagged soil moisture388

retrievals (based on their own quality control) and to put this into perspective with the temporal389
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measurement density before and after product collocation. However, this requires the availability390

of appropriate reference data in collocated and non-collocated periods as well as the ability to391

account for possibly varying accuracy and representativeness of the reference data in these392

periods. Also, depending on the overall data density, it may be difficult to assess biases and393

uncertainties in these periods due to the presence of large statistical sampling errors (see Sec.394

4.5).395

Finally, we stress that the choice of data masking criteria has a considerable impact on the396

overall validation results and should be carefully documented, especially for comparing different397

validation studies and when assessing long-term changes.398

4.3.2 Collocation399

Satellite sensors acquire measurements that are irregularly distributed in space and time owing400

to their orbiting nature and specific antenna patterns. In the soil moisture retrieval process,401

these measurements are typically sampled onto spatial grids (for noise reduction purposes these402

grids are often oversampled, i.e. the grid sampling - sometimes also referred to as grid posting -403

is typically higher than the antenna resolution) and sometimes also to regular time steps (e.g.,404

00:00 UTC) in order to generate, for example, daily global soil moisture maps and/or time405

series (Kerr et al., 2012; O’Neill et al., 2012; H-SAF , 2018; Gruber et al., 2019a). However,406

neither the resolution nor the sampling of in situ reference measurements or model simulations407

ever perfectly match those of the satellite products being validated. Consequently, the process408

of finding match-ups between satellite and reference data points in space and time, commonly409

referred to as collocation, is essentially a resampling task (Loew et al., 2017). Since the spatial410

resolution of the compared products can be very different (especially between in situ and satellite411

/ modelled data), statistical rescaling methods are often additionally applied in the collocation412

process to minimize the impact of (especially spatial) representativeness errors on validation413

metrics.414

Spatial resampling415

In situ measurements are point-scale measurements that sample only a few cubic centimeters416

of the soil (with the exception of cosmic-ray neutron sensors, which sample areas in the order417

of hectares; Zreda et al., 2012). When used for validating satellite products, stations from418

sparse networks are typically sampled onto the satellite grid using a nearest-neighbour (NN)419
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search, i.e. by matching the stations to the satellite grid cells within which they are located420

(Albergel et al., 2012; Dorigo et al., 2015; Chen et al., 2017). For dense networks, commonly all421

stations that lie within a particular satellite grid cell are (after quality control) averaged (Jackson422

et al., 2010; Gruber et al., 2015; Colliander et al., 2017), either by calculating the arithmetic423

mean or by calculating a weighted average where higher weights are applied to stations that are424

expected to be more representative for the grid cell average soil moisture. Such stations can be425

identified, for example, via a temporal stability analysis (Vachaud et al., 1985), through Voronoi426

diagrams (Colliander et al., 2017), or by using landscape characteristics such as land cover or427

soil properties.428

When comparing different gridded products (i.e. different satellite and/or land surface model429

products), one grid must be selected as the reference grid onto which the other products are430

resampled for collocation purposes. This is commonly done using either a NN search or inverse-431

distance-weighted (IDW) based approaches (Al-Yaari et al., 2014; Gruber et al., 2017, 2019a).432

However, the resampling provides mainly spatial match-ups of the data sets and can at best433

account for some of the spatial representativeness errors of the various data sets. How exactly434

these representativeness errors are affected and propagate into bias and uncertainty estimates will435

depend on the chosen reference grid and resampling method, and requires more research. The436

most common way to reduce spatial (systematic) representativeness errors is to apply statistical437

rescaling methods (see below).438

Temporal resampling439

In situ measurements and land model estimates are typically sampled more frequently than440

satellite soil moisture retrievals. Therefore, the reference measurements are matched in time441

to the irregular satellite observation times, typically by selecting the temporally closest (NN)442

reference measurement within a pre-defined search window (i.e. applying a maximum temporal443

distance threshold; Chen et al., 2017). Depending on the sampling interval of the reference444

data sets (for in situ data typically hourly and for global land surface models typically one to445

six hourly) and on whether or not satellite observations have been a priori resampled already446

(see above), this can lead to considerable differences between the actual measurement times of447

collocated satellite and reference data points. The issue is typically limited when using in situ448

or model data as reference. However, if multiple satellite products are evaluated simultaneously,449

their different overpass times are usually accounted for by either picking one of them as (tem-450
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poral) reference and matching the other ones against it, or by sampling all satellite products451

to regularized time steps (e.g., 00:00 UTC; Gruber et al., 2017), which in any case favours the452

satellite data set whose actual measurement times are closest to the reference points. Note that453

the retrieval quality of satellite data sets may strongly depend on the time of observation. This454

is especially true for passive systems, where soil moisture retrievals are known to be strongly455

affected by temporal temperature fluctuations and temperature gradients in soil and vegetation456

cover (Parinussa et al., 2015).457

Taken together, the different measurement times of satellite and reference data sets that458

have been collocated will induce temporal representativeness errors, originating from the actual459

soil moisture changes that take place during these periods. Often these errors are assumed to be460

negligible or at least below the noise level of the products. In principle, one could employ more461

sophisticated resampling algorithms to minimize these representativeness errors, for example462

auto-regressive interpolation methods with or without auxiliary information such as precipita-463

tion, evapotranspiration, or soil texture. However, more research is needed to assess the impact464

of temporal interpolation approaches on validation metrics.465

(Statistical) rescaling466

The resampling procedures described above provide data set match-ups in space and time which467

are required for statistical comparison (see Sec. 4.4). As discussed in Sec. 4.1, the measurements468

of the collocated products are driven by the soil moisture state of different soil volumes at469

different times due to the different underlying actual spatio-temporal resolution of the data470

sets. The latter is related to the antenna and surface properties and cannot be corrected for by471

common resampling methods. Therefore, a direct comparison of these products will be subject472

to representativeness errors, which may dominate the total soil moisture retrieval errors (Gruber473

et al., 2013a; Chen et al., 2017; Molero et al., 2018). However, owing to the large-scale and474

auto-correlated nature of processes that drive soil moisture changes (Crow et al., 2012), parts475

of these errors are systematic and can hence be corrected for by removing relative differences476

between the considered data sets (see Sec. 4.4).477

The two most common rescaling approaches are to match either the temporal mean and478

standard deviation of the data sets that are to be compared (Scipal et al., 2008a; Dorigo et al.,479

2010; Albergel et al., 2012), or to match their complete cumulative distribution function (CDF),480

which additionally corrects for differences in higher statistical moments in case the products481

16



are expected not to be perfectly Gaussian distributed (Reichle and Koster , 2004; Kumar et al.,482

2012). However, any rescaling approach that transforms one data set into the data space of483

another (without additional information) assumes the signal-to-noise ratios (SNRs) of the two484

involved data sets to be identical, which, since this is usually not the case, can lead to biased485

rescaling parameters that do not fully correct the systematic representativeness errors (see Sec.486

4.4.2; Stoffelen, 1998; Yilmaz and Crow , 2013). Alternatively, triple collocation analysis (Stof-487

felen, 1998; Su et al., 2014; Gruber et al., 2016a) is often employed, using a third data set to take488

different SNRs into account when matching the standard deviation of the underlying soil mois-489

ture signals, thereby potentially providing consistent rescaling parameters (Yilmaz and Crow ,490

2013).491

Note that rescaling soil moisture data sets can equally account for (systematic) represen-492

tativeness errors that arise from different spatial resolution and spatial and temporal mis-493

alignment, as well as for those arising from different vertical measurement support, i.e. wavelength-494

dependent penetration depths of satellites, in situ sensor placement depths, and modelled soil495

layer thickness (Gruber et al., 2013a). Also, in addition to correcting for systematic repre-496

sentativeness errors, rescaling can implicitly compensate for different units (provided that the497

used soil moisture representations are linearly related), most commonly volumetric soil moisture498

([m3m−3]) and the degree of soil saturation ([%]) which are linked through soil porosity as a499

multiplicative factor (Walker et al., 2004). This avoids additional biases that are introduced500

through the use of inaccurate auxiliary data (such as soil maps) that would otherwise be needed501

for unit conversion.502

After rescaling, long-term bias estimation is obviously no longer meaningful as systematic503

differences between the data sets, which would normally serve as proxy for biases, have been504

intentionally removed. However, shorter-term biases as well as random representativeness errors505

may remain and can considerably contribute to subsequent uncertainty estimates (see Sec. 4.4.1).506

4.3.3 Signal decomposition507

The quality of soil moisture products can vary considerably across time scales (Su and Ryu, 2015;508

Draper and Reichle, 2015; Molero et al., 2018; Gruber et al., 2019a). For example, some soil509

moisture products are better at accurately representing the seasonal cycle whereas other products510

more accurately capture short-term fluctuations. Therefore, products are often decomposed into511

different frequency components which are then validated separately (in addition to the bulk512
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time series). In Earth sciences, such decomposition is often done using moving-average windows513

(Narapusetty et al., 2009). For soil moisture, a moving window of several weeks, centered on the514

measurement time, is typically used to obtain intra-annual low-frequency soil moisture dynamics515

(Albergel et al., 2012; Chen et al., 2017), referred to as seasonalities. Residuals thereof are516

referred to as short-term anomalies which represent higher-frequency, sub-seasonal soil moisture517

variations. Additionally, so-called long-term anomalies are often calculated as residuals relative518

to a multi-year mean seasonal cycle, referred to as the soil moisture climatology, which is typically519

calculated by applying a moving-average window of similar size (a few weeks) to each day-of-520

the-year (DOY), i.e. averaging all measurements of all years that fall inside the specified time521

window around a particular DOY (Miralles et al., 2010; Draper et al., 2013).522

While the validation of short-term soil moisture anomalies aims at assessing a data set’s523

capability of capturing individual drying or wetting events, uncertainties of long-term anomalies524

represent its performance in capturing both short-term variability and inter-annual variations525

such as prolonged droughts or floods as well as climate trends. However, the latter rely on a526

climatology estimate that requires historical data records in the order of decades (Dorigo et al.,527

2012), which are often not available, especially not at the beginning of a new mission (current528

microwave missions cover a time period of maximum 5-10 years). Therefore, one often has to529

rely on uncertainty estimates for seasonalities and short-term anomalies alone, which jointly530

drive uncertainties in long-term anomalies.531

4.4 Metrics532

After satellite and reference products have been masked, collocated, and optionally decomposed533

and/or rescaled, validation metrics can be calculated. In this section, we summarize commonly534

used bias and uncertainty estimators and their underlying assumptions. Other related metrics535

exist (e.g., the mean absolute error, Kendall’s tau, and many others), but all are derived from536

the same statistical moments and have therefore similar information content. Our goal here is to537

present the metrics that are most commonly used for soil moisture validation and are considered538

to provide a comprehensive picture of a product’s error characteristics. These metrics also539

largely coincide with those used in other EO communities (Loew et al., 2017). We also stress540

that validation specifically aims at quantitatively assessing the errors of a data set, which is541

different from indirectly evaluating its quality for example by investigating its skill in a particular542

application, e.g., drought monitoring (Bolten et al., 2010). Such indirect product evaluation is543
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beyond the scope of this paper.544

4.4.1 Assumptions545

The fundamental assumption underlying almost all satellite soil moisture validation studies is546

that of additive zero-mean random errors (εx), and additive (first-order; αx) and multiplicative547

