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Abstract15

In this study we derive the Environmental Lapse Rate (ELR) from vertical profiles of16

temperature in the lower troposphere, applying it to downscale air temperature of the17

new European Centre For Medium-Range Weather Forecasts (ECMWF) reanalysis ERA5,18

which replaces ERA-Interim (ERAI). We focus over the Western US region, a data rich19

area with observations of daily maximum and minimum temperature (Global Histori-20

cal Climatology Network, GHCN) and snow depth and soil temperature (SNOTEL). Ob-21

servations indicate an ELR of -4.5 K km−1 in the region, lower than the commonly used22

-6.5 K km−1. ERA5 ELR agrees with the observational estimates, with some overesti-23

mation in winter and limitations in the diurnal variability. The elevation correction of24

ERA5 temperature using different ELR showed the benefits of deriving ELR fields from25

ERA5 vertical profiles, when compared with a constant ELR. Simulations with the ECMWF26

land surface model, at 9 km resolution, driven by ERA5 using different ELR corrections27

showed the added value of the methodology, but the impact of different ELR corrections28

is limited. However, the validity of the downscaling method in reducing temperature to29

station altitude suggests there is sufficient generality for application at kilometer and sub-30

kilometer resolutions. By comparing the estimated representativity errors of observations31

with reanalysis, the improvements from ERAI to ERA5 are mainly visible in the ran-32

dom component of the error. Large systematic biases remain, which require further at-33

tention from the modeling and data assimilation efforts, and limit the potential bene-34

fits of ELR corrections.35

1 Introduction36

High spatial and temporal resolution near-surface climate and weather conditions37

are paramount for the understanding, monitoring and forecasting of ecological, hydro-38

logical, and climate change processes, among others (e.g. Behnke et al., 2016; Maraun39

et al., 2010; Maselli et al., 2012; Tobin et al., 2012). Near-surface air temperature and40

precipitation are key fields due to their relevance in the evolution of surface and subsur-41

face conditions (e.g. vegetation, groundwater), which are then used to drive process based42

or statistical models. High spatial resolution is also becoming increasingly important in43

climate change studies with examples such as the Coordinated Regional Climate Down-44

scaling Experiment (CORDEX) (e.g. Endris et al., 2013; Soares et al., 2017). A com-45

mon approach to enhance the spatial resolution is statistical or dynamical downscaling.46

Statistical downscaling can be very effective, in particular if using local observations, (e.g.47

Winstral et al., 2017; Maraun et al., 2010; Cao et al., 2017). Dynamical downscaling of48

global atmospheric reanalysis, weather forecasts or climate change projections is a widely49

used methodology to enhance the spatial information (Soares et al., 2012). Dynamical50

downscaling with limited area (or regional) atmospheric models has a significant com-51

putational cost, but provides a physically consistent description of the land and atmo-52

sphere (e.g relation between temperature, humidity, radiation, clouds, precipitation, etc),53

while suffering from model limitations (e.g. biases). Statistical downscaling is based on54

statistical relationships to predict the evolution of local variables from large-scale vari-55

ables. It is computationally cheaper, but requires observations, which are not always avail-56

able, and the spatial consistency between downscalled fields can be difficult to achieve.57

Temperature near the surface varies with altitude accordingly to the environmen-58

tal lapse-rate (ELR). The ELR depends on the overlying air masses, large-scale situa-59

tion and local effects (Sheridan et al., 2010). The characterization of the ELR has sev-60

eral applications, in particular to downscale global/regional numerical weather predic-61

tions, reanalysis and climate projections in complex terrain regions. From an observa-62

tional point of view, complex terrain regions also constitute a challenging environment63

due to the difficulties associated with the installation and maintenance of observational64

networks. The use of a linear lapse rate for altitude correction of temperature is a com-65

mon practice (e.g. Dodson & Marks, 1997). The main challenge is the definition of the66
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ELR. Optimally, provided that there is a high density and homogeneous distribution of67

stations, this information could be used. However, such station density is not available68

globally. Accounting for elevation differences is fundamental for temperature interpo-69

lations over complex terrain regions (Stahl et al., 2006). There are numerous observa-70

tional indications that ELR varies in time and space and that the commonly used con-71

stant value of -6.5 K km−1 is to high (e.g. Jobst et al., 2017; Shen et al., 2016; Wang72

et al., 2018; Minder et al., 2010). Without local observations spanning a wide range of73

altitude bands, atmospheric vertical profiles have also been used to estimate the ELR.74

Gao et al. (2012) evaluated several ELR in the Alps using station information. They found75

that compared with a constant climatology (Liston & Elder, 2006) the ELR derived from76

the pressure levels of ERA-Interim atmospheric reanalysis (ERAI, Dee et al., 2011) had77

a good performance. This methodology was also found to perform well when tested in78

the Tibetan Plateau (Gao et al., 2017; Gerlitz et al., 2014).79

The use of ELR for elevation corrections between model and station temperature80

is widely accepted, but other surface characteristics such as snow depth or soil temper-81

ature are also expected to depend significantly with altitude. Model simulations with82

a land surface model (hereafter surface simulations) forced with downscaled near-surface83

meteorology can be a compromise to enhance the spatial resolution but with a consid-84

erable lower computational cost when compared with a dynamical downscaling using a85

regional or limited area atmospheric model. Bernier et al. (2011) carried out surface sim-86

ulations at 100 meters resolution in a complex Alpine region in Vancouver Canada show-87

ing the added value of this methodology in simulating snow evolution. This was further88

investigated by Ioannidou et al. (2014) to evaluate surface winds downscaling.89

In this study we aim to evaluate the effect and impact of different ELR corrections90

to downscale the new European Center for Medium-Range Weather Forecasts atmospheric91

reanalysis ERA5 (Hersbach et al., 2018). We focus over the Western US region due to92

the amount of available observations in the Global Historical Climatology Network - Daily93

(GHCN), Version 3 (Menne, Durre, Korzeniewski, et al., 2012) and the Natural Resources94

Conservation Service (NRCS) SNOTEL network, as well as it’s complex terrain char-95

acteristics. As a first step, estimates of the ELR were derived from observations of daily96

maximum, minimum and mean temperature and then ERA5 temperature was reduced97

to the stations altitude using different ELR corrections. The ELR corrections include98

a constant ELR commonly used of -6.5 K km−1 and spatially and temporally varying99

