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ABSTRACT

A comparison of soil moisture products derived from satellite data, in-situ measurements and

land models was performed in the frame of the EUMETSAT H-SAF project. In particular, soil

moisture retrievals of ASCAT/H-SAF and SMOS were compared with two other independent

datasets,  that are the NCEP/NCAR volumetric soil  moisture content reanalysis  developed by

NOAA, and the ERA-Interim/Land soil moisture produced by ECMWF. In situ data available

through the International Soil Moisture Network and distributed in regions comprising Denmark,

France, Germany, Italy, Poland and Spain, were also included in the comparison. The whole H-

SAF region  of  interest,  including  Europe  and  North  Africa,  was  considered  and  the  period

between January 2010 and December 2012 was analysed.  
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The Triple Collocation (TC) approach was adopted to perform the comparison exercise. TC was

critically reviewed to compare different solutions proposed in the literature and to discuss the

possibility of performing a point-wise TC, or a  global TC, which considers each system as a

whole, with unique gains and error standard deviations in the whole area. The TC results showed

a very good behaviour  of the ERA land model,  while  SMOS satellite  slightly outperformed

ASCAT or vice versa, depending on factors like the geographical area or the consideration of the

whole  dynamic  range  of  soil  moisture  or  only  the  anomalies  with  respect  to  the  seasonal

variability. 

Keywords: soil moisture, triple colocation, H-SAF, ASCAT, SMOS 

1. Introduction

Soil  moisture represents a key variable  for the characterization of the global climate,

since  it  influences  the  water  cycle  by  controlling  the  partition  of  rainfall  between  land

(infiltration, percolation and runoff) and the atmosphere (evaporation and plant transpiration). Its

knowledge is essential for several applications, such as drought and flood prediction, weather

forecast, climatology and agronomy. Soil moisture maps from satellite are currently assimilated

within  hydrological  models  (e.g.  Brocca  et  al.,  2012),  or  used  as  realistic  initial  states  by

numerical weather prediction (NWP) models (e.g. Panegrossi et al., 2011). 

Microwave remote sensing is  a  very useful  tool  to  monitor  soil  moisture at  different

spatial  and temporal scales,  with spatial  resolution ranging from tens of kilometres for wind

scatterometers and microwave radiometers, to the order of meters for Synthetic Aperture Radar

(SAR) systems, although the latter have poorer temporal and radiometric resolutions. The first
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spaceborne  mission  carrying  a  microwave  radiometer  designed  for  this  application,  i.e.,  the

European Space Agency (ESA) Soil Moisture and Ocean Salinity (SMOS) satellite (Kerr et al.,

2001),  launched  in  November   2009,  uses  a  L-band  (~1.4  GHz)  interferometric  radiometer

(MIRAS)  to  retrieve  soil  moisture  content  (SMC).  At  present,  no  data  from active  L-band

instruments  are  available  since  ALOS-2  (launched  on   May  24,  2014)  is  still  in  its

commissioning phase and the launch of the Soil Moisture Active Passive (SMAP) mission by

NASA (carrying aboard both a L-band radiometer and a L-band radar, see Brown et al., 2013) is

foreseen in early 2015. 

Even sensors operating at higher frequency, such as C-band, turned out to be useful for

SMC retrieval. In particular, sensitivity to SMC was demonstrated by the Advanced Microwave

Scanning Radiometer  -  Earth  Observing System (AMSR-E) aboard  the AQUA satellite  (e.g.

Gruhier et al., 2010) and by active instruments, such as the scatterometer aboard the European

Remote Sensing (ERS) satellites and the Meteorological Operational (MetOp) satellite operated

by  the European Organization for the Exploitation of Meteorological Satellites (EUMETSAT)

(e.g. Wagner et al., 1999, Bartalis et al., 2007). C-band SAR data were used to produce high

spatial resolution SMC maps by relying on proper retrieval techniques, such as change detection

(Hornáček et al., 2012), multitemporal methods (Pierdicca et al., 2010; Pierdicca et al., 2013,

Mattia  et  al.,  2013),  artificial  neural  networks  (Paloscia  et  al.,  2013),  as  well  as  by taking

advantage of polarimetric measurements (e.g. Pierdicca et al., 2008).