(second-order; βx) systematic errors (Gruber et al., 2016a):548

x = αx + βxt+ εx (2)

This error model applies to both the data set one aims to validate and the reference data sets.549

Notice that the total error ex in Eq. (1) has now been separated into its systematic (αx and βx)550

and random (εx) components. These components contain instrument errors (i.e. noise and mis-551

calibration), errors in the retrieval model and parameterization, and other representativeness552

errors with respect to the assumed grid cell average soil moisture t (although the boundaries553

between the latter two are somewhat fuzzy; see Sec. 4.1).554

To disentangle errors from different data sets and from actual soil moisture variations, all555

common data comparison metrics require the errors to be homoscedastic (i.e. independent from556

the soil moisture state, in the literature often referred to as orthogonality with respect to the557

truth; Yilmaz and Crow , 2014) and mutually uncorrelated between products. Remember, how-558

ever, that the representativeness error components of the different products may (by definition)559

be correlated both with the truth t and with each other, even if the products are otherwise560

independent (see Sec. 4.1).561

All common validation metrics are derived from the first and second statistical moments of562

the data sets. This implies that soil moisture too is - even though in principle deterministic -563

assumed to behave as a random variable. Statistical moments are then typically estimated in564

the temporal domain (i.e. temporal means, variances, and covariances), assuming stationarity565

in soil moisture and the errors (i.e. means and variances are assumed to be constant over time),566

and relate to the various error components as follows:567

x = αx + βxt

σ2x = β2xσ
2
t + σ2ξx

σxy = βxβyσ
2
t + σξx,ξy

(3)
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where the overline, σ2i and σij refer to the (temporal) mean, variance, and covariance, respec-568

tively; and y denotes a reference data set that follows the same error model as x (Eq. (2)).569

Because representativeness errors may contain an orthogonal, a non-orthogonal, and a mutually570

correlated component (see above), we combine it with all other random error in the individual571

data set’s random error variability σ2ξx = σ2εx + 2βxσt,εx (containing representativeness and all572

other random errors) and the correlated error variability σξx,ξy = βxσt,εy+βyσt,εx+σεx,εy (driven573

by representativeness errors only), for clarity. Systematic representativeness errors are included574

in the αx and βx coefficients.575

The goal of validation is now to estimate αx and βx, and the standard deviation of εx (σεx),576

i.e. biases and uncertainties in the satellite data set under validation. The properties of the577

different reference data sets available (see Sec. 3) determine which error components will be578

dominant in Eq. (3), and consequently, which ones can be estimated by the available validation579

metrics (see Sec. 4.4.3 and 4.4.4).580

4.4.2 Relative and TCA-based metrics: opportunities and limitations581

For discussing the various metrics we will follow the notation of fiducial reference data (see Sec.582

3) to refer to data sets that provide a thoroughly calibrated soil moisture proxy at the satellite583

scale with traceable uncertainty characteristics (i.e. αy ≈ 0, βy ≈ 1 in Eq. (2)). εy may be584

non-zero but σ2εy has to be at least well determined from laboratory experiments and field cam-585

paigns and could hence be corrected for in the validation metrics. As mentioned, only the core586

validation sites are currently considered as fiducial reference data capable of providing a reliable587

representation of satellite footprint-scale soil moisture (see Sec. 3.2.1). They are therefore the588

only reliable proxy for bias and uncertainty estimation from direct comparison, but are limited589

to very few regions. Non-fiducial reference data refer to coarse-resolution products such as land590

surface model simulations or other satellite data sets which may have non-negligible or non-591

traceable biases and uncertainties as well as potentially considerable representativeness errors,592

or to in situ data from sparse networks or not properly calibrated and validated dense networks,593

both of which are expected to have larger representativeness errors than coarse-resolution refer-594

ence data sets. Therefore, direct comparison against non-fiducial reference data can only provide595

information of which data set is systematically drier or wetter than the other but without rela-596

tion to a true grid cell average, and only lumped estimates of the uncertainty of both compared597

products. Nonetheless, given their larger-scale and long-term availability, sparse networks and598

20



land surface models are of important complementary value for validating satellite products. In599

particular, one can obtain valuable information about the relative ranking of different products600

as well as about performance changes over time when comparing against the same reference601

product.602

Introducing a second reference data set z that follows the same covariance properties (Eq.603

(3)) as y (commonly referred to as triple collocation analysis, TCA; Stoffelen, 1998; Scipal et al.,604

2008b; Gruber et al., 2016a) allows, under particular circumstances, to simultaneously estimate605

uncertainties of all three products and also to (partly) isolate random (relative) representative-606

ness errors (Miralles et al., 2010; Gruber et al., 2013a; Chen et al., 2017). Note, however, that607

the necessity of using two reference data sets instead of one may limit spatial and temporal data608

availability. Moreover, while non-orthogonal and mutually correlated errors are equally prob-609

lematic for metrics that rely on one reference data set only (see below), it may be even more610

difficult to find a third data set that fulfills these requirements. Commonly, any combination611

of in situ measurements, land surface model estimates, active-microwave-based measurements,612

or passive-microwave-based measurements is expected to fulfil this requirement because their613

sources of errors are assumed to be mostly independent (Gruber et al., 2016a), provided that614

neither of them has been used to generate another (e.g., by assimilating satellite data in to a615

land surface model; Reichle et al., 2017b,c). However, several studies suggest that mutual error616

correlations may exist between commonly used data set combinations (Yilmaz and Crow , 2014;617

Pan et al., 2015), resulting from unrecognized common data (e.g., similar vegetation or temper-618

ature input) or representativeness errors (e.g., if a land surface model used within TCA models619

a deeper layer than the sensing depth of two satellite data sets that are used in the triplet). It is620

therefore recommended to verify orthogonality and zero error correlation assumptions by using621

- where available - multiple data set triplets and checking for consistency between different TCA622

implementations (Dorigo et al., 2010; Draper et al., 2013), or by using the recently proposed623

TCA extension that utilizes four or more data sets to diagnose the existence, and estimate the624

magnitude of error correlations (Gruber et al., 2016b; Pierdicca et al., 2017).625

The following sections discuss the most common bias and uncertainty metrics, either (i)626

based on direct comparison between two data sets, which will be referred to as relative metrics,627

or (ii) based on the simultaneous comparison of three products, which will be referred to as628

TCA-based metrics. All metrics can be equally applied to soil moisture anomaly estimates or629

the raw time series, except for first-order bias estimators (see below) as the anomaly calculation630
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per definition removes differences in the mean (see Sec. 4.3.3).631

Note that none of the metrics presented below require assumptions about the shape of the632

pdf of the random errors or the true signal (McColl et al., 2016). However, the bounded nature633

of soil moisture may cause violations in the orthonality assumption if cut-off values (e.g., zero634

and the soil porosity as lower and upper physical limit, respectively) are applied to the soil635

moisture estimates of a particular data sets. Especially in very dry or very wet regimes, where636

random errors would often cause these thresholds to be exceeded, this can result in considerable637

biases in all (both relative and TCA-based) uncertainty metrics.638

4.4.3 Bias estimation639

Bias estimation is only meaningful against reference data at the satellite footprint scale, i.e.640

without considerable representativeness errors and if no rescaling has been applied (see Sec.641

4.3.2).642

Temporal mean bias643

The term bias commonly refers to the (temporal) mean difference between two data sets (En-644

tekhabi et al., 2010a):645

bxy = x− y = αx − αy + (βx − βy)t (4)

Typically, bxy is considered to represent first-order (additive) biases only. However, as can be646

seen in Eq. (4), the mean difference is also sensitive to second-order (multiplicative) biases,647

amplified by the actual mean soil moisture content (t). When using non-fiducial reference data,648

bxy provides an indication of which data set is systematically drier or wetter than the other, but649

without relation to the assumed true grid cell average. Moreover, a positive difference in the650

mean (αx > αy) and a negative difference in variability (βx < βy) can cause the same sign in651

bxy as a negative mean difference and a positive variability difference. When calculated against652

fiducial reference data, bxy collapses to αx + (βx − 1)t. That is, it is a direct estimate for biases653

in the satellite retrieval, yet it is still susceptible to both first and second-order biases, and654

influenced by the average soil moisture conditions.655

Second-order bias656

Most validation studies do not attempt to estimate second-order biases and neglect their impact657
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on bxy and other validation metrics such as the (unbiased) Root-Mean-Square-Difference (see658

Gupta et al. (2009) and Sec. 4.4.4). TCA potentially allows for the direct estimation of second-659

order biases (Gruber et al., 2016a) as:660

βyx =
σxz
σyz

=
βxβzσ

2
t + σξx,ξz

βyβzσ2t + σξy ,ξz
≈ βx
βy

(5)

where βyx denotes the TCA-based second-order bias estimate of x relative to y which, if y is661

a fiducial reference data set and if no non-orthogonal or correlated random representativeness662

errors exist (βy ≈ 1, σξx,ξz ≈ 0, σξy ,ξz ≈ 0), provides a direct estimate of the second-order bias663

βx. Notice that neither first nor second-order biases in z influence βyx. Alternatively, Eq. (5)664

can also be used for rescaling purposes (Yilmaz and Crow , 2013; Su et al., 2014; Gruber et al.,665

2016a, see Sec. 4.3.2).666

4.4.4 Uncertainty estimation667

As discussed, uncertainty estimates aim at representing the pdf of the random errors (see Sec.668

2), which is typically done by means of their standard deviation (or variance).669

(Unbiased) Root-Mean-Square-Difference670

The most common relative metric for estimating uncertainty is the Root-Mean-Square-Difference671

(RMSD; Entekhabi et al., 2010a):672

RMSDxy =

√
(x− y)2 =

√
(x− y)2 + σ2x + σ2y − 2σxy

=
√

(αx − αy + (βx − βy)t)2 + (βx − βy)2σ2t + σ2ξx + σ2ξy − 2σξx,ξy

(6)

Since the RMSD is sensitive to both systematic and random errors, the bias component is673

- for uncertainty estimation purposes - typically removed, resulting in the unbiased RMSD674

(ubRMSD):675

ubRMSDxy =
√
RMSD2 − b2xy =

√
σ2x + σ2y − 2σxy

=
√

(βx − βy)2σ2t + σ2ξx + σ2ξy − 2σξx,ξy

(7)

The common definition of the ubRMSD specifically corrects for differences between the mean of676

the data sets (Entekhabi et al., 2010a). However, as can be seen in Eq. (7), it remains susceptible677

to second-order biases, which are amplified by the actual soil moisture variability (σ2t ). Moreover,678
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as was the case for bxy, this second-order bias dependency in ubRMSDxy persists even when679

calculated against fiducial reference data, in which case Eq. (7) collapses to
√

(βx − 1)2σ2t + σ2ξx .680

As discussed in Sec. 4.3.2, data sets are often rescaled before calculating validation metrics to681

account for systematic representativeness errors, especially when validating against data from682

sparse networks. This is most commonly done by matching the temporal mean and the standard683

deviation of the data sets, or their entire cdf (i.e. also higher statistical moments). However, as684

can be seen from Eq. (3), this only properly corrects for relative differences in β if the SNRs685

(including random representativeness errors) of the data sets are equal, which is very unlikely.686