ELR fields derived from ERA5 lower troposphere thermodynamic vertical profiles. Sur-100

face simulations (or offline) with the ECMWF land surface model HTESSEL were car-101

ried out at 9km driven by ERA5 hourly surface downward fluxes (rainfall, snowfall, long-102

wave and shortwave radiation) and near-surface state (temperature, specific humidity,103

wind speed and pressure). ERA5 fluxes and near-surface state were interpolated to the104

9km resolution, whereas temperature (also humidity and pressure) were corrected for el-105

evation differences between ERA5 (31 km) topography and the 9km resolution using dif-106

ferent ELR corrections. The simulations of snow depth and soil temperature were eval-107

uated and compared with both ERA5 and ERAI. The 9 km resolution was chosen for108

practical reasons as the highest global resolution currently operationally run at ECMWF,109

however this does not represent a limitation of the applicability of the downscaling method.110

Finally, an estimate of observational uncertainty was performed to assess the role of spa-111

tial sampling and altitude variability and compared with ERA5 and ERAI reanalysis.112

The following section presents the detailed datasets and methodologies, followed by the113

results with the key conclusions in the last section.114
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2 Methods115

2.1 Data116

2.1.1 Observations117

The observations of daily maximum temperature (dtmax) and daily minimum tem-118

perature (dtmin) were taken from GHCN. GHCN includes daily land surface observa-119

tions from around the world, from different networks. If observed, the station dataset120

includes dtmax, dtmin, total precipitation, snowfall, and snow depth (Menne, Durre, Vose,121

et al., 2012). The GHCN data were processed from the original format for the period122

1 June 2009 to 31 May 2014 restricting the data to a region between 125◦ to 100◦ West123

and 30◦ to 50◦ North ( western United States - WUS). This region was selected due to124

the high density of stations and elevation variability. A missing data screening was ap-125

plied to retain only stations with at least 80% of available data for the period consid-126

ered. After the regional and temporal filters 2941 stations were retained (Figure 1a) with127

dtmin and dtmax data with at least 80% of available data for the 5 years considered. The128

daily mean temperature (dtmean) was also considered in the analysis. Since dtmean is129

not available in GHCN, it was computed as the arithmetic mean between Tmin and Tmax.130

This simple approach can lead to some deviations from the actual daily mean temper-131

ature (Weiss & Hays, 2005; Dall’Amico & Hornsteiner, 2006). However, since GHCN only132

contains dtmin and dtmax the simplest option for the daily mean computation was se-133

lected.134

In addition to the GHCN air temperature observations, the Natural Resources Con-135

servation Service (NRCS) SNOTEL network observations of snow depth and soil tem-136

perature at 5 cm depth were used in the model evaluation. The observations were pro-137

cessed for the same time period and region as GHCN, retaining only stations with 80%138

of available daily data. This resulted in 313 stations with snow depth (Figure 1b) and139

260 stations with soil temperature (Figure 1c). The soil temperature data from this net-140

work has been used to evaluate ECMWF soil temperature performance (Albergel et al.,141

2015). The GHCN dataset also includes snow depth, but only the NRCS-SNOTEL net-142

work was used in this study. This network has been designed to collect snow and climate143

data in western US mountainous regions, which is the environment expected to be mostly144

affected by model topography and resolution.145

2.1.2 Reanalysis146

In this study we focus on the the most recent ECMWF atmospheric reanalysis ERA5147

(Hersbach et al., 2018). This is the latest and fifth generation of atmospheric reanaly-148

sis produced by ECMWF under the Copernicus Climate Change Service (C3S). This new149

reanalysis replaces the widely used ERA-Interim reanalysis (Dee et al., 2011) from 1979150

to close to real time as well as an extension back to 1950. Compared with ERAI, ERA5151

has several enhancements, including: (i) higher spatial horizontal resolution (about 75152

km in ERAI to 31 km in ERA5), (ii) higher vertical resolution (from 60 levels in ERAI153

to 137 in ERA5), (iii) higher temporal resolution of archived data (3-hourly in ERAI to154

hourly in ERA5) and (iv) a recent model and data assimilation systems. Regarding the155

model and assimilation changes, there are numerous improvements benefiting from more156

than 10 year of development of the numerical weather prediction system at ECMWF.157

For example the land surface scheme has suffered a major upgrade, that lead to a land-158

only interim reanalysis ERA-Interim/land (Balsamo et al., 2015), including a revised soil159

hydrology (Balsamo et al., 2009) and snow scheme (Dutra et al., 2010). Other examples160

of model changes include revisions in the convection and diffusion (Bechtold et al., 2008).161

ERA5 dtmin and dtmax were calculated from the 2-meters temperature hourly analy-162

sis, and dtmean computed as the arithmetic mean of dtmin and dtmax to be consistent163

with the processing of GHCN.164
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2.2 ELR estimates165

The ELR is defined as the rate of temperature change with height and can be com-166

puted as:167

Γ =
DT

DZ
(1)168

where Γ is the ELR (K km−1), DT is the temperature difference (K) between two lay-169

ers DZ, assuming 0 at the land surface. Γ is normally negative with a lower limit of -10170

K km−1 for the dry-adiabatic lapse rate, taking higher values with increased moisture.171

In particular situations, the ELR can take positive values, i.e. temperature increases with172

height leading to temperature inversions. These situations occur mainly in stable con-173

ditions or due to large-scale subsidence.174

2.2.1 Observations175

The ELR was estimated from the in-situ GHCN observations via linear regression176

of the observed temperature versus the station altitude in the form:177

Ti = ΓO × Zi + T0 (2)178

where Ti (K) is the station observed mean temperature (taken over a specific period) with179

the associated altitude Zi (Km), and the estimated ΓO is computed by the regression180

as well as T0 (the estimated temperature at altitude 0). The temperature averaging pe-181

riod considered included the full 5 years and the mean monthly climatology. Day by day182

and month by month calculations were performed but the regression quality was poor183

in many areas, which can be associated with synoptic variability affecting each station184

differently. The linear regression requires the definition of a group of stations. The method-185

ology chosen was to split the study area in a regular grid of 1◦ by 1◦ and to perform the186

regression for all stations falling within each area with a 2◦ search radius. This leads to187

some overlap, i.e. one station can be used in several area calculations. Only points with188

at least 30 stations and with a standard deviation of the stations altitude higher than189