The  EUMETSAT  Satellite  Application  Facility  (SAF)  on  Support  to  Operational

Hydrology and Water Management (H-SAF) was established by EUMETSAT council in July

2005. The objective is  the provision of new satellite-derived products for use in  operational

hydrology. Within  the  framework  of  the  H-SAF project,  the  validation  of  the  soil  moisture
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products,  derived from the C-band data  of  the  Advanced SCATeremoter  (ASCAT) on board

MetOp, is presently accomplished. Different institutions in Europe are involved in the validation

task, coordinated by the Italian Department of Civil Protection.  A possible validation strategy

consists in assessing the ASCAT-derived SMC product through a comparison with retrievals from

an instrument  explicitly designed to  measure  soil  moisture,  such as  SMOS, as  well  as  with

ground networks or outputs of hydrological Land Surface Models (LSM).

Many different studies can be found in the literature comparing different satellite-derived

soil moisture datasets in different places. For instance, Parrens et al.  (2012) found consistent

values between SMOS and ASCAT, especially in wet conditions, with the latter outperforming

the former in some situations. Albergel et al. (2012) added to this comparison outputs from the

ECMWF land surface model, concluding that SMOS performances exhibit a weaker dependence

on seasons with respect to ASCAT. ASCAT, SMOS and AMSR-E retrievals were compared by

Leroux  et  al.  (2013),  whereas  Rüdiger  et  al.  (2009)  assessed  AMSR-E  and  the  ERS

scatterometer, and Brocca et al. (2011) the ASCAT and AMSR-E products. When compared to

in-situ data, some differences were noticed, as a consequence of factors such as geographical

area or type of land cover, but no definitive conclusions emerged on what sensor outperforms the

others.

When  comparing  measurements  from different  sensors  or  models,  it  is  necessary  to

assume one of them as the reference, i.e.,  the one which provides the “truth”. However, this

assumption may be questioned since errors generally affect satellite retrievals, physical models

and even ground data. Consequently, the Triple Colocation (TC) approach is often adopted. It is a

statistical method that can be used for estimating the relative error variance of three datasets with

independent  error  structures  (Stofflen,  1998;  Scipal  et  al.,  2008).  To compare  datasets  with
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different spatial  sampling and amplitude scales, previous works collocated the retrievals to a

regular grid using a nearest neighbour resampling and standardize the data in different ways. One

consists of making standard deviation (σ) and seasonal mean (µ) equal to those of the product

taken as reference (Anderson et al.,  2010). This is a critical aspect of the comparison which

should be taken with care, as adjusting σ and µ in each point of the SMC map is not providing an

assessment of a satellite platform as a unique probing system characterised by its own bias and

gain. Besides the comparison of absolute values of soil moisture, the anomaly values (i.e., with

respect  to  the  seasonal  trend)  can be  used  to  gather  information about  the  capability of  the

different products to detect single events of wetting and drying (Parinussa et al., 2011). 

In Dorigo et al. (2010), the error characterization was carried out, using the TC technique

applied to the anomalies, to reveal trends in uncertainty between active (ASCAT) and passive

soil  moisture  products  derived  from different  AMSR-E  channels.  The  anomalies  of  SMOS,

ASCAT and AMSR-E Land Parameter  Retrieval  Model  (LPRM) products  were analysed by

Leroux et al. (2011) during year 2010, concluding that SMOS reported the best overall results

over the USA. 

This  paper  presents  an  extensive  comparison of  soil  moisture  products  derived  from

ASCAT/H-SAF  and  SMOS  satellite  data,  in-situ  measurements  available  throughout  the

International Soil Moisture Network (ISMN) and LSM predictions, namely the NCEP/NCAR

volumetric soil moisture content reanalysis, developed by the National Oceanic and Atmospheric

Administration (NOAA) and the ERA-Interim/Land soil moisture produced by ECMWF. The

exercise was performed in the frame of the EUMETSAT H-SAF project by carrying out a TC

analysis; note that in the literature slightly different solutions to the problem of retrieving the

error variance of three sources of SMC data can be found and the same applies for the methods to
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normalize the data. Hence, we reconsidered the TC mathematical background taking into account

that soil moisture is a random function of space and time, which is not stationary. This novel

approach allows a global TC be performed, characterizing satellites and models by a unique error

variance.  The  whole  H-SAF  region  of  interest,  including  Europe  and  North  Africa,  was

considered and the period between January 2010 and December 2012 was analysed. This 3-year

period,  which  includes  several  seasonal  cycles,  overpasses  many  previous  analyses,  thus

representing a  significant  time and spatial  extent.  Note that  in  most  of the literature papers,

shorter intervals and/or smaller areas (e.g., one country) were considered, with the exception of

few studies working at global scale, such as Dorigo et al. (2010).