Consequently, Eq. (7) will still contain the remaining difference between βx and the rescaled βy,687

multiplied with the actual soil moisture variability, and also random representativeness errors.688

(Unbiased) Root-Mean-Square-Error689

As mentioned in the previous section, TCA potentially allows for the estimation of relative690

rescaling coefficients that are independent from the SNRs of the data sets (see Eq. (5)), which691

would allow to fully correct for the second-order bias component in Eq. (7). Moreover, TCA692

allows to more directly estimate the satellite uncertainty (i.e. its error standard deviation σξx ,693

commonly referred to as unbiased Root-Mean-Square-Error; ubRMSE) as:694

ubRMSEx =

√∣∣∣(x− y)(x− z)
∣∣∣ =

√∣∣∣∣σ2x − σxyσxz
σyz

∣∣∣∣
=

√∣∣∣∣β2xσ2t + σ2ξx −
(βxβyσ2t + σξx,ξy)(βxβzσ

2
t + σξx,ξz)

βyβzσ2t + σξy ,ξz

∣∣∣∣ ≈ σξx
(8)

Note that when calculating the ubRMSE using the cross-multiplied differences instead of the695

statistical moments, the data sets y and z do have to be bias-corrected with respect to x a priori696

using Eqs. (4) and (5). The absolute value is taken to prevent negative signs in uncertainty697

estimates that could occur due to sampling errors (Gruber et al., 2018, see Sec. 4.5). As one698

can see, ubRMSEx is (as opposed to ubRMSDxy in Eq. (7)) fully unbiased in that it contains699

neither first nor second-order biases from both the satellite and the validation data sets, and it700

also no longer contains the uncertainties inherent in the reference data products (Gruber et al.,701

2016a). However, estimates that are unbiased with respect to the assumed true grid cell average702

can only be obtained if at least one fiducial reference data set is available (Chen et al., 2017).703

Moreover, ubRMSEx is not affected by random representativeness errors in y and z as long as704

they are orthogonal and not correlated. Such representativeness error correlations could occur705
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for example when applying TCA to in situ measurements together with two coarse resolution706

products. This case, however, provides an opportunity to estimate the representativeness of in707

situ stations while uncertainty estimates for the coarse resolution products remain unaffected708

(Miralles et al., 2010; Gruber et al., 2013a; Chen et al., 2017). For a more detailed derivation709

of how representativeness errors affect the TCA-based uncertainty estimates we refer the reader710

to Vogelzang and Stoffelen (2012) and Gruber et al. (2016a).711

The above described metrics are direct estimators for data set uncertainty. However, for712

many applications, how “good” a data set is depends on how large its uncertainties are relative713

to the variability of the actual soil moisture signal. Simply put, the larger the soil moisture714

variations one strives to observe, the more easily they can be distinguished from noise in the715

measurements. Therefore, some metrics aim at estimating the SNR rather than the uncertainty716

alone, the most important ones for soil moisture validation being discussed below.717

Pearson correlation coefficient718

The most common SNR-related relative metric is the linear (Pearson) correlation coefficient,719

which is typically described as a measure for statistical dependency between two data sets.720

From the error model in Eq. (3) one can see that it is also a direct, normalized (between -1721

and 1) representation of the SNRs of the two data sets for which it is calculated (Gruber et al.,722

2016a):723

Rxy =
σij
σiσj

=
βxβyσ

2
t + σξx,ξy√

(β2xσ
2
t + σ2ξx)(β2yσ

2
t + σ2ξy)

≈ sgn(σxy)
1√

(1 + SNR−1x )(1 + SNR−1y )

(9)

with SNRx =
β2
xσ

2
t

σ2
ξx

and SNRy =
β2
yσ

2
t

σ2
ξy

. sgn(·) denotes the signum function. When calculated724

against fiducial reference data, Rxy is a direct representation of the SNR of the satellite under725

validation (i.e. SNRx). Notice that the “signal” to which the “noise” in the SNR estimator is726

related is the true soil moisture variability scaled with the second-order satellite bias (i.e. β2xσ
2
t ).727

Even if βx could be estimated reliably, for example from Eq. (5), rescaling does not change728

the SNR as the uncertainty would be scaled as well. However, the ratio
β2
xσ

2
t

σ2
ξx

is in fact the729

quantity of interest that determines how well signal variations can be distinguished from noise,730

regardless of whether systematic errors have been corrected for (Gruber et al., 2016a), which can731
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be also interpreted as the (linear) correlation with the true soil moisture signal (McColl et al.,732

2014). When Rxy is calculated against non-fiducial reference data, it is additionally influenced733

by second-order systematic and random representativeness errors as well as the uncertainties of734

that reference data set.735

TCA-based correlation coefficient736

Influences of the reference data set can be again isolated using TCA (McColl et al., 2014) by737

directly estimating Rx as:738

Rx =

√∣∣∣∣σxyσxzσ2xσyz

∣∣∣∣ =

√√√√∣∣∣∣∣(βxβyσ2t + σξx,ξy)(βxβzσ
2
t + σξx,ξz)

(β2xσ
2
t + σ2ξx)(βyβzσ2t + σξy ,ξz)

∣∣∣∣∣
≈

√√√√∣∣∣∣∣ β2xσ
2
t

β2xσ
2
t + σ2ξx

∣∣∣∣∣ =
1√

1 + SNR−1x

(10)

As was the case for the ubRMSE, the validity of Eq. (10) requires that there is no correlation or739

non-orthogonality between random representativeness errors, but their individual variance may740

well be non-zero. If these assumptions are respected, then Rx will be an unbiased representation741

of the correlation between x and the (unknown) hypothetical truth. Consequently, Rx will742

always be larger than Rxy although this difference decreases as the quality of the reference y743

increases. Note, however, that Rx only ranges between 0 and 1, as an anti-correlation (with744

respect to the true signal) cannot be unambiguously inferred from the three covariances in Eq.745

(10).746

(Logarithmic) Signal-to-Noise Ratio747

Instead of expressing the SNR normalized between 0 and 1, it is often estimated directly and748

linearized by converting it into decibel (dB) units (Gruber et al., 2016a):749

SNRx[dB] = −10 log

(∣∣∣∣∣∣∣∣ σ2xσyzσxyσxz

∣∣∣∣− 1

∣∣∣∣) ≈ 10 log

(
β2xσ

2
t

σ2ξx

)
(11)

This provides a more direct, linear representation of the ratio between soil moisture and uncer-750

tainty magnitude than Rx, yet the information content in both metrics is identical; it is simply751

a different way of presentation. Note that the SNRx is already being used as a more coher-752

ent (than RMSD or RMSE based metrics) satellite data quality indicator for defining target753

accuracy requirements (see Sec. 4.8.2).754
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4.5 Statistical significance testing755

All the above described (and also most other less common) validation metrics are based on756

statistical moments, sampled in time. Since these estimates are based on finite samples (i.e.757

the discrete soil moisture time series), they are subject to sampling errors. The most common758

way to deal with statistical uncertainty (i.e. sampling errors) across science communities is759

Null Hypothesis Significance Testing (NHST) using p-values and/or confidence intervals (Wilks,760

2011). In a validation context, typical hypotheses to be nullified are, for example, that a soil761

moisture product does not meet a target accuracy threshold or that one product does not762

exhibit higher correlation with a reference product than another. For testing such hypotheses,763

the sampling distribution of the statistical estimate under consideration (such as a validation764

metric) is constructed based on the magnitude of the estimate and the size of the sample used to765

draw this estimate (see below). Then, either the p-value is calculated, which is the probability766

of values of the sampling distribution to be equal to or below (or above, depending on which tail767

is considered) the pre-defined Null-value (representing the Null hypothesis), or the (1−α) ·100%768

confidence interval is considered. A rejection of the Null-hypothesis is considered statistically769

significant, if the p-value is below a pre-defined significance level α (typically 0.05) or if the770

(1 − α) · 100% confidence interval does not contain the Null-value. When comparing estimates771

of different samples (e.g., the performance of different soil moisture products), it is common to772

consider their relative difference as statistically significant if their confidence intervals do not773

overlap. Note that the term “Null-value” refers to the Null hypothesis and not to a value of zero774

of the test statistic (i.e. the validation metric). A common Null-value for testing soil moisture775

accuracy requirements, for instance, is 0.04 m3m−3 ubRMSD (see Sec. 4.8.2). Hence, if the776

p-value for 0.04 m3m−3 of the sampling distribution around an estimated ubRMSD is below the777

defined α level, the product is said to meet accuracy requirements with statistical significance.778

However, the American Statistical Association (ASA) has recently issued a statement on sta-779

tistical significance and p-values (Wasserstein and Lazar , 2016) warning about the science-wide780

misuse and abuse of NHST through the replacement of scientific reasoning with a dichotomous781

and arbitrary classification of results into “significant” or “non-significant”. In this statement,782

the ASA is advocating the abandonment of statistical significance testing altogether for two main783

reasons. The first one is that an alarming fraction of articles in the scientific literature present784

unjustified inferences based on misinterpreted p-values and confidence intervals (Greenland et al.,785

2016; Gelman and Stern, 2006; Wasserstein and Lazar , 2016). For example, overlapping confi-786
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dence intervals are often wrongly considered to imply a non-significant difference between two787

estimates. The second and more important argument against significance testing is that p-values788

alone provide no grounds for meaningful decision making. While the magnitude of p itself may789

be informative about how consistent the data at hand are with an assumed stochastic model,790

“[...] a label of statistical significance does not mean or imply that an association or effect is791

highly probable, real, true, or important. Nor does a label of statistical nonsignificance lead to792

the association or effect being improbable, absent, false, or unimportant.” (Wasserstein et al.,793

2019). Therefore, no practical conclusion or decision should be based on whether p-values do or794

do not meet an arbitrarily defined threshold.795

In a recent special issue of The American Statistician (Wasserstein et al., 2019), the sta-796

tistical community is aiming to propose more appropriate alternatives. Their key message is797

that, naturally, there should not and cannot be a one-fits-all approach or threshold for statis-798

tical/scientific inference. Instead of strictly yet arbitrarily categorizing study results based on799

dichotomous significance tests, one should strive for more careful study design and more rigor-800

ous understanding, interpretation and reporting of the stochastic properties of the data at hand801

(Greenland et al., 2016; Tong , 2019).802

In conclusion, for soil moisture validation purposes, we follow the above guidance and803

recommend to avoid any statement or interpretation about statistical “significance” or “non-804

significance” and to instead always provide and interpret a statistical summary of calculated805

validation metrics in the form of confidence intervals alongside the metrics themselves. How806

confidence intervals can be calculated and recommendations of how they can be presented are807

described in the following sections.808

4.6 Confidence intervals809

In general, confidence intervals represent the pdf of the sampling errors of an estimate and810

are defined at a certain confidence level. A confidence level of, say, 95% means that if one811

would repeatedly calculate 95% confidence intervals in a series of similar experiments, then 95%812

of them would - on average - contain the true value, provided that all assumptions made for813

the stochastic model are met. Note that this is not the probability that the true value that814

is approximated by the estimate lies within the confidence interval (Neyman, 1937; Greenland815

et al., 2016). In theory, this probability - which would indeed be more informative - could be816

represented by a Bayesian credible interval, but calculating it would require a priori knowledge817
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about the pdf of the parameter that is being estimated (i.e. the so-called “prior”) and this is818

typically not available.819

Estimating confidence intervals for validation metrics is not always straightforward because820

the sampling error pdfs of the various estimators are often not well understood or contain821

parameters that are typically unknown (Zwieback et al., 2012). The only validation metrics822