400 m were considered. These two constraints were imposed to guarantee a robust lin-190

ear regression. Furthermore, only regressions with a coefficient of determination (R2) above191

0.5 were considered to mask out problematic areas (e.g. snow vs snow-free, highly in-192

homogeneous areas, coastal areas). This approach transforms the spatial distribution of193

surface temperature for different stations in each 1◦ by 1◦ area into an estimate of ELR.194

This approach as two main limitations (i) it relies on the elevation variability among the195

stations and (ii) assumes that temperature at stations in different elevations are repre-196

sentative of the mean lower troposphere vertical structure. Sounding data could be used197

also to derive the ELR, but since most of the freely available sounding data has been used198

by the data assimilation in ERA5, this would likely result in similar estimates as those199

done using ERA5 vertical profiles.200

2.2.2 Reanalysis201

The ELR was estimated from the temperature vertical profiles of ERA5 in the lower202

troposphere. A similar methodology to derive the ELR was proposed by Gao et al. (2012,203

2017) over the French Alps and Tibetan Plateau for temperature elevation corrections.204

Gao et al. (2017) estimated the ELR from the temperature differences between differ-205

ent pressure levels. We propose a modification using the original model levels that fol-206

low the model topography. We compute the ELR as in equation 1 between 16 combi-207

nations of model levels centered between: model level 124 ( 500 m above the surface) and208

model level 116 (1200 meters above the surface). These 16 estimates of the ELR are then209

averaged, considering only negative values, i.e. excluding temperature inversions. Sev-210

eral combinations of upper and lower limits were tested and the levels between 500m to211

1200m were chosen to avoid sharp inversions near the surface as well as subsidence in-212

versions. Even with the limits at 500m and 1200m inversions are captured, and an ELR213
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of zero is assumed in those situations. On a global scale the main regions with positive214

(set to zero) ELR are associated with large-scale subsidence either linked with the Hadley215

circulation (over the oceans) or winter anticyclonic subsidence and very stable conditions216

in northern latitudes land masses.217

The ELR was estimated using the vertical profiles of temperature and specific hu-218

midity (the latter required to compute the altitude from the model levels), using two time219

periods averaging: (i) daily means of the analysis at 0/6/12/18 UTC resulting in daily220

global fields of ELR (daily ELR); (ii) the 5 years mean monthly analysis resulting in one221

global field for each calendar month ( mean climatological ELR). In addition to these222

two methods (see Table 1), a globally and temporally constant ELR of -6.5 K km−1 (clr)223

and -4.5 K km−1 (clrO) were also included. The constant value of -6.5 K km−1 is widely224

used in many applications (e.g. Maurer et al., 2002; Cosgrove et al., 2003) derived from225

estimates of the mean free atmosphere lapse rate. The constant ELR of -4.5 K km−1 was226

taken from the observations estimates (see section 3.1).227

2.3 Land Surface simulations228

The ERA5 lowest model level (about 10m height) fields of air temperature, spe-229

cific humidity, wind-speed and surface pressure along with the downwelling fluxes of short-230

wave and longwave radiation and solid and liquid precipitation were used to perform sur-231

face (or offline) simulations. We use the same land surface model version as used in ERA5232

which is very similar to the version used for ERA-Interim/Land (Balsamo et al., 2015).233

The ERA5 meteorological fields are taken from the +1h to +12h forecasts initialized at234

06UTC and 18UTC, resulting in continuous hourly time series.235

The surface simulations were performed at a higher resolution than ERA5, match-236

ing that of ECMWF high resolution weather forecasts of about 9km. The simulations237

were initialized in January 2009 extending until May 2014. The first 5 months of sim-238

ulation were considered as as spin-up. Since the evaluation focuses only on near-surface239

variables, possible effects of spin-up (e.g. adjustment of deep soil moisture/temperature)240

have a small impact. Four simulations were performed differing on the meteorological241

forcing and are listed in Table 1. The default configuration is bilinear interpolation of242

the forcing fields (HTbil) while the remaining three were adjusted to the differences be-243

tween ERA5 (31km) and the high resolution (9 km) model orography using different ELR244

estimates. The correction is the following: (i) relative humidity is computed from the245

uncorrected forcing; (ii) air temperature is corrected using the ELR and altitude differ-246

ence; (iii) surface pressure is corrected assuming the altitude difference and updated tem-247

perature; and (iv) specific humidity is computed using the new surface pressure and tem-248

perature assuming no changes in relative humidity.249

One additional simulation was carried out for the same period using ERAI forc-250

ing and resolution (about 75 km), (hereafter HTei).HTei has the same configuration as251

ERA-Interim/Land but used the same model version as ERA5, and there was no pre-252

cipitation correction as in ERA-Interim/land. Despite the similarities, this new simu-253

lation was performed to guarantee that all surface simulations presented in this study254

were carried out with the same model version and consistent with ERA5.255

2.4 Evaluation metrics256

In the simulations evaluation four main scores are used: (i) the mean bias (simulation-257

observation, BIAS), (ii) the mean absolute error (MAE), iii) the standard deviation of258

the error (standard deviation of the differences between the simulation and observation259

- STDE) and iv) the temporal correlation (PCORR). While the BIAS and MAE indi-260

cate systematic errors, the STDE (also known as the unbiased root mean square error)261

can be interpreted as the random component of the error. The scores are computed for262
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each station and considered time period. The metrics are presented as the median of the263

scores of all stations to avoid outliers which could affect the mean of the score. Confi-264

dence intervals of the median scores were estimated with a 1000 samples bootstrapping265

with replacement to account for stations sampling uncertainty.266

2.5 Observations representativity267

The representativity of the in-situ temperature observations was estimated by com-268

puting the MAE and STDE of each station against the mean over a certain radius. The269

calculation was performed in the following steps:270

1. For each individual station a group of stations was created with a distance smaller271

than a particular radius (area);272

2. The spatial mean of all stations in that radius was computed to represent area mean;273

This included two calculations: (i) including all stations and (ii) including only274

stations with a similar altitude, defined as altitude within +/- 100m from the mean275

in the area;276

3. The MAE and STDE was computed for each station against the area mean com-277

puted in (2); Steps 1-3 were repeated for all stations and search radius from 30278