An overall description of the diverse data sets used in this study is provided in section 2,

which  depicts  also  the  methodology (data  aggregation,  resampling,  quality  control)  used  to

compare the different data sets. Section 3 is devoted to a review of the TC technique and a

discussion on alternative approaches found in the literature. The results of the TC analysis are

discussed in section 4 and the conclusions of this paper are summarized in section 5.

2. Data sets and pre-processing steps

2.1 Available data sets

Hereafter only a short description of the considered data sets  and their  most relevant

features is reported; more details can be easily found in the literature (e.g., Albergel et al., 2012). 

2.1.1 In-situ soil moisture 

The International Soil Moisture Network (ISMN, see  http://ismn.geo.tuwien.ac.at) is an

international  cooperation  coordinated  by  the  Global  Energy  and  Water  Exchanges  Project
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(GEWEX) in collaboration with the Group of Earth Observation (GEO) and the Committee on

Earth Observation Satellites (CEOS), with the task of maintaining a global in-situ soil moisture

database. The data collected by many different probe networks around the world are useful for

validating  and  improving  global  satellite  observations  and  land  surface  models.  The  ISMN

includes  ancillary  information,  such  as  soil  temperature,  precipitation  and  air  temperature

(Dorigo et al.,  2011). For our study, the data collected at 0-5 cm depth in Denmark, France,

Germany, Italy, Poland and Spain (with average number of stations 30, 20, 15, 1, 2 and 20,

respectively)  were used throughout the period from 2010 to 2013. 

2.1.2 SMOS L2 soil moisture

The  payload  on-board  the  SMOS  satellite  is  the  MIRAS  instrument;  it  is  an

interferometric  radiometer  that  measures  the  cross  correlation  between  pairs  of  receivers  to

derive a visibility function  (Kerr et al.,  2001; Kerr et al.,  2012). Brightness temperatures are

measured  at  several  incidence  angles  (from 0°  to  65°),  sensing  the  horizontal  and  vertical

polarizations, and also the 3rd and 4th Stokes parameters. MIRAS operates at 1.427 GHz (L-

band) from an orbit of 758 km, with a repetition time of 3 days and a horizontal spatial resolution

between 35 and 50 km. 

The reprocessed ESA L2 product, that provides an actual volumetric moisture content

(SMC,  in m3/m3),  was considered in this work; L2 data are sampled over the ISEA4h9 grid,

which has a spacing in the order of 15 km (Kidd, 2005). It is important to underline that the

processor  generating  the  products  is  the  5.51  version;  in  fact,  in  March  2012  the  SMOS

processing chain was modified, including a different model of soil permittivity with respect to

that used within the previous 5.01 version. 
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2.1.3 ASCAT soil moisture index

ASCAT is  a  radar  instrument  that  operates  at  C-band  in  vertical  polarization  and

measures the backscatter coefficient (Bartalis et al., 2007). Measurements are taken on both sides

of the sub-satellite track over two 550 km wide swaths, from a 817 km height orbit, resulting in a

global coverage achieved in about 1.5 days over Europe. The “large scale surface soil moisture”

product, that is available through the EUMETSAT H-SAF project, was used for the comparison

(hereafter  denoted  as  H07  SM-OBS-1,  according  to  the  H-SAF  nomenclature  in

http://hsaf.meteoam.it/index.php).  The data  are  sampled on a  25 km grid and the product  is

generated by means of an algorithm originally conceived for the ERS-1/2 scatterometer, by the

Technical University of Wien (Wagner et  al.,  1999) and successively updated (Naeimi et  al.,

2009). The algorithm is based on a change detection approach which assumes that soil moisture

is  linearly  related  to  backscattering  (in  dB units)  and  that  the  temporal  changes  of  surface

roughness, canopy structure and vegetation biomass occur at longer temporal scales than soil

moisture changes, so that moisture variation in time can be detected. For each SM-OBS-1 map, a

pixel value represents a relative value, i.e., an index between 0% and 100%, with respect to the

driest  and the wettest  conditions registered for that pixel during the calibration phase of the

algorithm. Assuming that these conditions represent completely dry and wet soils, respectively,

this  index is  equal to the saturation degree (SD),  i.e.,  the soil  moisture content expressed in

percent of porosity. 