(presented here) for which analytical solutions for confidence intervals exist are the temporal823

mean bias (bxy), the unbiased RMSD (ubRMSDxy), and the Pearson correlation coefficient824

(Rxy). For TCA-based metrics, one has to rely on bootstrapping (Efron and Tibshirani , 1986)825

to approximate the sampling error pdf.826

4.6.1 Analytical calculation827

The sampling errors in bxy and ubRMSDxy are equivalent to the sampling errors of the popu-828

lation mean and the population standard deviation of the difference series u = x− y, which are829

known to follow a t-distribution and a χ-distribution, respectively (Gilleland , 2010; De Lannoy830

and Reichle, 2016):831

u− µu
su√
n

∼ tn−1 (12)

and832

√
n− 1 su
σu

∼ χn−1 (13)

where n is the sample size; u and su represent the sample mean and standard deviation of the833

difference series (x − y); and µu and σu are their corresponding true population parameters.834

The population moments of u are estimated within the (1 − α) · 100% confidence intervals as835

a function of the sample moments of u. Specifically, the confidence intervals (CI) for bxy and836

ubRMSDxy can be inferred from Eqs. (12) and (13) as:837

CIbxy =

[
bxy + t

α/2
n−1

ubRMSDxy√
n

, bxy + t
1−α/2
n−1

ubRMSDxy√
n

]
(14)

and838

CIubRMSDxy =

[
ubRMSDxy

√
n− 1

χ
1−α/2
n−1

, ubRMSDxy

√
n− 1

χ
α/2
n−1

]
(15)
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No such simple direct relationships between the sampled and true values have yet been found839

for the other validation metrics presented here. For the Pearson correlation coefficient, it can be840

indirectly obtained through Fischer’s z-transformation, which transformsRxy into a variable that841

approximately follows a normal distribution with mean zxy and standard deviation (n− 3)−0.5842

(Bonett and Wright , 2000):843

zxy = 0.5 ln

(
1 +Rxy
1−Rxy

)
∼ Nzxy ,(n−3)−0.5 (16)

The confidence interval for Rxy can be obtained by back-transforming z as:844

CIRxy =

[
e2z

1−α − 1

e2z1−α + 1
,
e2z

α − 1

e2zα + 1

]
(17)

One major issue for calculating confidence intervals from the analytical expressions described845

above is the inherent assumption of independence between samples. For soil moisture time series,846

this assumption is often not met due to the auto-correlated nature of soil moisture governing847

processes. Since such auto-correlation in the data essentially causes a widening of the confidence848

intervals, one popular way to account for it is to reduce the degrees of freedom (sample size)849

of the used distribution. This is typically done by assuming a first-order auto-regressive AR(1)850

behaviour in the time series and using the lag-1 auto-correlation (ρ) to calculate a correction851

factor for the sample size n (Dawdy and Matalas, 1964; Draper et al., 2012):852

ne = n · 1− ρ
1 + ρ

(18)

where ne is the effective sample size that is used to estimate auto-correlation corrected confidence853

intervals according to Eqs. (14)-(17). A combined effective value for ρ, which summarizes the854

possibly different lag-1 auto-correlation of the two considered time series for which the respective855

validation metric is calculated, can be obtained as their geometric average:856

ρ =
√
ρx · ρy (19)

with ρx and ρy obtained from a fitted AR(1) model as:857

ρi = e
− dm

τi (20)
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where i ∈ [x, y], τi is the fitted persistence time of the individual time series x and y, and dm858

is the the median distance between consecutive valid, collocated observations, i.e. the lag-1859

distance accounting for the typically irregular spacing between satellite measurements. Note860

that averaging correlation coefficients is generally not recommended (see Sec. 4.7), but required861

here to determine a single effective proxy of the auto-correlation of collocated data pairs with862

possibly deviating individual memory. Using the geometric average avoids the dominance of863

data sets with large auto-correlation (e.g., land surface models often have a different memory864

than satellite observations), which may cause excessively large confidence intervals.865

Note that the necessity of relying on a possibly crude approximation of a lumped effective866

auto-correlation correction parameter for calculating confidence intervals is but one factor under-867

mining their ability to serve as decision basis for declaring results as significant or non-significant868

(see the previous section). One should always bear in mind that confidence intervals inevitably869

are - just as the estimates they are meant to describe - uncertain.870

4.6.2 Bootstrapping871

No exact solvable analytical expressions or transformations for confidence intervals around TCA-872

based metrics have yet been derived. Zwieback et al. (2012) presented a formulation of confidence873

intervals for TCA-based RMSE estimates in a synthetic study which, however, required the874

knowledge of the true RMSE states and is therefore of limited practical use. Alternatively, several875

studies (e.g., Caires and Sterl , 2003; Zwieback et al., 2012; Draper et al., 2013) have suggested876

the use of bootstrapping as a potential non-parametric method for obtaining confidence intervals877

of estimators with unknown sampling distribution (Efron and Tibshirani , 1986).878

Bootstrapping is a special case of Monte Carlo simulation, which uses the sample itself879

as approximation of the population. More specifically, it constructs an empirical probability880

distribution of the test statistic (in our case the validation metric) by resampling the original881

sample multiple times, with replacement to preserve the sample size, and repeated calculation882

of the test statistic from those resamples. This bootstrapped distribution then allows for the883

direct derivation of confidence intervals as well as other parameters of the sampling error pdf.884

The advantages of this method lie in its algorithmic simplicity and that it can be applied885

to any metric without the need to assume a particular sampling distribution (such as t or886

χ). However, bootstrapping confidence intervals requires a considerable number of resamples,887

which may lead to large computational costs, and relies on the assumption that the sample is888
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indeed a reliable representation of the population, which requires a large sample size. A general889

recommendation for bootstrapping confidence intervals is to use a minimum of 1000 resamples890

(Efron and Tibshirani , 1986). However, the number of required resamples may be chosen more891

specifically for a given study by testing for convergence of the results with increasing sample892

size. For example, Draper et al. (2013) used 1000 resamples for estimating confidence intervals893

for TCA-based ubRMSE estimates, although their testing found that 500 would have been894

sufficient.895

As was the case for the analytical expressions, bootstrapped confidence intervals are also896

susceptible to auto-correlation in the data. This can be accounted for by resampling blocks of897

data instead of single data points, referred to as block-bootstrapping (Ólafsdóttir and Mudelsee,898

2014), which preserves the auto-correlation properties of the original sample. An estimate of the899

optimal block length (lopt) for bootstrapping CIs around TCA-based estimates can be obtained900

following Chen et al. (2018) as:901

lopt = NINT

 3

√√√√(√6 · n · ρ
1− ρ2

)2
 (21)

where NINT{·} denotes rounding to the nearest integer. As before, a single effective value for902

ρ can be obtained as the geometric average of the lag-1 auto-correlations of the three data sets903

used to obtain the respective TCA estimate (ρ = 3
√
ρx · ρy · ρz). The lag-1 is the median time904

interval between consecutive valid, collocated data triplets. To prevent data gaps from causing905

an auto-correlation degradation during the resampling, we recommend to discard data blocks906

from the resamples if they contain less than 50% of valid data.907

4.7 Summary statistics908

Validation metrics and their confidence intervals should be calculated and assessed over a wide909

range of spatial locations to understand error characteristics of a soil moisture product under910

different climatic, topographic and land cover conditions. However, it may be practical to911

summarize spatially distributed skill estimates into a single combined metric (for example to912

obtain an overall ranking of different products or to track the performance evolution of a product913

over time), which requires also the aggregation of their associated confidence intervals.914
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4.7.1 Averaging metrics915

The most common way of obtaining a combined skill estimate is arithmetic averaging:916

ν = wᵀv (22)

where ν is the average of k spatially distributed skill metrics that are summarized in the skill917

vector v = [ν1 · · · νk]ᵀ; and w = [w1 · · ·wk]ᵀ contains the weights that are attributed to the918

individual skill estimates with
∑
wi = 1. Averaging skill metrics in a weighted fashion to919

minimize the impact of sampling errors is in principle possible by deriving weights from the920

sampling error magnitudes (Aitkin, 1936), but in most cases, an unweighted average is preferred921

because validation points are typically selected to represent a wide range of varying conditions,922

and areas with lower sampling errors (i.e. regions with better temporal coverage, for instance923

because less data are masked out) could dominate a weighted averaged skill estimate. For such924

unweighted average, the weight vector takes the form w = [k−1 · · · k−1]ᵀ.925

While many metrics can be averaged safely, it is - against common practice - not recom-926

mended to average correlation coefficients (neither Pearson nor TCA-based) because they are927

calculated as ratios using standard deviations (variances) and covariances or SNRs (see Eqs. (9)928

and (10)). Therefore, they behave highly non-linearly and neither an average of these ratios nor929

a ratio of averaged nominators / denominators would allow for a meaningful inference about930

statistical properties. For example, averaging correlation coefficients of 0.1 and 0.9, which cor-931

respond to a SNR of 0.01 and 4.26, respectively (in the case of Pearson correlation assuming932

a random error-free reference data set), would lead to an average correlation of 0.5 with an933

associated SNR of 0.33. This is far from their average SNR of 2.14 (ignoring for the moment934

that this too is an average of ratios) which would correspond to a correlation coefficient of 0.83.935

In contrast, correlation coefficients of 0.3 and 0.7, representing SNRs of 0.1 and 0.96, respec-936

tively, would have the same average correlation yet the average of their associated SNR is 0.53,937

corresponding to a correlation of 0.59. Moreover, the skewed probability distribution of the938

Pearson correlation coefficient causes the arithmetic average to be systematically biased. Some939

studies suggest to average Fisher-transformed z-values instead (Corey et al., 1998), which have940

a Gaussian sampling distribution, but a back-transformed z-average is just as difficult to inter-941

pret. Following the above example, averaging correlation coefficients of 0.1 and 0.9 in z-space942

would lead to an average correlation (or more precisely, an inverse average-z) of 0.66 (SNR =943
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0.76), whereas when averaging z-transformed correlations of 0.3 and 0.7, it would be 0.53 (SNR944

= 0.39).945

In other words, the choice of whether to average correlation coefficients, Fisher-transformed946

z-values, or SNRs - albeit representing the exact same uncertainty properties - will lead to947

different values / interpretations of the resulting average and this difference also depends on the948

degree of variability across the estimates that are being averaged. Moreover, the resulting average949

number (regardless of the approach) no longer represents an actually meaningful statistical950

property. Alternatively, instead of averaging pre-calculated correlation coefficients, one may be951

tempted to calculate the correlation coefficient directly over the concatenated measurements of952

all available locations to obtain an overall skill estimate. However, this is not meaningful as953

the effects of different populations are lumped together. As a consequence, for example, two954

data sets that individually exhibit strong positive correlation in a wet and in a dry soil moisture955

regime, respectively, may appear to have an overall weak anti-correlation when put together, an956

effect also known as Simpson’s paradox (Blyth, 1972). Therefore, such an approach should be957

strictly avoided.958

4.7.2 Averaging confidence intervals959

The uncertainty in the spatially averaged skill metric in Eq. (22) associated with the sampling960

errors of the individual skill estimates can be calculated through the standard method for the961

propagation of uncertainty as:962

s2ν = wᵀΣw (23)

where s2ν is the sampling uncertainty in the averaged skill ν (i.e. its sampling error variance);963

and Σ is the sampling error covariance matrix for the k individual skill estimates. The corre-964

sponding aggregated confidence intervals can be derived from a Gaussian distribution (which965

will generally be assured by the Central Limit Theorem for reasonably large samples) with mean966