to 150 km;279

Only areas (in point 1) with at least 10 stations were retained and the number of areas280

and mean number of stations in each region was saved. Since the areas are defined start-281

ing from each station, there is a significant overlap, i.e. the same stations are accounted282

in several regions. This procedure can be seen as a smoothing filter to generate the area283

means that are then used to compute the MAE and STDE as measures of the spatial284

representativity of the observations. The restrictive selection criteria of similar altitude285

stations was introduced to estimate how much of the representativity errors can be as-286

sociated with altitude differences.287

3 Results288

3.1 ELR from observations and reanalysis289

The high density temperature observation and terrain variability in the WUS re-290

gion allows the estimation of the ELR based on in-situ stations. Figure S1 in the sup-291

porting information shows the stations spatial distribution as well as the aggregated num-292

ber of stations, mean elevation and standard deviation of the stations elevation in each293

of the regular areas considered. The restriction of at least 30 stations with elevation vari-294

ability, measured by the standard deviation, excluded mostly the eastern region of WUS295

domain due to the reduced elevation variability.296

The observational estimates of the ELR show a clear annual cycle (Figure 2d). Daily297

ELR estimates were calculated but the results were very noisy, which could be related298

to the different times of occurrence of the temperature extremes in each stations. The299

temporal averages considered in the study (e.g all days in each calendar month - Fig-300

ure 2d) filter out the random timing differences resulting in consistent temporal (mean301

climatology) and spatial fields, comparable with the independent estimates from ERA5.302

The estimates depend on the variable taken: lower absolute ELR when using the daily303

minimum temperature and higher absolute ELR when using the daily maximum tem-304

perature. These results are expected since nocturnal low-level conditions tend to be more305

stable, resulting in less intense ELR when using the daily minimum temperature. The306

comparison between observations and ERA5 ELR shows a reasonable agreement when307

considering the spatial averages over the domain (Figure 2d). The South-North gradi-308

ent is also captured (annual fields in Figure 2e,f and Figure S2 for the winter and sum-309

mer months). The mean absolute difference of the ERA5 ELR compared with the sta-310
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tion estimates is 1.5 (2), 1.2 (3.1) and 1.8 (1.5) K km−1 for the annual, winter and sum-311

mer periods, respectively (between brackets are the mean absolute differences of a con-312

stant ELR of -6.5 compared with the station estimates). The linear regression slopes in313

Figure 2a,b,c are always below 1 suggesting a reduced sensitivity of ERA5 ELR com-314

pared with the observational estimates. During summer ERA5 ELR estimates have a315

small sensitivity for large absolute ELR with a general overestimation (Figure 2b), which316

is also present in the annual ELR (Figure 2a), but less pronounced. This is particularly317

evident in the Northern area of the domain. Further analyses did not identified any par-318

ticular characteristic that could explain these differences. It is likely that some of the319

differences arise from the uncertainties introduced by different assumptions used to de-320

rive the ELR from ERA5 vertical profiles and from the spatial and vertical variability321

of the stations observations.322

3.2 Elevation correction of ERA5 temperature323

Meteorological stations are usually located in easily accessible areas, resulting in324

a sampling bias of lower altitudes when considering the local topography. This is illus-325

trated when comparing the altitude differences, defined as the differences between ERA5326

orography and the station elevation (see Figure 1a and Figure S3b), with a higher fre-327

quency of stations below ERA5 orography than above. In this section we compare ERA5328

dtmin, dtmean and dtmax with ERA5 temperatures reduced to the station elevation us-329

ing different ELR corrections: constant lapse rate of -6.5 and -4.5 K km−1 (clr, clrO),330

monthly climatology fields of ELR derived from ERA5 (mlr) and daily ELR fields de-331

rived from ERA5 (dlr). The temperature differences, defined as the difference between332

model and observations, when organized as function of the elevation differences highlight333

the role of elevation in the mean bias (Figure 3). The slope of the linear regression be-334

tween these temperature differences as function of elevation differences can be also in-335

terpreted as an estimate of the ELR required to correct model data, and the correlation336

coefficient a measure of the linear dependence. The dependence of ERA5 mean temper-337

ature bias on elevation differences is clear for dtmax and dtmean while for dtmin the re-338

lation is not so strong (Figure 3 and Table 2, note the higher correlations for dtmax and339

dtmean when compared with dtmin). This is further illustrated when considering only340

summer or winter months (Table 2). These results indicate that the bias relation with341

altitude is not constant (or the ELR required to correct model data). Taking dtmean342

for the full period the optimal ELR correction for the region is -4.5 K km−1. Consid-343

ering the different ELR corrections, none consistently outperforms the others. The dlr344

and mlr provide the best corrections for dtmean consistently for the full period or when345

considering only winter or summer months. In general, all corrections fail to capture the346

high ELR for dtmax and low ELR for dtmin.347

The added value of the ELR correction to ERA5 is clear for dtmax (see Figure 4)348

in terms of a reduction of the mean absolute error and bias. For the standard deviation349

of the error, there is no change in case of a constant ELR, but the time varying ELR (dlr350

or mlr), increases the error. There is no clear added value of a variable ELR correction351

when compared with an optimal constant ELR (clrO - derived for this area as -4.5 K km−1
352

) when considering all stations and these metrics. Independently from the ELR chosen,353

the corrections for dtmax and dtmean are always positive and more pronounced during354

summer when compared with winter. For dtmin the ELR corrections are neutral or detri-355

mental, which is consistent with the previous analysis of the temperature bias relation-356

ship with elevation differences (Figure 3). If we consider only stations above or below357

ERA5 orography (see Figure 5 for the bias, and Figures S4 and S5 for the remaining scores)358

the results highlight a large discrepancy in the correction impact. For stations above model359

orography (Figure 5a-c) all ELR corrections reduce the temperature biases during sum-360

mer while deteriorate during winter, with clr being the worst. While during summer ERA5361

has a warm bias in these stations, which is expected, there was a neutral to negative bias362

during winter. The ELR correction leads to a cold bias which is then reflected in the MAE363
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deterioration. Considering only the stations below ERA5 orography (valley stations, Fig-364

ure 5d-f) the ELR corrections are effective for dtmax and dtmean with average reduc-365

tions of 40% of the MAE. For dtmin, the improvements are smaller with even some de-366

terioration during summer. In these valley stations, ERA5 shows a strong cold bias (al-367

most -5 K) for dtmax and a much smaller cold bias for dtmin (about -1.3 K), suggest-368

ing an underestimation of the amplitude of the diurnal cycle, which is independent from369

the relative elevation difference from ERA5, and likely related with local effects.370