2.1.4 Soil moisture reanalysis
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The NCEP/NCAR reanalysis volumetric soil moisture content, available from the NOAA

website  (http://www.ngdc.noaa.gov/),  was  used  as  independent  source  to  assess  the  satellite

products. These data represent a daily analysis/estimate of the volumetric soil moisture within a

depth between 0 and 10 cm, available four times a day at 00:00, 06:00, 12:00 and 18:00 UTC,

and sampled over a T62 Gaussian grid with 192×94 points (about 2×2 degrees spacing). Another

dataset used in this work is the ERA-Interim/Land produced by ECMWF, hereafter denoted as

ERA-LAND. It is a global atmospheric reanalysis combined with an ocean and a land surface

model available until 2012. Soil moisture is provided at four different layers and four time steps

(at  00:00,  06:00,  12:00  and  18:00  UTC)  each  day  over  a  grid  with  a  space  sampling  of

0.125×0.125 degrees (Balsamo et al., 2014).

The two different LSM-derived SMC have very different characteristics (very coarse vs

medium spatial  resolution,  different  parameterizations  for  surface  processes),  which  actually

influence the results, so that it is worth to use both of them in our comparison exercise, and

shortly resume some differences and similarities. 

2.1.5 Soil porosity

The  soil  porosity  map  available  from  the  Global  Land  Data  Assimilation  System

(GLDAS)  website  (http://ldas.gsfc.nasa.gov/gldas/)  and  based  on  the  Food  And  Agriculture

(FAO) Soil Map of the World was used to convert SD into absolute SMC. The map is resampled

at 1/4 and 1 degree horizontal resolution and three possible depths; the top porosity (0-2 cm) was

used for our purposes. 

2.2 ASCAT rescaling
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A critical aspect of the comparison is the different units in which satellite products are

expressed, that are the ASCAT relative  SD (denoted by  SDASCAT), in the range 0-100, and the

SMOS absolute  SMC (denoted as  SMCSMOS), in m3/m3 (or % m3/m3 when multiplied by 100).

Before  comparing  the  two  products,  a  common  practice  is  performing  a  point-wise

standardization of the mean and the standard deviation of the collocated products, as well as a

matching of their respective histograms. 

Here  SDASCAT was converted into a volumetric moisture in m3/m3 considering that,  by

definition,  it  represents  the  distance  of  each  resolution  cell  from its  driest  and  wettest  soil

conditions.  For  this  purpose,  maps  of  the  maximum and minimum  SMC values,  denoted  as

min(SMC) and max(SMC), were computed  using different datasets. Firstly, they were estimated

from SMOS L2 data; to avoid outliers slipped in the computed maps, the first and last percentiles

were disregarded. Additionally, and in order to have reliable estimates of extreme values, these

maps were computed using all SMOS available retrievals (i.e., not only those collocated with

ASCAT), retaining only grid points with significant statistics (i.e., number of total observations

greater than 50, with a minimum number of 6 observations in Summer, Spring and Autumn).

Alternatively, min(SMC) and max(SMC) were derived in the same way from other independent

sources, namely the ERA-LAND and NOAA data collected throughout the period 1990-2012 (a

timeframe comparable to the period of calibration of the ASCAT retrieval algorithm). Then, for

each SMOS grid point, the collocated SDASCAT  was converted into an absolute SMCASCAT  through

the  following  linear  transformation,  which  assigns  min(SMC)  and  max(SMC)  to  the  driest

(SDASCAT=0) and wettest (SDASCAT=100) conditions:

100)min()max(

)min( ASCATASCAT SD

SMCSMC

SMCSMC =
−

−

    (1)
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In Figure 1, the maps of min(SMC) and max(SMC) (see section 2.2) generated to rescale

ASCAT are presented, along with the mean SMC. 

 

 

  

Figure 1:  Maps of minimum (left), maximum (central) and mean (right) values of  SMC

derived  from ERA (upper  row, years  1991-2012),  SMOS with  processor  version  5.51

(middle  row,  years  2010-2013)  and  ASCAT product  rescaled  using  the  porosity  map

(bottom row, years 2010-2013). 
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Finally,  taking  advantage  of  the  availability  of  a  soil  porosity  (φ)  map,  SDASCAT was

transformed into SMC also by multiplying it by φ, i.e., SMCASCAT =φ SDASCAT/100. In the following

analysis (section 4) it will be specified what scaling method is used to transform SDASCAT into

SMCASCAT.