ν and standard deviation sν .967

Diagonal elements in Σ are the sampling error variances of the individual skill estimates, i.e.968

diag(Σ) = s2 with s2 = [s2ν1 · · · s
2
νk

]ᵀ. For bxy and ubRMSExy estimates, they are the squared969

standard errors of the sample mean and sample variance (of the difference series u = x − y at970
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each individual location), respectively:971

s2bxy =
ubRMSD2

xy

n

s2ubRMSDxy =
ubRMSD2

xy

2(n− 1)

(24)

For TCA-based metrics, the sampling error variance can be directly calculated from the boot-972

strapped sampling distribution.973

In an ideal case, the reference data used for calculating skill metrics span a wide range of974

varying conditions with samples that are independent of each other in time and space. In this975

case, off-diagonal elements in Σ would be zero. However, in many cases, differences between976

soil moisture time series contain sample auto-correlation due to the large-scale auto-correlated977

nature of soil moisture (Vachaud et al., 1985; Crow et al., 2012) and because estimation errors978

(those of satellite retrievals as well as those of in situ measurements or of model predictions)979

may be correlated over large distances (Gruber et al., 2015, 2018). Ignoring such sampling980

error auto-correlation can lead to considerably underestimated confidence intervals of spatially981

averaged skill estimates. Hence, calculating off-diagonal elements in Σ, which represent sampling982

error covariances between the skill estimates of different locations, is critical. Although these983

covariances cannot be estimated directly, they can be derived from the sample auto-correlation984

matrix R and the sampling error standard deviations s (see above) as:985

Σ = R ◦ ssᵀ (25)

where ◦ denotes the Hadamard product, i.e. element-wise matrix multiplication. R differs for986

the various skill metrics. For bxy and ubRMSDxy, it is the spatial auto-correlation matrix of the987

difference series u, and of the squared, bias-corrected difference series (u− u)2, respectively, at988

the different locations u where skill metrics are calculated. For TCA-based metrics, the sampling989

error covariance can be calculated as the covariance between the bootstrapped samples (Gruber990

et al., 2019b), provided that the order in which bootstrap-resamples are drawn is the same at991

all different locations, which may be difficult when using block-bootstraps with different block-992

length.993

Earlier research (De Lannoy and Reichle, 2016) has proposed a clustering approach to take994

possible sampling error correlations into account. This approach first calculates mean metrics995

and confidence intervals per spatial cluster, assuming that the sampling errors of the spatially996
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close data sets within each cluster are perfectly correlated. Next, averaged skill metrics and con-997

fidence intervals from within the clusters are averaged, assuming that all clusters are completely998

independent. However, this approach is expected to overestimate confidence intervals because:999

(i) sampling errors will never be perfectly correlated unless validation metrics are calculated1000

multiple times from the exact same data, and (ii) clusters are formed based on the expected1001

auto-correlation length of the soil moisture data sets, which will be much larger than that of the1002

difference series between data sets, as required in Eq. (25).1003

Finally, although averaging of some metrics and confidence intervals is possible, we generally1004

recommend to retain detailed information about their spatial variability, and to leverage this1005

information to obtain a better understanding of product performance and its relation to land1006

cover, topography, climate, and other possibly important factors. If point-wise assessments are1007

not feasible or if simple product summaries are desired, percentile statistics such as medians1008

and inter-quartile-ranges (of both calculated skill estimates and their confidence intervals) are1009

generally more informative than spatial averages and their increasingly inaccurate averaged1010

confidence intervals. More specific recommendations of how validation metrics and confidence1011

intervals can be presented are provided in Sec. 5 and Appendix A.1012

4.8 Practical remarks1013

4.8.1 Validating downscaled products1014

Currently, most space-borne microwave sensors available for soil moisture retrieval operate at1015

spatial resolutions of about 252 - 502 km2 (Gruber et al., 2019a). Some higher-resolution Syn-1016

thetic Aperture Radar (SAR) sensors exist that allow for reasonable soil moisture retrieval at1017

scales up to approximately 1 km2 (Pathe et al., 2009; Gruber et al., 2013b), yet with consider-1018

ably lower temporal resolution and accuracy. In addition, many downscaling approaches have1019

been developed to improve the spatial resolution of coarse-resolution soil moisture products,1020

e.g., by fusing coarse-resolution radiometer or scatterometer measurements with high-resolution1021

SAR data (Das et al., 2017; Bauer-Marschallinger et al., 2018), by fusing microwave observa-1022

tions with optical/thermal measurements (Chauhan et al., 2003), or through data assimilation1023

(Reichle et al., 2017c). For a comprehensive review of downscaling methods see Peng et al.1024

(2017).1025

The validation of downscaled products is mostly done as for coarse-resolution products, i.e.1026

through time series analysis with a focus on temporal dynamics at individual locations (see1027
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Sec. 4). In doing so, it has been shown that the downscaling process often actually decreases1028

the temporal performance of the products, that is, the original coarse-resolution products often1029

correlate better with local soil moisture dynamics, even at a point scale, than their downscaled1030

counterparts (Peng et al., 2015). While downscaled soil moisture images provide more visual1031

level-of-detail, only few studies have quantitatively assessed whether the obtained spatial pat-1032

terns actually represent real soil moisture variations (e.g., Bauer-Marschallinger et al., 2018;1033

Sabaghy et al., in review) or whether they are just mimicking spatial patterns of ancillary data1034

such as soil texture maps (for a comprehensive review of validation studies for downscaled prod-1035

ucts see Peng et al., 2017).1036

Therefore, we highly recommend that future validation studies for downscaled products1037

put a strong emphasis on assessing also the spatial soil moisture variations obtained from the1038

downscaling, e.g., by estimating spatial correlation coefficients (Sahoo et al., 2013; Kolassa1039

et al., 2017; Sabaghy et al., in review), in addition to time series analyses. To that end, we1040

further encourage the setup of field campaigns / validation sites dedicated to support such1041

high-resolution validation activities, especially in regions where soil moisture variations are very1042

heterogeneous.1043

4.8.2 Target accuracy requirements1044

Satellite soil moisture validation studies most commonly evaluate products against a target ac-1045

curacy threshold of 0.04 m3m−3 ubRMSD across the globe, excluding regions of snow and ice,1046

frozen ground, complex topography, open water, urban areas, and vegetation with water content1047

greater than 5 kg/m2. This requirement was defined by the Soil Moisture and Ocean Salinity1048

(SMOS; Kerr et al., 2001) and the Soil Moisture Active Passive (SMAP; Entekhabi et al.,1049

2010a) missions, and by the Terrestrial Observation Panel for Climate (TOPC; WMO , 2016).1050

Alternatively, the Satellite Application Facility in Support to Operational Hydrology and Wa-1051

ter Management (H SAF) of the European Organisation for the Exploitation of Meteorological1052

Satellites (EUMETSAT) has defined (TCA-based) SNR product requirements (H-SAF , 2017)1053

for the operational soil moisture products that are retrieved from measurements of the Advanced1054

Scatterometer (ASCAT) onboard the MetOp satellites (Naeimi et al., 2009). In particular, the1055

EUMETSAT H SAF defines 0, 3 and 6 dB SNR as threshold, target and optimal SNR require-1056

ments to make product assessment possible on a larger scale and spatially better comparable1057

(see Sec. 4.4).1058
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Both of these requirements are based on relatively practical, easy-to-estimate single numbers1059

that represent a rough average of what is currently achievable rather than being an indication1060

of “good” or “bad” product quality. While they provide easy means to monitor product per-1061

formance evolution over time and to compare products, they are not necessarily related to the1062

suitability of a product for specific applications. However, the actual specification of bias and1063

uncertainty requirements for the fitness-for-purpose for a particular application (including the1064

specification of the appropriate metrics) is a task of the respective user community and needs1065

further research (Entekhabi et al., 2010b).1066

4.8.3 Reproducibility1067

The research community generally suffers from a lack of reproducibility in scientific studies1068

(Baker , 2016). Also in soil moisture validation studies, contradictory results for the performance1069

and relative ranking between different satellite products have been reported (e.g., Wagner et al.,1070

2014). These ambiguities originate from: (i) the choice of reference data and product versions;1071

(ii) the use of different spatial regions and time periods; (iii) different approaches used for data1072

preparation and pre-processing; (iv) statistical sampling errors; and (v) software implementation1073

errors. Note, however, that contradicting results are not necessarily caused by bad study design1074

but often originate from stochastic uncertainties, which are inevitably dominant in space borne1075

Earth observation measurements (Greenland et al., 2016).1076

Embracing statistical uncertainty and developing an in-depth understanding of soil moisture1077

product quality requires more comprehensive descriptions of data sets, software, and methodol-1078

ogy than are usually provided as well as the mandatory, additional estimation and presentation1079

of sampling errors. To that end, we recommend that:1080

• all validation results should be accompanied by confidence intervals as measure for sam-1081

pling errors;1082

• all methodological steps should be described with sufficient detail to be reproducible;1083

• all data sets used for the study should be made publicly available and unambiguously1084

identifiable by providing their exact product version information and, where available,1085

their Digital Object Identifier (DOI);1086

• all used software packages that are relevant for the exact reproduction of validation re-1087

sults should be referenced with their complete version number and, where available, their1088
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DOI. If not accessible via open repositories (in particular software specifically designed for1089

that study), we recommend to make source code publicly available, preferably on GitHub1090

(https://github.com/; last access: 1 July 2019).1091

A list of some current publicly available software that is specifically aimed at, or closely related to1092

soil moisture validation is provided in Table 3. An online validation tool that is built around these1093

software packages and follows the good practice guidelines presented in this paper is provided by1094

the Quality Assurance Framework for Soil Moisture (QA4SM; https://qa4sm.eodc.eu/; last1095

access: 1 July 2019).1096

Note that the re-distribution of in situ measurements (see the third point above) may be1097

particularly problematic as many networks do not operate for free. Requiring networks to1098

freely distribute their data will likely decrease the number of datasets available for validation1099

activities, which may ultimately hamper the evolution of satellite soil moisture products and1100

downstream products derived thereof. We therefore emphasize the tremendous value of ground1101

reference measurements and encourage the community to support, by any means possible, the1102

development and continuation of operational Cal/Val sites.1103

5 Validation Good Practice Protocol1104

This section provides a compilation of the theoretical considerations presented above in the form1105

of a validation good practice protocol for satellite soil moisture products, i.e. guidelines for:1106