3.3 Land Surface Downscaling371

The previous sections focused on the near surface temperature and different ap-372

proaches to account for stations altitude differences in respect to the model orography.373

Other land-surface variables, such as snow depth and soil temperatures are also expected374

to vary strongly with altitude as response to air temperature changes. In this section we375

focus on the SNOTEL snow depth and 5 cm deep soil temperature observations (see Fig-376

ure 1b-c). ERA5 biases in respect to the elevation differences (see Figure S6) shows that377

soil temperature biases are tightly correlated with altitude differences during summer378

while during winter this relation is not so evident. In winter, the presence of snow and379

its thermal insulation effects (Dutra et al., 2011) is likely to dominate over the altitude380

differences. For snow depth we see a positive relationship with elevation differences re-381

sulting from both temperature effects (colder in altitude) and enhanced precipitation/snowfall382

with altitude. Considering the tight relationships found between ERA5 biases and ob-383

servations as functions of altitude differences, in the following results we investigate the384

potential added value of higher resolution land-surface only simulation with different ap-385

proaches to account for the ELR in the temperature forcing correction (see Table 1). The386

results are benchmarked against those of ERAI, including also ERA5 to evaluate the im-387

pact of the surface downscaling when compared with the ERAI to ERA5 evolution. Fur-388

thermore, an additional surface simulation driven by, and at the same resolution as, ERAI389

(HTei) but using the same surface model as ERA5 is evaluated to provide the impact390

of the surface model changes.391

The soil temperature evaluation (Figure 6), shows a general improvement from ERAI392

to ERA5 in all metrics. The added value of the surface downscaling is mainly visible dur-393

ing winter in terms of variability (reduction of 60% of the STDE in respect to ERAI, and394

higher correlations). During winter HTei also shows some improvements in respect to395

ERAI (35% reduction of STDE), and similar to ERA5 (45% reduction of the STDE),396

highlighting the benefits of the model changes from ERAI to ERA5. During summer the397

impact on soil temperature of the surface downscaling is smaller than in winter, but there398

are still some improvements in terms of the MAE and correlation with some deteriora-399

tion of the STDE. Finally, there is no clear difference between the three tested methods400

of the ELR temperature correction in terms of soil temperature skill.401

The snow depth evaluation (Figure 7) shows a clear evolution from ERAI to HTei402

with a reduction of the bias, MAE, STDE and increased correlation. ERA5 further im-403

proved HTei, which is likely associated with a better meteorology quality (Albergel et404

al., 2018; Beck et al., 2019). The benefits of the surface downscaling are mainly visible405

in spring suggesting the added value of the temperature corrections during the ablation406

season. Taking the spring normalized MAE in respect to ERAI we see an error reduc-407

tion of: 15% in HTei, 42% in ERA5 and 52% in HTclr/HTmlr/HTdlr. As for the soil408

temperatures, there is no clear difference between the different methods of ELR temper-409

ature corrections.410

3.4 Stations representativity411

Comparing model simulations with in-situ observations raises several questions re-412

garding spatial representativity. Models normally represents a certain quantity as the413
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mean over a grid-box while in-situ observations are local, and depending on the weather414

conditions and location, their spatial representativity can vary significantly. This raises415

a question: what is the representativity uncertainty of the in-situ data and how does this416

varies with the spatial scale considered? Considering the reasonably high density net-417

work over the considered Western U.S region, an estimate of the spatial uncertainty de-418

rived from observations was carried out as described in the methods section. The results419

applied to the GHCN dtmin, dtmean and dtmax (see Figure 8) provide an estimate of420

the in-situ representativity uncertainty. This can be also interpreted as the minimum MAE421

and STDE that should be expected from comparing grid-averaged versus individual sta-422

tions. This could be further interpreted as the minimum expected errors (or benchmark)423

when comparing model data with the in-situ observations, i.e. we should not expect a424

MAE or STDE of zero but a minimum value linked with the stations sampling and char-425

acteristics. The results (in Figure 8) show that both MAE and STDE increase with in-426

creased radius (i.e. larger areas) and are larger for dtmax than for dtmin, and dtmean427

has the lower values. The dtmax and dtmin MAE becomes similar when considering only428

stations with similar altitudes (comparing Figure 8b solid vs dashed red and blue lines).429

This indicates a higher sensitivity the daily maximum temperature to elevation differ-430

ence than daily minimum temperature. The large STDE of dtmax, when compared with431

dtmin, is partially associated with a larger temporal variability (day-to-day) of dtmax.432

The altitude differences explain almost 50% of the MAE while for the STDE the alti-433

tude differences impact is smaller. These results are expected as systematic differences434

driven by altitude are significant while random differences are associated with local ef-435

fects where altitude alone does not explain the differences.436

By comparing ERAI and ERA5 errors with the observational MAE and STDE es-437

timates it is possible to assess on one hand the evolution of the reanalysis and on the438

the other hand how far the reanalysis are from the expected minimum. For this com-439

parison, only stations with altitude differences lower than 100 m to both ERAI and ERA5440

orography were considered (588 stations). Since the reanalysis metrics are computed only441

for stations with similar altitudes, the benchmark values (or lower limits) should be the442

estimates using only stations with similar altitudes (dashed lines in Figure 8b,c). For the443

MAE, there was a slight increase of the error from ERAI to ERA5 of dtmin and dtmax444

with a slight reduction of dtmean. In the case of the STDE there was a clear reduction445

from ERAI to ERA5, particularly for dtmax. The reduction of the STDE highlights the446

model and data assimilation advances in reducing random errors from ERAI to ERA5,447

likely associated with synoptic variability. However, the stagnation of the systematic er-448

rors despite model and resolution enhancements suggests that further focus on model449

processes (e.g. land-surface, boundary layer, clouds, radiation) are still required.450