2.3 Data colocation

2.3.1 Colocation of satellite estimates and LSM data

SMOS, ASCAT, LSM-derived SMC, and the porosity map were resampled over the same

ISEA4h9 grid.  As  a  first  step,  ASCAT and SMOS data  were  co-located  in  time and space,

retaining only data fulfilling the following conditions:  i) SMOS retrievals with Data Quality

Index (DQX) less than 0.045 ; ii) ASCAT retrievals with less than 4 processing flags up (see H-

SAF Product User Manual at http://hsaf.meteoam.it/)  ;  iii)  SDASCAT with value between 0 and

100% (values outside this range can be found and were assumed as unreliable);  iv) SMOS and

scaled ASCAT SMC retrievals below 0.7 m3/m3 (as greater values are not plausible).

For each SMOS grid point, the closest ASCAT gridded observation was searched using

the  nearest  neighbour  approach.  To minimize  the  temporal  mismatch  between  ASCAT and

SMOS observations, ascending MetOp orbits and descending SMOS orbits (around 21:30 and

18:00 local time, respectively) and vice versa (at 9:30 and 6:00) were combined. This approach

led to a data set with the most probable value of the spatial mismatch equal to 6.5 km, with

maximum of 9 km, and in the order of 200 minutes for the temporal mismatch. 
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Figure 2: Number of colocations of SMOS, ASCAT/H-SAF and ERA-LAND estimates in

each point of the ISEA4h9 in the considered time frame grid (January 2010 – December

2012). Note that grid points with more than 150 occurrences are about 4% of the total. 

The nearest neighbour approach was adopted to resample ERA-LAND, NOAA and the

porosity information on the ISEA4h9 grid. A maximum distance of 9 km from the ISEA4h9 grid

was considered for ERA-LAND, with resulting most probable distance of 5.5. km, whereas in

the case of the low resolution NOAA data, the most probable distance turned out to be 60 km. 

An overall picture of the quantity of collocated data is shown in Figure 2, where in each

ISEA4h9  grid  point  the  number  of  triple  colocations  (SMOS,  ASCAT and  ERA-LAND)  is

represented.  Note  that  the  colocations  were  basically  determined  by  the  SMOS  and  the

ASCAT/H-SAF products, and constrained mainly by orbits and to some extent by the occurrence

of Radio Frequency Interference (RFI) or poor quality indices,  whereas including the model

outputs  from ERA-LAND does  not  diminishes  significantly (less  than  2.4%) the number of

colocations.
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2.3.2 Colocation of satellite estimates and in situ data

As for the colocation with the ISMN data, all the stations probing SMC at 0-5 cm depth were

analysed and the probes with anomalous behaviour were filtered out by visual inspection of  their

temporal  plots.  Subsequently,  the  measurements  were  up-scaled  to  the  satellite  resolution,

through averaging of the in-situ measurements within the satellite field of view. Specifically, for

each satellite’s gridded  product,  the  gauges  within  a  radius  distance  of  22.5  km for  SMOS

(distance from the ISEA4h9 grid points), which is the mean of the Antenna FootPrint (AFP)

parameter, and of 25 km for ASCAT (distance from the latitude and longitude annotated in the

product) were considered. Moreover, only satellite values with at least one station closer than 10

km were  retained  in  order  to  gather  in  situ  measurements  sufficiently  representative  of  the

satellite field of view.  Figure 3 depicts how the ISMN data were associated to satellite data,

showing that it was possible to have different stations associated to SMOS (blue and yellow in

the figure) and ASCAT (blue and red) observations and sampled at different times. 

 

Figure 3: Example of ISMN data up-scaling approach. Blue stars are stations associated to

both ASCAT and SMOS field of view,  the yellow star is associated only to SMOS and the

red star only to ASCAT.