• the selection of reference data;1107

• data pre-processing steps;1108

• the selection and implementation of appropriate metrics;1109

• the presentation of validation results.1110

Figure 3 illustrates the process and Appendix A provides an example that follows these recom-1111

mendations. We stress that there is no one-size-fits-all approach for validating Earth observation1112

data. Depending on the application in question, several analyses may not be necessary. Also,1113

recommended thresholds may need to be adjusted depending on data quality requirements (e.g.,1114

more strict data masking procedures may be employed) or data availability (e.g., the allowed in1115

situ measurement depth may be increased if only retrievals from long wavelengths in dry and1116

sandy regions are used).1117
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5.1 Data selection1118

As discussed in Sec. 3, no reference data source provides a sufficiently accurate and traceable1119

soil moisture proxy for reliable error assessment on a global scale. A complete and comprehen-1120

sive product validation therefore requires comparisons against each of the following: (i) dense1121

networks, in particular core validation sites; (ii) sparse networks; (iii) land surface model out-1122

put; and (iv) other satellite products, always making sure that the latest or most recommended1123

product versions are used. However, given the large number of satellite and reference prod-1124

ucts available, a complete analysis that considers all these data sources is typically beyond the1125

capacity of a single validation study. Therefore, separate studies may be conducted for dense1126

network validation (Colliander et al., 2017), sparse network validation (Dorigo et al., 2015),1127

or coarse-resolution product inter-comparison (Al-Yaari et al., 2014) and their results compiled1128

together in a meta-analysis.1129

Since satellite soil moisture retrievals represent only the top few centimeters of the soil, in1130

situ sensors and modelled soil layers used for validation should reach no deeper than 5-10 cm,1131

which is considered as the maximum sensing depth for currently available microwave wavelengths1132

(X-band to L-band). Information where currently publicly available reference data sets can be1133

accessed is provided in Table 2.1134

5.2 Pre-processing1135

5.2.1 Masking1136

In situ measurements and satellite retrievals are typically accompanied by quality flags, which1137

must be used to mask out all measurements that are considered unreliable. If this masking1138

requires the decision of a threshold (for example the probability of RFI occurrence), recom-1139

mendations from data providers should be followed and the employed thresholds carefully docu-1140

mented. Ancillary information on dynamic geophysical variables, such as snow, temperature or1141

vegetation, should be used to screen microwave-based satellite measurements since no reliable1142

soil moisture retrieval is possible under frozen or snow-covered conditions and the quality of1143

soil moisture retrievals depends on the vegetation density. Such ancillary data can be supplied1144

by land surface models or complementary satellite data. Specifically, we recommend masking1145

out pixels classified as tropical forests, water bodies, wetlands, and inundation areas as well1146

as all measurements on days with non-zero snow indicators (e.g., snow height or snow-water-1147
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equivalent), or surface or soil temperature below 4◦C. When biases or uncertainties of multiple1148

products are compared, they should be calculated from the exact same, collocated data points.1149

However, care should be taken that single products with poor data coverage do not distort the1150

overall assessment (see Sec. 6).1151

To avoid excessively large confidence intervals that can hamper meaningful data comparison,1152

grid cells with less than 50-500 collocated data points may be masked out depending on data1153

availability (Zwieback et al., 2012). Also, many studies mask out correlation coefficients based1154

on Student’s t-test (i.e. applying p-value thresholds for correlation coefficients), and/or bias and1155

uncertainty estimates based on vegetation density (e.g., vegetation water content > 5 kg/m2)1156

or other thresholds (e.g., open-water fraction > 0.05) (Dorigo et al., 2010; Brocca et al., 2011;1157

Al-Yaari et al., 2014). However, carefully reporting and interpreting confidence intervals and1158

sample sizes at locations with low data coverage could indeed provide valuable additional insight1159

and may be more informative than masking out estimates completely (Wasserstein et al., 2019).1160

Also, complete reporting of results prevents generating publication biases due to “cherry-picking”1161

which is sometimes found in the scientific literature (Greenland et al., 2016).1162

5.2.2 Collocation1163

Spatial collocation requires the selection of a spatial comparison grid, which is often the grid1164

of the satellite product under validation. In situ measurements should be assigned to the grid1165

cell in which they are located. For dense networks, all stations that lie within a particular grid1166

cell should be averaged, if possible taking their respective spatial representativeness for that1167

grid cell into account. To avoid artificial jumps due to sensor drop-outs, only time steps where1168

all stations provide valid measurements should be considered. For the SMAP core validation1169

sites (see Sec. 3.2.1), a validation grid that minimizes upscaling errors has been developed as1170

described in Colliander et al. (2017).1171

Gridded reference products (i.e. other satellite and land surface model products) should be1172

resampled onto the chosen comparison grid, e.g., using a Nearest Neighbor (NN) search. If the1173

grid resolution of the reference product is coarser than that of the comparison grid, individual1174

grid cells of that product may be assigned to multiple comparison grid cells. If the grid resolution1175

is much finer, all NNs of single comparison grid cells (in case more than one exist) should be1176

averaged, if possible taking spatial representativeness into account.1177

Temporal collocation at comparison time steps should minimize the time difference between1178
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data match-ups and be based on a NN-search with a maximum time difference threshold of1179

1-12 hours, depending on data availability. Note that the choice of the comparison grid and1180

time steps may affect the presence and distribution of (spatial and temporal) representativeness1181

errors among the considered data sets (see Sec. 6).1182

5.2.3 Decomposition1183

All validation metrics should be calculated for the raw soil moisture time series (of collocated1184

retrievals and reference data) as well as for short-term and long-term anomalies, except for1185

temporal mean biases whose calculation is trivial for anomalies. Short-term anomalies should1186

be estimated as residuals from a seasonality that is computed by applying a 4-8 week moving1187

average window to the time series. Long-term anomalies should be estimated as residuals from1188

a climatology that is computed by averaging the measurements of all years within a 4-8 week1189

moving window around each DOY, but only if at least 5-10 years of data are available. To avoid1190

data-density related artefacts, especially in the transition periods from frozen to non-frozen1191

periods, moving averages should only be calculated if at least 25-50% of the maximal data pair1192

coverage is available within a particular time window.1193

5.2.4 Rescaling1194

When using fiducial reference data, units (e.g., m3m−3 and degree of saturation) should be1195

unified for the purpose of bias estimation using soil texture information, keeping in mind that1196

inaccuracy in soil information directly propagates into the bias estimates. To account for (hor-1197

izontal and vertical) systematic representativeness errors and different soil moisture units, the1198

data set under validation should be rescaled (before decomposition for validating raw time1199

series and after decomposition for validating anomalies) towards the reference data when esti-1200

mating absolute uncertainties (i.e. ubRMSDs or ubRMSEs). When calculating relative metrics,1201

data sets should be rescaled by matching their temporal mean and standard deviation. When1202

calculating TCA-based metrics, data sets should be rescaled using also TCA-based rescaling1203

coefficients. Note that no rescaling or unit conversion is necessary for Pearson correlation co-1204

efficients or TCA-based correlation and SNR estimates, since these metrics are not affected by1205

linear data transformation.1206
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5.3 Metric calculation1207

Remember that all covariance-based metrics require zero error correlation. Any combination of1208

in situ measurements, land surface model estimates, active-microwave-based measurements, or1209

passive-microwave-based measurements is expected to mostly fulfil this requirement (see Sec.1210

4.4.2; Gruber et al., 2016a). Different products from within any of these categories (except for1211

in situ data), on the other hand, are expected to have correlated errors (Gruber et al., 2016b).1212

Therefore, the metrics described below should not be applied to such product combinations.1213

Moreover, since non-zero error correlations may exist even when using products from different1214

categories (see Sec. 4.4.2; Yilmaz and Crow , 2014; Pan et al., 2015), it is strongly recommended1215

to verify if assumptions are met (see Sec. 5.3.2).1216

5.3.1 Relative metrics1217

Temporal mean biases (Eq. (4)) should be calculated between all data sets that are expected1218

to be properly collocated and have comparable spatial resolution, and are hence not dominated1219

by spatial representativeness errors. These data sets may include dense networks, land surface1220

models, and other satellite data sets. It should be kept in mind, however, that the underly-1221

ing measurement resolution often considerably differs from the sampling grid resolution, which1222

potentially causes representativeness errors that are not directly apparent as such. Correlation1223

coefficients and unbiased Root-Mean-Square-Differences (Eqs. (9) and (7), respectively) should1224

be calculated between all data sets whose errors are not expected to be correlated (see above).1225

5.3.2 TCA-based metrics1226

Second-order biases (Eq. (5)) of the validation data set should be calculated using fiducial1227

reference data (i.e. at the core validation sites). Unbiased Root-Mean-Square-Errors and SNRs1228

(Eqs. (8) and (11), respectively) should be calculated for all data sets. If more than one triplet1229

with independent errors is available to estimate the bias or uncertainty of a particular product,1230

TCA should be applied to all possible triplets and redundant estimates should be averaged1231

(Gruber et al., 2016b). The spread between redundant estimates should be used as a diagnostic1232

to verify if orthogonality and zero error correlation assumptions are met (Dorigo et al., 2010;1233

Draper et al., 2013; Chen et al., 2017).1234
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5.3.3 Confidence intervals1235

For each metric, 80-95% confidence intervals should be calculated using their analytical esti-1236

mators (Eqs. (14)-(17)) or, if not available, block-bootstrapping. The latter should be based1237

on at least 1000 bootstrap samples (Efron and Tibshirani , 1986) or possibly less if tested for1238

convergence, and all confidence intervals should be corrected for sample auto-correlation.1239

5.4 Presentation1240

Validation metrics together with sample size and upper and lower confidence intervals/limits1241

should be presented for each location where they are calculated, either by means of spatial1242

maps or, if not meaningful (for example for core validation sites), in tabular form. Additionally,1243

summary statistics (representing average conditions and spatial variability) of both validation1244

metrics and their confidence intervals/limits should be provided, e.g., in the form of boxplots1245

(i.e. median, inter-quartile-range and 5th/95th percentiles). The presentation can be further1246

customized, for example by stratifying the summary statistics for climatological or land surface1247

conditions.1248

Ratio-based metrics (i.e. Pearson and TCA-based correlation coefficients as well as SNRs)1249

must not be averaged. Differences between these metrics must always be related to their absolute1250

values and be interpreted with care (see Sec. 4.7). SNR-related properties of different products1251

may be compared in terms of SNR ratios or SNR differences in decibel space (Eq. (11)).1252