4 Conclusions451

The use of the in-situ GHCN network to estimate the ELR shows a clear annual452

cycle as well as diurnal variations, with lower ELR for dtmin when compared with dt-453

max, and higher values during summer (JJA) when compared with winter (DJF). These454

results are consistent with the findings of Minder et al. (2010) over the Cascade Moun-455

tains. The estimated ELR from ERA5 vertical profiles is reasonably consistent with the456

observational data, both temporally and spatially, when using dtmean, with a tendency457

for overestimation. The proposed methodology to derive the ELR from ERA5 vertical458

profiles only provides a daily mean estimate, which is a limitation considering the strik-459

ing variability seen in the observations between daily maximum and minimum temper-460

atures and ELR. Inversions are neglected, contributing to the overestimation of the de-461

rived ELR and limiting its application in typical inversion conditions (e.g. clear sky cold462

nights).463

The elevation correction of ERA5 temperature to the GHCN stations elevation us-464

ing different ELR corrections (from constant to daily varying fields) showed that there465
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is no single approach outperforming the others consistently. However, considering the466

daily mean temperature, the temporally and spatially varying ELR derived from ERA5467

vertical profiles (mlr and dlr) provides the best correction by removing most of the er-468

ror dependence on altitude. However, when evaluating the temperature elevation cor-469

rections to station altitude there is no significant added value of the variable ELR when470

compared with the constant ELR. Additionally, the performance of the corrections for471

dtmin and dtmax and for stations below or above the model orography varies significantly.472

Our results highlight the drawbacks of the simple ELR correction (even when consid-473

ering a spatially and temporally varying ELR) which fails to capture changes in the di-474

urnal temperature range, as well as local effects. In all cases, the temporally and spa-475

tially varying ELR (mlr and dlr) leads to an increase of the random error (standard de-476

viation of the error), which is a considerable limitation of this approach. Therefore, the477

use of this approach when correcting model data to a particular location is mainly suit-478

able for the daily mean temperature, while caution must be taken for daily minimum479

and maximum temperatures. The systematic biases in ERA5 are due to both local ef-480

fects, which are not strictly dependent on altitude (Steinacker et al., 2007; Pepin, 2005;481

Vosper & Brown, 2008), and physical processes representation in the model (e.g. radi-482

ation, boundary layer, surface heterogeneities), leaving altitude differences as a second483

order effect to explain the mixed impact of the ELR corrections tested.484

The response of the land surface to the altitude changes was evaluated by down-485

scaling ERA5 near-surface meteorology to drive the land-surface model, accounting for486

different ELR corrections in temperature. The validation was focused on the SNOTEL487

network of snow depth and 5 cm deep soil temperature, comparing the evolution from488

ERAI to ERA5 and the surface high resolution (9km) simulations. For soil temperatures489

there is a clear improvement from ERAI to ERA5 with the surface downscaling further490

improving the standard deviation of the error and temporal correlations during winter.491

For snow depth the added value of the surface simulations when compared with ERA5492

is mainly restricted to the melting season. This surface only downscalling methodology493

can also benefit from other corrections. An example would be precipitation, consider-494

ing the recent advances in generating multi-product precipitation estimates (Beck et al.,495

2019)). Other corrections such as downward solar radiation shading by topography (Varley496

et al., 1996) or rainfall/snowfall partitioning (Tobin et al., 2012) could be also explored.497

By comparing the estimated representativity errors of the in-situ GHCN temper-498

ature observations with the ERAI, ERA5 and downscaled errors, the improvements from499

ERAI to ERA5 were reasonably limited (considering the expected improvements by res-500

olution alone), and mainly in the random component of the error. Despite the signifi-501

cant efforts in modelling and data assimilation the representation of near-surface tem-502

perature in the reanalysis is challenging, in particular for daily minimum temperatures.503

This is likely associated with a large range of limitations in the models representation504

of clouds, radiation, boundary layer, land surface characteristics, among others. While505

the random component of the errors were improved in ERA5, likely due to a better syn-506

optic scale variability and resolution, the still significant systematic biases require fur-507

ther attention from the modeling perspective.508
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Gerlitz, L., Conrad, O., Thomas, A., & Böhner, J. (2014). Warming patterns over586

the tibetan plateau and adjacent lowlands derived from elevation-and bias-587

corrected ERA-Interim data. Clim. Res., 58 (3), 235–246.588

Hersbach, H., de Rosnay, P., Bell, B., Schepers, D., Simmons, A., Soci, C., . . . Zuo,589

H. (2018). Operational global reanalysis: progress, future directions and syn-590

ergies with NWP. ECMWF ERA Report Series(27), 65pp. Available online:591

https://www.ecmwf.int/node/18765.592

Ioannidou, L., Yu, W., & Bélair, S. (2014). Forecasting of surface winds over eastern593

canada using the canadian offline land surface modeling system. J. Appl. Mete-594

orol. Climatol., 53 (7), 1760–1774. doi: 10.1175/JAMC-D-12-0284.1595

Jobst, A. M., Kingston, D. G., Cullen, N. J., & Sirguey, P. (2017). Combining596

thin-plate spline interpolation with a lapse rate model to produce daily air597

temperature estimates in a data-sparse alpine catchment. Int. J. Climatol.,598

37 (1), 214–229. doi: 10.1002/joc.4699599

Liston, G. E., & Elder, K. (2006, April). A meteorological distribution system for600

High-Resolution terrestrial modeling (MicroMet). J. Hydrometeorol., 7 (2),601

217–234. doi: 10.1175/JHM486.1602

Maraun, D., Wetterhall, F., Ireson, A. M., Chandler, R. E., Kendon, E. J., Wid-603

mann, M., . . . Thiele-Eich, I. (2010, September). Precipitation downscal-604

ing under climate change: Recent developments to bridge the gap between605

dynamical models and the end user. Rev. Geophys., 48 (3), RG3003. doi:606

10.1029/2009RG000314607

Maselli, F., Pasqui, M., Chirici, G., Chiesi, M., Fibbi, L., Salvati, R., & Corona, P.608

(2012). Modeling primary production using a 1 km daily meteorological data609

set. Clim. Res., 54 (3), 271–285.610

Maurer, E. P., Wood, A. W., Adam, J. C., Lettenmaier, D. P., & Nijssen, B. (2002,611

November). A Long-Term hydrologically based dataset of land surface fluxes612

and states for the conterminous united states. J. Clim., 15 (22), 3237–3251.613

doi: 10.1175/1520-0442(2002)015〈3237:ALTHBD〉2.0.CO;2614

Menne, M. J., Durre, I., Korzeniewski, B., McNeal, S., Thomas, K., Yin, X., . . .615