3. The triple colocation: review and adopted approach
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3.1 Triple colocation summary

In order  to  validate  any satellite  product  one should  have  a  reference data  set  to  be

considered as the “true”.  Since any reference has its own error, which is  unknown and then

would  affect  the  validation  results,  the  Triple  Colocation  (TC) analysis  combines  three  data

sources and estimate their relative errors without any prior assumption on their magnitude. It was

originally introduced for validating ocean wind scatterometer products by Stoeffelen (1998) and

Freilich and Vanhoff (1999, 2001), successively by Caires and Sterl (2003), and later applied to

the validation of global soil moisture estimates (Scipal et al., 2008; Miralles et al., 2010; Dorigo

et  al.,  2010).  Here  we  adopt  the  formalism  introduced  by  Stoeffelen  (1998),  with  some

extensions to account for later works. In the following the procedure is briefly reviewed, with the

main scope of highlighting some differences among the solutions adopted in the literature which,

to our knowledge, were not pointed out in previous papers.

Suppose that three measurement systems  X,  Y,  and  Z are measuring a true variable  θ

(SMC in this case). Let us assume the following model error for measurements x, y, z provided

by the three systems:

x=s x(θ+bx+δx)

                      y=s y (θ+b y+δy )           (2)

z=s z (θ+bz+δz )

where  δx,  δy and  δz represent  the  random  observation  errors  with  zero  mean,  i.e.,

¿δ x>¿<δ y>¿<δ z >¿0 , and variance  ϵx
2
=¿ δ x

2
>¿ ,  ϵ y

2
=¿δ y

2
>¿ ,  ϵz

2
=¿δ z

2
>¿ , while  sx,

sy and sz are scaling factors, or gains of the systems supposed to have a linear response, and bx, by
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and bz account for mean errors different from zero. Note that since the X system is assumed as

the reference sx=1 and bx=0 even if not clearly stated (Dorigo et al., 2010). Then, although the

bias terms (bx, by and bz) were ignored by Stoeffelen (1998), the solution still applies as shown in

the  sequel.  The  true  variable  is  considered  varying  randomly,  with  variance  denoted  as

θ−¿θ>¿
¿
¿

σ 2
=¿¿

, being its mean value in our paper not necessarily zero, as opposed to what was

assumed by Stoeffelen (1998).

Usually, the three systems do not represent the same spatial scale of the observed field θ

(SMC in our case), and thus it  is assumed that  X and  Y can resolve smaller scales than that

resolved by  Z. Hence the variance common to the smaller scales, i.e.,  σr
2=r2 is introduced; it

represents, by definition, the correlated part of the representativeness errors of X and Y. In other

words, θ refers to the large scale features of the observed field, which is measured by Z, whereas

the small scale features sensed by X and Y are embedded in the noise terms δx and δy. 

Except  for  the  representativeness  error,  it  is  assumed that  the  errors  of  the  different

observation systems are not correlated, i.e. ¿δ x δ z>¿<δ y δ z>¿0 , and also not correlated with

the  true  random  variable,  i.e.,  ¿θ δ x>¿<θ δ z>¿<θ δ y>¿0 .  Conversely,  because  of  the

representativeness error, it is assumed <δxδy>=r2. With the above assumptions it is possible to

derive the unknown error structure by computing some statistical  moments of the collocated

database  as  demonstrated  in  the  Appendix.  Starting  from  eq.  (A.2)  and  introducing  the

correlation coefficients among observations,  i.e.,  ρxy,  ρxy,  and  ρxy,  the variance of the random

errors affecting the three systems can be expressed as:
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 (3)

In  the  literature,  different  formalisms  to  implement  the  TC  approach  can  be  found,

although the hypotheses are basically the same. They differ in that they may or may not assume

the presence of bias terms, and account for the correlated component of the representativeness

error. A difference solution of the system in (2) is proposed in some works, as Dorigo et al.

(2010) and Scipal et al. (2008). Following a mathematical development reported in the Appendix

and leading to eq. (A.4), substituting eq. (A.3) and extracting the common factor  σ x
2 ,  the

variance of the errors becomes expressed by:

 ε x
2
=σ x

2 [1−ρ xy− ρxz+ ρyz ]

ε y
2
=σ x

2 [1−ρxy+ ρxz−ρ yz ]  (4)

 ε z
2
=σ x

2 [1+ ρxy−ρ xz− ρyz ]