Examples of how validation metrics and associated confidence intervals can be presented are1253

provided in Appendix A.1254

6 Towards best practices: discussion and conclusions1255

In this paper we have reviewed state-of-the-art validation methods, including reference data1256

sources and data pre-processing procedures, and provided community-agreed good practice1257

guidelines for the validation of satellite soil moisture products. Moreover, we have identified1258

several weak links that require careful attention to increase the reliability of soil moisture data1259

quality assessments. Specifically, the following research gaps should be addressed in the near1260

future:1261

• On assumptions: the majority of studies assume that estimated biases and uncertainties1262

are stationary (i.e. constant over time) or at least that they represent the average data1263
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quality of a product. However, given the strong link between soil moisture data quality1264

and vegetation (van der Schalie et al., 2018; Zwieback et al., 2018; Gruber et al., 2019a),1265

retrieval accuracy can be expected to vary strongly between seasons and many applications1266

could greatly benefit from temporally varying quality information. Given the rapidly1267

growing temporal coverage of soil moisture products, efforts should be made to provide1268

bias and uncertainty estimates at different time scales, which also requires the use of1269

seasonally varying bias correction (i.e. rescaling) parameters.1270

• On pre-processing: very little is known about how spatial and temporal collocation mis-1271

matches contribute to bias and uncertainty estimates. Using simple NN or IDW approaches1272

to find match-ups between measurements that sample very different soil volumes or were1273

taken at different times will give rise to representativeness errors that may considerably1274

affect the overall picture of the quality of a product. More research is needed to quantify1275

these representativeness errors and to develop resampling methods that more rigorously1276

take actual measurement resolution into account.1277

• On metric calculation: most current studies neglect the impact of second-order biases on1278

various validation metrics such as the temporal mean difference or the ubRMSD. Several1279

attempts are made to mitigate their impact using rescaling methods that match the sta-1280

tistical moments of the data sets, yet most of these methods do not account for random1281

errors and therefore match the moments in an insufficient manner. More research is needed1282

to quantify the impact of suboptimal rescaling on second-order biases, on the impact of1283

uncorrected second-order biases on validation metrics, and on how such uncorrected biases1284

can be accounted for.1285

• On reference data: validation targets are typically defined against an unknown truth.1286

Comparing metrics against error-prone estimates of this truth (i.e. reference data) will1287

be inflated by some unknown amount. Efforts should be made to obtain proper bias and1288

uncertainty estimates for reference data sets, which should be further used to correct over-1289

or underestimated validation metrics (Miralles et al., 2010; Chen et al., 2017).1290

• On statistical uncertainty: most validation studies do not report confidence intervals,1291

even though they are critical for a reliable interpretation of validation results. Although1292

an accurate analytical calculation of confidence intervals for large-scale validation is not1293

trivial for all metrics, bootstrapping provides an easy and robust alternative. However,1294
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care must be taken to properly account for spatial and temporal auto-correlation in the1295

data.1296

• On continuity: given the perpetual changes in the land surface character and climate as1297

well as progressively increasing data record lengths, sensor drifts, changing reference data1298

availability, and improving soil moisture retrieval algorithms, validation should be a con-1299

tinuous process and validation reports frequently (at least annually) updated throughout1300

and beyond the lifetime of the various satellite missions.1301

• On accuracy requirements: the well-known soil moisture mission target accuracy require-1302

ment of 0.04 m3m−3 (as specified by the Global Climate Observing System as well as1303

for individual products and missions), against which soil moisture products are typically1304

evaluated, does not relate to the fitness-for-purpose for a specific application. We there-1305

fore strongly encourage a closer collaboration between satellite data providers and the soil1306

moisture user community to determine application specific accuracy requirements that1307

provide deeper insight into what constitutes “good” or “bad” soil moisture data quality,1308

thereby fostering the development of improved satellite products.1309

Finally, many of the discussed principles and methods are not exclusively restricted to soil1310

moisture. By setting this example, we hope to also nurture the development and evolution of1311

validation good practice guidelines in other Earth observation communities.1312
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Appendix1320

A Validation example1321

Sec. 5 compiles community-agreed validation good practices into a recommended validation1322

protocol. In this appendix, we provide an example that follows this protocol, not to actually1323

assess the quality of certain products, but to show an illustrative scenario that can be easily1324

extrapolated to more specific validation tasks that readers may face. This includes a comprehen-1325

sive description of the validation setup, demonstrative examples of how validation results may1326

be presented, and a discussion on where the currently available satellite soil moisture validation1327

literature often fails to comply with the good practice recommendations presented here. Results1328

shown in this appendix have been generated using the python programming language. All source1329

code is available at https://github.com/alexgruber/validation_good_practice/ (last ac-1330

cess: 1 July 2019). Metric calculation routines have been additionally translated into MATLAB.1331

A.1 Data sets and study area1332

Select validation examples are shown for soil moisture retrievals from the Advanced SCATterom-1333

eter (ASCAT; Naeimi et al., 2009), the Soil Moisture and Ocean Salinity (SMOS) mission (Kerr1334

et al., 2010), and the Soil Moisture Active Passive (SMAP) mission (Entekhabi et al., 2010a).1335

Reference data used are coarse-resolution model estimates from the Modern-Era Retrospective1336

analysis for Research and Applications, Version 2 (MERRA-2; Gelaro et al., 2017). This analy-1337

sis is performed over the Contiguous United States (CONUS) using data from the beginning of1338

2015 through the end of 2018.1339

ASCAT data used are the EUMETSAT H SAF H113 data record and its extension H114,1340

which are Level 2 (L2) soil moisture products that have been retrieved from inter-calibrated1341

backscatter measurements from identical ASCAT instruments onboard the MetOp-A and MetOp-1342

B satellites using the TU Wien WAter Retrieval Package (WARP) algorithm (Wagner et al.,1343

1999; Naeimi et al., 2009). ASCAT is an active C-band radar with a spatial resolution of 25 km.1344

Soil moisture is retrieved as the degree of saturation and sampled onto a 12.5 km discrete global1345

grid. Data can be obtained upon registration from http://hsaf.meteoam.it/soil-moisture.1346

php (last access: 1 July 2019).1347

SMOS data are the reprocessed L2 soil moisture retrievals version V650, which can be ob-1348

tained upon registration from https://smos-diss.eo.esa.int/ (last access: 1 July 2019; Kerr1349
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et al., 2012). SMOS is a passive L-band interferometric radiometer with an average spatial res-1350

olution of 43 km. Soil moisture is retrieved in volumetric units and sampled on a 15 km discrete1351

global grid.1352

SMAP data used are the 36 km L2 radiometer-only soil moisture retrievals (SPL2SMP), al-1353

gorithm version 5 (R16010) (O’Neill et al., 2018, DOI: 10.5067/SODMLCE6LGLL). The passive1354

SMAP radiometer operates at L-band at a spatial resolution of 40 km. Soil moisture is retrieved1355

in volumetric units and sampled on the 36 km EASE grid version 2 (Brodzik et al., 2012).1356

MERRA-2 (Gelaro et al., 2017) is the latest atmospheric reanalysis produced by NASA’s1357

Global Modelling and Assimilation Office. Soil moisture is estimated on a 0.5◦ × 0.625◦ grid in1358

volumetric units as internal state variable of its land surface component, the Catchment Land1359

Surface Model (Koster et al., 2000). Here we use soil moisture estimates of the surface layer,1360

which refers to the top 5 cm of the soil (GMAO , 2015). MERRA-2 data can be downloaded1361

from https://gmao.gsfc.nasa.gov/reanalysis/MERRA-2/data_access/ (last access: 1 July1362

2019).1363

A.2 Pre-processing1364

Unreliable soil moisture retrievals of the individual satellite products are masked out following1365

the recommendations of the data providers. ASCAT soil moisture retrievals are masked out if1366

the correction flag has a value other than 0 or 4, if the confidence flag and the processing flag1367

have values other than 0, or if the surface state flag (Naeimi et al., 2012) has a value other than1368

1. SMOS retrievals are masked out if the RFI probability exceeds 0.1 or if the Chi-2 probability1369

drops below 0.05. SMAP data are masked out if the retrieval quality flag has a value other than1370

0 or 8. In addition, soil moisture retrievals of all satellite products are masked out at time steps1371

where MERRA-2 estimates a soil temperature below 4◦C or non-zero snow mass.1372

ASCAT, SMOS and MERRA-2 are resampled to the 36 km EASE v2 grid that is used1373

for SMAP retrievals using a nearest-neighbor approach. Note that ASCAT data is, although1374

sampled on a 12.5 km grid, not aggregated as the actual measurement resolution (25 km) is1375

already close to the EASE v2 grid resolution. Data sets are collocated in time by resampling them1376

to fixed reference time steps with 24 hour intervals using a nearest-neighbor search. Reference1377

time steps are selected for each grid cell separately such that they maximize the number of1378

collocated time steps where all data sets provide valid soil moisture estimates. Note that the1379

choice of this reference time step can increase or decrease the sample size - depending on the1380
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spatial location of the grid cell - by up to a factor of two.1381

After spatial and temporal collocation, short-term anomalies are calculated for each data set1382

using a 35-day moving average window. Long-term anomalies are not considered here because1383

the study period of four years (2015-2018) is too short to calculate reliable long-term clima-1384

tologies. The term “raw time series” is used to refer to the non-decomposed data, i.e. before1385

anomalies have been calculated. For the estimation of unbiased RMSDs, data sets (both raw1386

and anomaly time series) are rescaled by matching their temporal mean and standard deviation1387

using MERRA-2 as scaling reference for comparability.1388

A.3 Skill metrics and presentation1389

A.3.1 Sample size1390

All metrics are calculated from the same collocated data points, i.e. days where all four data1391

sets provide valid soil moisture estimates. The number of temporal matches at each grid cell1392

within our study domain is shown in Figure A.1. As discussed in Sec. 4, sample size directly1393

translates into statistical power, i.e. reliability (in terms of confidence intervals) of the calculated1394

skill metrics. Sample sizes obtained here, which range from 150 in the more mountainous areas1395

to up to about 300-500 in the rest of the CONUS, are typically considered high and associated1396

with reasonably low confidence intervals for validation purposes.1397

However, as discussed in Sec. 4.6, confidence intervals are affected by temporal auto-1398

correlation. “Effective” sample sizes, corrected for auto-correlation using Eq. (18), are ad-1399

ditionally shown in Figure A.1 considering all data sets (for TCA metrics), and in Figure A.21400

for raw soil moisture time series and Figure A.3 for soil moisture anomalies considering different1401

data set pairs. Effective sample sizes are considerably smaller than actual sample sizes, especially1402

for raw time series due to the strong auto-correlation of the seasonal soil moisture cycle. Since1403

auto-correlation levels vary between data sets, effective sample sizes vary when calculated for1404

different data set pairs (albeit only slightly), which in turn leads to differences in the confidence1405

intervals of relative skill metrics that are calculated between these data pairs.1406

In the following, all analytical confidence intervals (Eqs. (14), (15), and (17)) are calculated1407

using these auto-correlation corrected effective sample sizes. For bootstrapped confidence in-1408

tervals, temporal auto-correlation is accounted for using block-bootstrapping (see Sec. 4.6.2)1409

where block-lengths are estimated from the same auto-correlation levels that are underlying the1410

calculation of effective sample sizes (see Eq. (21)).1411
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A.3.2 Relative metrics1412

Figures A.4, A.5 and A.6 show spatial plots of relative (mean) bias, ubRMSD and R2 (coefficient1413

of determination or squared Pearson correlation) estimates for raw soil moisture values, respec-1414

tively, and Figures A.7 and A.8 show ubRMSD and R2 estimates for soil moisture anomalies,1415

respectively.1416

Biases are only calculated for raw soil moisture time series and between soil moisture esti-1417

mates that are expressed in the same unit, i.e. for SMOS, SMAP, and MERRA-2 which provide1418

estimates of volumetric soil moisture. ASCAT estimates of the degree of saturation could be1419

converted into volumetric units using porosity information, but since the quality of soil texture1420

maps on these scales is questionable, this is not recommended for bias estimation purposes. Note1421

also, that the biases between the remaining three data sets also include collocation and (vertical1422

and horizontal) scale mismatches and should therefore be interpreted with care.1423