Houston, T. G. (2012). Global historical climatology network - daily (GHCN-616

Daily), version 3. (Title of the publication associated with this dataset:617

https://data.nodc.noaa.gov/cgi-bin/iso?id=gov.noaa.ncdc:C00861) doi:618

10.7289/V5D21VHZ619

Menne, M. J., Durre, I., Vose, R. S., Gleason, B. E., & Houston, T. G. (2012,620

March). An overview of the global historical climatology Network-Daily621

database. J. Atmos. Ocean. Technol., 29 (7), 897–910. doi: 10.1175/622

JTECH-D-11-00103.1623

Minder, J. R., Mote, P. W., & Lundquist, J. D. (2010, July). Surface temperature624

lapse rates over complex terrain: Lessons from the cascade mountains. J. Geo-625

–13–

©2020 American Geophysical Union. All rights reserved.



manuscript submitted to Earth and Space Science

phys. Res., 115 (D14), F02011. doi: 10.1029/2009JD013493626

Pepin, N. C. (2005). A global comparison of surface and free-air temperatures at627

high elevations. J. Geophys. Res., 110 (D3), 161. doi: 10.1029/2004JD005047628

Shen, Y.-J., Shen, Y., Goetz, J., & Brenning, A. (2016). Spatial-temporal variation629

of near-surface temperature lapse rates over the tianshan mountains, central630

asia. J. Geophys. Res., 121 (23), 14,006–14,017. doi: 10.1002/2016JD025711631

Sheridan, P., Smith, S., Brown, A., & Vosper, S. (2010). A simple height-based cor-632

rection for temperature downscaling in complex terrain. Meteorol. Appl., 17 ,633

329–339. doi: 10.1002/met.177634

Soares, P. M. M., Cardoso, R. M., Lima, D. C. A., & Miranda, P. M. A. (2017,635

October). Future precipitation in portugal: high-resolution projections us-636

ing WRF model and EURO-CORDEX multi-model ensembles. Clim. Dyn.,637

49 (7-8), 2503–2530. doi: 10.1007/s00382-016-3455-2638

Soares, P. M. M., Cardoso, R. M., Miranda, P. M. A., de Medeiros, J., Belo-Pereira,639

M., & Espirito-Santo, F. (2012, November). WRF high resolution dynamical640

downscaling of ERA-Interim for portugal. Clim. Dyn., 39 (9), 2497–2522. doi:641

10.1007/s00382-012-1315-2642

Stahl, K., Moore, R. D., Floyer, J. A., Asplin, M. G., & McKendry, I. G. (2006,643

October). Comparison of approaches for spatial interpolation of daily644

air temperature in a large region with complex topography and highly645

variable station density. Agric. For. Meteorol., 139 (3), 224–236. doi:646

10.1016/j.agrformet.2006.07.004647

Steinacker, R., Whiteman, C. D., Dorninger, M., Pospichal, B., Eisenbach, S.,648

Holzer, A. M., . . . Baumann, K. (2007, May). A sinkhole field experi-649

ment in the eastern alps. Bull. Am. Meteorol. Soc., 88 (5), 701–716. doi:650

10.1175/BAMS-88-5-701651

Tobin, C., Rinaldo, A., & Schaefli, B. (2012, June). Snowfall limit forecasts and hy-652

drological modeling. J. Hydrometeorol., 13 (5), 1507–1519. doi: 10.1175/JHM653

-D-11-0147.1654

Varley, M. J., Beven, K. J., & Oliver, H. R. (1996). MODELLING SOLAR RADI-655

ATION IN STEEPLY SLOPING TERRAIN. Int. J. Climatol., 16 (1), 93–104.656

doi: 10.1002/(SICI)1097-0088(199601)16:1〈93::AID-JOC992〉3.0.CO;2-T657

Vosper, S. B., & Brown, A. R. (2008, June). Numerical simulations of sheltering658

in valleys: The formation of nighttime Cold-Air pools. Bound.-Layer Meteorol.,659

127 (3), 429–448. doi: 10.1007/s10546-008-9272-3660

Wang, Y., Wang, L., Li, X., & Chen, D. (2018, March). Temporal and spatial661

changes in estimated near-surface air temperature lapse rates on tibetan662

plateau. Int. J. Climatol.. doi: 10.1002/joc.5471663

Weiss, A., & Hays, C. J. (2005, January). Calculating daily mean air temperatures664

by different methods: implications from a non-linear algorithm. Agric. For.665

Meteorol., 128 (1), 57–65. doi: 10.1016/j.agrformet.2004.08.008666

Winstral, A., Jonas, T., & Helbig, N. (2017). Statistical downscaling of gridded wind667

speed data using local topography. J. Hydrometeorol., 18 (2), 335–348. doi: 10668

.1175/JHM-D-16-0054.1669

–14–

©2020 American Geophysical Union. All rights reserved.



manuscript submitted to Earth and Space Science

Table 1. Acronyms and description of the elevation correction of ERA5 temperature (top

rows) and HTESSEL land surface simulations (bottom rows)

Acronym Description

clr Elevation correction of ERA5 temperature using a constant
ELR of -6.5 K km−1

clr0 Elevation correction of ERA5 temperature using a constant
ELR of -4.5 K km−1

mlr Elevation correction of ERA5 temperature using mean monthly
climatological ELR fields derived from ERA5 vertical profiles

dlr Elevation correction of ERA5 temperature using daily ELR
fields derived from ERA5 vertical profiles

HTbil HTESSEL land surface simulation at 9km driven by ERA5
hourly downward fluxes (rainfall, snowfall, longwave and short-
wave radiation) and near-surface state (temperature, humidity,
wind and pressure). Bilinear interpolation of ERA5 fields from
31 km to 9 km.

HTclr As HTbil but adjusting ERA5 temperature, humidity and pres-
sure using a constant ELR of -6.5 K km−1

HTmlr As HTclr but using a mean monthly climatology of ELR fields
HTdlr As HTclr but using daily ELR fields
HTei As HTbil but using 3-hourly ERA-Interim downward fluxes and

near-surface state. Bilinear interpolation of ERA-Interim fields
from 75 km to 9 km.