Along with the skill estimates, maps of confidence intervals are shown as the difference1424

between the upper and lower confidence limits, chosen to be the 90th and the 10th percentile of1425

the sampling distribution, respectively. Important to note is that confidence intervals for R2 and1426

ubRMSD estimates depend on the magnitude of the respective skill estimate, and are for R2 not1427

centered around the skill estimate. Misinterpretations may be avoided by directly presenting1428

the actual confidence limits (see Sec. 4.7).1429

We choose a confidence level of 80% because confidence intervals at the more common (yet1430

completely arbitrary) 95% confidence level typically become excessively large for the sample1431

sizes available from collocated satellite products (Gruber et al., 2019a), especially when taking1432

temporal auto-correlation into account.1433

Figure A.9 shows spatial summary statistics of the relative skill metrics as well as of their1434

upper and lower confidence limits. Hardly any skill differences would be considered significant1435

when tested in the common way of checking for overlap between upper and lower confidence1436

limits, even though Figures A.4 - A.8 show clear differences in spatial patterns.1437

A.3.3 Triple collocation metrics1438

As discussed in Sec. 4, TCA requires three data sets with independent random errors. Since1439

errors of SMAP and SMOS are expected to be correlated (see Sec. 5.3), two independent data1440

set triplets can be formed, i.e. ASCAT - SMOS - MERRA-2 and ASCAT - SMAP - MERRA-2.1441

This results in unambiguous skill estimates for SMAP and SMOS, and in two skill estimates for1442
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ASCAT, which are averaged for increased precision.1443

Figures A.10 and A.11 show spatial plots of TCA-based ubRMSE and R2 (coefficient of1444

determination w.r.t. the unknown truth) estimates, respectively, and Figures A.12 and A.131445

show ubRMSE and R2 estimates for short-term soil moisture anomalies, respectively. The skill1446

estimates represent the median of the bootstrapped sampling distribution, which are more robust1447

than the direct estimates, and 80 % confidence intervals (i.e. the range between the 90th and1448

the 10th percentile of the bootstrapped sampling distribution) are provided. Spatial summary1449

statistics of the TCA estimates (sampling distribution median) as well as of the upper and lower1450

confidence limits are shown in Figure A.14.1451

The two degrees of freedom in TCA-based ASCAT skill estimates can not only be used for1452

increasing the precision of the estimates by averaging them, but also to verify if TCA assumptions1453

(i.e. zero error cross-correlation and error orthogonality) are met because if so, skill estimates1454

should be identical. To this end, Figure A.15 shows the differences between R2 and ubRMSE1455

estimates for ASCAT when calculated once using SMOS as third data set and once using SMAP1456

as third data set.1457

On average, differences are close to zero and especially R2 estimates do not exhibit spatial1458

patterns of notable magnitude, which suggests that differences are mainly caused by sampling1459

errors and hence that the TCA assumptions are generally respected. Some positive skill biases1460

for raw soil moisture estimation for ASCAT are apparent in some northern and western parts1461

of the CONUS, with skill estimates being slightly higher when using SMOS rather than SMAP1462

in the triplet. These areas strongly coincide with regions of generally poor ASCAT performance1463

(see Figure A.11), which is more pronounced in the ubRMSD because SNR biases of a given1464

magnitude are associated with larger biases in error variance at low SNR levels than at high1465

SNR levels. (see Sec. 4.7). Poor ASCAT performance in the northern CONUS is associated1466

with issues in the vegetation correction of the WARP retrieval algorithm (see Sec. A.1). These1467

uncorrected vegetation signals are removed when using soil moisture anomalies, which results in1468

a considerable increase in skill metrics (see Figure A.13) and also removes the non-zero difference1469

in ASCAT skill estimates when using SMOS versus SMAP for TCA, i.e. spurious error cross-1470

correlations (see Figure A.15).1471
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A.4 Final remarks1472

In this appendix, we provide an illustrative validation example that follows the good practice1473

guidelines presented in this paper. For brevity, we omit the presentation of ground data compar-1474

isons, which can be calculated and presented in the exact same way as the area-wide coarse-scale1475

comparisons shown above. For simplicity, results are presented in spatial maps and boxplots1476

that cover all of CONUS without further stratification. For summary information or if metrics1477

are only computed at a few locations using ground reference data, results could be further pre-1478

sented in tabular format. Some examples of comprehensive ground reference data comparison1479

including both sparse networks and core validation sites can be found in Dorigo et al. (2015);1480

Chen et al. (2017); Colliander et al. (2017).1481
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A. Riihelä, C.-M. Tanis, A.-N. Arslan, A. Obregon, A. Kaiser-Weiss, V. John, W. Timmer-2005

mans, J. Timmermans, F. Kaspar, H. Gregow, A.-L. Barbu, D. Fairbairn, E. Gelati, and2006

C. Meurey (2015), Analysis of current validation practices in europe for space-based climate2007

data records of essential climate variables, International Journal of Applied Earth Observation2008

and Geoinformation, 42, p. 150 – 161, doi:https://doi.org/10.1016/j.jag.2015.06.006.2009

Zreda, M., W. Shuttleworth, X. Zeng, C. Zweck, D. Desilets, T. Franz, and R. Rosolem (2012),2010

COSMOS: the cosmic-ray soil moisture observing system, Hydrology and Earth System Sci-2011

ences, 16(11), p. 4079–4099, doi:10.5194/hess-16-4079-2012.2012
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Table 1: Validation stages as defined by CEOS (modified from https://lpvs.gsfc.nasa.gov/;
last access: 1 July 2019).

Validation Stage Definition

0
No validation. Product accuracy has not been assessed. Product
considered beta.

1
Product accuracy is assessed from a small (typically <30) set of
locations and time periods by comparison with in situ or other
suitable reference data.

2

Product accuracy is estimated over a considerable set of locations
and time periods by comparison with reference in situ or other
suitable reference data. Spatial and temporal consistency of the
product and consistency with similar products has been
evaluated over globally representative locations and time periods.
Results are published in the peer-reviewed literature.

3

Uncertainties in the product and its associated structure are well
quantified from comparison with reference in situ or other
suitable reference data. Uncertainties are characterized in a
statistically rigorous way over multiple locations and time
periods representing global conditions. Spatial and temporal
consistency of the product and with similar products has been
evaluated over globally representative locations and periods.
Results are published in the peer-reviewed literature.

4
Validation results for stage 3 are systematically updated when
new product versions are released and as the time-series expands.

Table 2: Summary of publicly available reference data sources commonly used for satellite soil
moisture validation (links last accessed: 1 July 2019).

Name Description Reference

ISMN
Data hosting facility for sparse soil

moisture networks
http://ismn.geo.tuwien.ac.at/

(Dorigo et al., 2011a,b)

CVS
Openly available Core Validation Site
(CVS) data that have been specifically

processed for SMAP validation.

https:

//nsidc.org/data/nsidc-0712

GLDAS
NASA’s global modelling and data

assimilation system
https:

//ldas.gsfc.nasa.gov/gldas/

MERRA NASA’s global reanalysis data sets
https://gmao.gsfc.nasa.gov/

reanalysis/MERRA-2/

ERA ECMWF’s global reanalysis data sets
https://www.ecmwf.int/en/

forecasts/datasets/

browse-reanalysis-datasets/
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Table 3: Open-source software that can be used for satellite soil moisture validation (links last
accessed: last access: 1 July 2019).

Name Description Language Reference

Source code used to produce
validation examples in this
publication in Appendix A

python,
MATLAB

https://github.com/

alexgruber/validation_

good_practice/

pytesmo
Geospatial time series

validation toolbox
python

https://doi.org/10.5281/

zenodo.1215760/

poets
Geospatial image resampling

toolbox
python

https://pypi.org/

project/poets/

Figure 1: Validation framework as defined by CEOS (from https://lpvs.gsfc.nasa.gov/;
last access: 1 July 2019).
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Figure 2: Currently available stations from sparse networks hosted by the ISMN. Colors represent
different station hosting networks.

Figure 3: Validation good practice protocol illustration.
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Figure A.1: Sample size for temporal matches between ASCAT, SMOS, SMAP and MERRA-2
between 2015 and 2018 (left), effective sample size when correcting for anomaly auto-correlation
(middle), and effective sample size when correcting for auto-correlation in the raw time series
(right).

Figure A.2: Effective, raw time series auto-correlation corrected sample size for different data
set combinations.

Figure A.3: Effective, anomaly auto-correlation corrected sample size for different data set
combinations.
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Figure A.4: Temporal mean biases [m3m−3] (left) and associated 80% confidence intervals (right)
between raw soil moisture estimates of SMOS, SMAP and MERRA-2.
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Figure A.5: Unbiased (in mean and standard deviation) root-mean-square-differences [m3m−3]
(left) and associated 80% confidence intervals (right) between raw soil moisture estimates of
ASCAT, SMOS, SMAP and MERRA-2. 77



Figure A.6: Coefficients of determination [-] (left) and associated 80% confidence intervals (right)
between raw soil moisture estimates of ASCAT, SMOS, SMAP and MERRA-2.
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Figure A.7: Unbiased (in mean and standard deviation) [m3m−3] root-mean-square-differences
(left) and associated 80% confidence intervals (right) between soil moisture anomaly estimates
of ASCAT, SMOS, SMAP and MERRA-2. 79



Figure A.8: Coefficients of determination [-] (left) and associated 80% confidence intervals (right)
between soil moisture anomaly estimates of ASCAT, SMOS, SMAP and MERRA-2.
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Figure A.9: Spatial summary statistics of biases [m3m−3], ubRMSDs [m3m−3], and coefficients
of determination [-] and their 10% and 90% confidence limits, respectively, for raw soil mois-
ture estimates and soil moisture anomalies of ASCAT, SMOS, SMAP and MERRA-2. Boxes
represent the (spatial) median and inter-quartile-range and whiskers represent the 5 and 95
percentiles.
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Figure A.10: Median of the bootstrapped TCA-based ubRMSEs [m3m−3] (left) and associated
80% confidence intervals (right) of raw soil moisture estimates of ASCAT, SMOS, and SMAP.
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Figure A.11: Median of the bootstrapped TCA-based R2 estimates [-] (left) and associated 80%
confidence intervals (right) of raw soil moisture estimates of ASCAT, SMOS, and SMAP.
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Figure A.12: Median of the bootstrapped TCA-based ubRMSEs [m3m−3] (left) and associated
80% confidence intervals (right) of soil moisture anomaly estimates of ASCAT, SMOS, and
SMAP.
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Figure A.13: Median of the bootstrapped TCA-based R2 estimates [-] (left) and associated 80%
confidence intervals (right) of soil moisture anomaly estimates of ASCAT, SMOS, and SMAP.

Figure A.14: Spatial summary statistics of the median of the bootstrapped TCA-based ubRM-
SEs [m3m−3], and R2 estimates [-] and their 10% and 90% confidence limits, respectively, for
raw soil moisture estimates and soil moisture anomalies of ASCAT, SMOS, and SMAP. Boxes
represent the (spatial) median and inter-quartile-range and whiskers represent the 5 and 95
percentiles.
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Figure A.15: Difference in TCA-based ubRMSE [m3m−3] and R2 estimates [-] for raw soil
moisture estimates (top) and soil moisture anomaly estimates (bottom) of ASCAT when using
SMOS as third data set minus when using SMAP as third data set in the triplet.
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