Table 2. Statistics of the linear regression between elevation differences and temperature dif-

ferences for the different ELR adjustments and ERA5 original data for the entire period (ALL)

and Winter and Summer. In each cell, the top values denotes the slope of the linear regression

(K km−1) and the bottom value the correlation coefficient. The bold values highlight corrections

with a linear regression slope absolute value below 1 and correlation below -0.4. For each period

the 5 columns indicate: constant ELR of -6.5 K km−1 (clr), constant ELR of -4.5 K km−1 (clrO),

mean climatology fields of ELR from ERA5 (mlr), daily ELR fields from ERA5 (dlr) and the

original ERA5 data (ERA5).

ALL Winter(DJF) Summer(JJA)
ERA5 clr0 clr mlr dlr ERA5 clr0 clr mlr dlr ERA5 clr0 clr mlr dlr

dtmax
-6.5 -2.0 0.0 -1.8 -1.4 -4.2 0.3 2.3 -1.3 -0.7 -7.8 -3.3 -1.3 -2.1 -1.8
-0.9 -0.5 0.0 -0.4 -0.3 -0.6 0.1 0.4 -0.2 -0.4 -0.9 -0.6 -0.3 -0.5 -0.4

dtmean
-4.5 0.0 2.0 0.3 0.6 -2.8 1.7 3.7 0.1 0.6 -5.5 -0.8 1.2 0.4 0.7
-0.7 0.0 0.4 0.1 0.1 -0.4 0.2 0.5 0.0 0.1 -0.8 -0.2 0.2 0.1 0.2

dtmin
-2.4 2.1 4.1 2.3 2.7 -1.4 3.1 5.1 1.5 2.0 -2.8 1.7 3.7 3.0 3.2
-0.3 0.3 0.5 0.3 0.3 -0.2 0.3 0.5 0.2 0.2 -0.4 0.2 0.4 0.4 0.4
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Figure 1. ERA5 orography differences in respect to the stations elevation of GHCN (a),

SNOTEL snow depth (b) and SNOTEL soil temperature (c)

Figure 2. Comparison of ELR (Γ) derived from ERA5 vertical profiles and estimated from

the stations observation over the WUS domain. ERA5 versus dtmean station ELR for each grid

point considering the full period (a: June 2009-May 2014) summer (b) and winter (c). d) Mean

annual cycle of ELR averaged over WUS domain given by ERA5 (black line) and station data

computed with dtmax (dashed red), dtmean (solid red) and dtmin (dotted red). Spatial distribu-

tion of ELR for the full period using dtmean from the station data (e) and ERA5 (f). In panels

a-c the slope of the linear fit (S and dashed line) and correlation coefficient (R) are displayed in

the legend.

Figure 3. Temperature differences between ERA5 and observations as a function of the sta-

tion elevation differences (ERA5-station) for dtmax (a), dtmean (b) and dtmin (c) considering

the full period. The scatter plots display ERA5 (black), ERA5 with a constant Γ correction of

-6.5 K km−1 (clr, grey), ERA5 with a constant Γ correction of -4.5 K km−1 (clrO, light grey),

ERA5 with a climatological Γ correction (mlr, red) and ERA5 with a daily Γ correction (blue).

In each panel the legend displays the slope (S) of the linear best-fit and correlation coefficient

(R).

Figure 4. Median bias (a-c), normalized STDE (d-f) and normalized MAE (g-i) of ERA5 and

the different ELR corrections of dtmax (top panels), dtmean (middle panels) and dtmin (bot-

tom panels). The bars represent the median of the station scores computed for different periods

(horizontal axes: all period:YEAR, DJF, and JJA) and the error bars denote the 95% confidence

intervals from 1000 samples bootstrapping. The STDE and MAE were normalized by those of

ERA5, shown above the bars. The statistics were computed using all 2941 stations with a mean

elevation difference between ERA5 orography and stations of 28 meters.

Figure 5. Median bias of ERA5 and the different ELR corrections of dtmax (top panels),

dtmean (middle panels) and dtmin (bottom panels), considering stations above ERA5 orography

a-c (elevation differences >300 m, 385 stations with a mean elevation differences of -475 m) and

below ERA5 orography d-f (elevation differences <300 m, 494 stations with a mean elevation

difference of 450 m). The bars represent the median of the station scores computed for different

periods (horizontal axes: all period:YEAR, DJF, and JJA) and the error bars denote the 95%

confidence intervals from 1000 samples bootstrapping. The STDE and MAE were normalized by

those of ERA5, shown above the bars.

Figure 6. Surface only simulations evaluation of soil temperature at 5 cm deep: mean bias

(a), normalized mae (b), normalized sdte (c) and correlation coefficient differences in respect to

ERAI (d). The bars represent the median of the stations scores computed for different periods

(horizontal axes: all period: YEAR, DJF and JJA) and the error bars denote the 95% confidence

interval from 1000 samples bootstrapping. The mae and stde were normalized by those of ERAI,

shown above of the bars. In the bias, the light blue bars (first from the left) denote ERAI. The

statistics were computed using 260 stations with a mean elevation difference between ERA5

orography and the stations of -460 meters.
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Figure 7. As Figure 6 but for snow depth. The horizontal axis show the scores for the full

period (YEAR), only Winter (DJF) and only Spring (MAM). The statistics were computed using

313 stations with a mean elevation difference between ERA5 orography ad the stations of -413

meters.

Figure 8. Observations temperature errors estimate dependence on resolution. (a) The num-

ber of areas used for each search radius (left axis, black) and mean number of stations in each

(right axis, grey), considering all stations (squares) in a neighborhood radius (horizontal axis) or

only stations in the neighborhood with a similar altitude (within 100m, in triangles). Estimate

of Mean absolute error (b) and standard deviation of the error (c) of the mean compared with

the neighborhood stations for different search radius. In panels (b) and (c) the color indicate

dtmean (black), dtmax (red) and dtmin (blue) while the solid lines indicate that all stations in

the neighborhood radius are used while dashed lines indicate that only stations with a similar

altitude were considered. Panels (b) and (c) also show the errors estimates of ERAI (at 75km),

and ERA5 (at 31 km) as stars connected by a dotted line. The ERAI and ERA5 estimates were

computed only for stations with an altitude difference lower than 100m to both ERAI and ERA5

orography (588 stations)
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