It  is  interesting to  note that  the latter  solution is  different  from (3),  not  only for the

absence of the representative error, but also for the additive structure of the correlation terms, as

compared to the multiplicative structure of (3). In both cases, for instance, the errors of the three

systems are considered zero if the correlation coefficients are all equal to one, so that no errors

are actually expected. In the case that the correlation coefficients tend to zero, both solutions
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infer that the system error variances equal the measurement variances. As for other conditions,

the difference between the two solutions can be relevant. For instance, if  x is uncorrelated to y

and z (thus σr
2=0), which on their turn are perfectly correlated, from (3) it comes out that system

X has error covariance equal to the measurement covariance, whilst systems  Y and  Z are not

affected by errors at all. Conversely, (4) predicts an error covariance of system X two times the

measurement covariance. The difference comes up since eq. (A.1) is actually estimating the gain

terms  in  the  3-dimensional  space,  whereas  according  to  eq.  (A.3)  they  are  estimated

independently in each plane referring to a pair of measurements. In the sequel we will adopt the

solution represented by (3) based on the correlation coefficients.

3.2 Regionalised random functions

In section 3.1 constant  values  of  the true variable  mean and variance were assumed.

However, soil moisture is actually a random function (RF) of time and space, and its seasonal

variabilities in a given site, or the large scale spatial variabilities related to meteorological and

surface properties at different sites, have to be considered. These variabilities can be considered

random or deterministic, and the true variable can be considered as a space-temporal RF of space

r and time t, with first and second order statistics constant only in case of a stationary RF. 

Here the true soil moisture is assumed as a second order intrinsic stationary RF with zero

mean plus a space-time drift. It is supposed that space and time dependent functions additively

combine to form the drift m(r,t):

θ ' (r , t )=θ (r , t )+m (r , t )=θ (r , t )+mr (r )+mt (t )  (5)
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Since in (2) θ is considered a RF with same mean value whatever place and time, the drift must

be removed. To this aim, mr(r) is estimated by averaging the SMC maps over time, while mt(t) is

evaluated by fitting the spatial mean versus time by an harmonic function with period of 365

days, i.e.,  ai·cos(2πt/365+φi), where amplitude  ai and phase  φi are independently estimated for

the three systems, that is  i=x,y,z. In this case the TC analysis is performed on the residuals, or

anomalies, with respect to the mean spatial pattern and seasonal variability, as done in many

works. Note that in other works (i.e., Parinussa et al., 2011; Miralles, et al., 2011) the temporal

trend was estimated by an averaging moving window (generally 30 days long). This is not a

reliable solution if the time sampling of each grid point is not regular and frequent enough due to

the difficulty of finding collocated satellite data (see Figure 2). In our case we got 1031 samples

of the spatial means in a timeframe of 3 years. They are very noisy since the daily coverage of

the colocation is poor, but in any case enough to register the seasonal oscillation, so that fitting

the temporal trend with a sinusoidal function seems to be a suitable method. A visual check of

data and fitting curve as function of time (not reported for conciseness) confirmed the better

performances of the harmonic fitting.

As mentioned before, the drift can be considered as part of the random variability, but

this is feasible only for the temporal drift, thanks to the fact that our data set encompasses a time

frame much larger (3 years) than the annual period of the seasonal drift. In other words, we are

capable to sample even the lower frequencies of the temporal variability and thus to estimate the

variance and covariance of θ (r,t)+mt (r,t), assumed as a stationary RF. This is not the case for the

spatial drift, as our data set does not extend to the whole globe and the variance and covariances

would in this case depend on the dimension of the considered area. In the sequel we will consider
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two cases: i) removing only the spatial drift from the original observations (i.e., retaining the

seasonal trend); ii) removing both spatial and temporal drifts (i.e., looking only at the anomalies).

4. Triple colocation results

The TC was firstly applied point wise to the satellite products and the LSM outputs,

independently for  each grid point  of  the collocated maps.  In  this  way we are analysing the

capability to reproduce the temporal variability, assuming that in each point the gain and bias

parameters of each measurement system in respect to the reference can be different. This is a

usual practice found in the literature dealing with soil moisture or rain rate retrievals (i.e., Dorigo

et al., 2010). However, when dealing with satellite systems and models, as in this work, it can be

expected that bias and gain are not site-dependent, so that a  global TC was also performed to

characterize each system as a whole, as explained in section 3.2. Then, the TC analysis was

carried out considering the in-situ data instead of the LSM outputs, although in this case only the

global TC characterization was feasible, as the number of observations collocated to the satellite

soil moisture in one site was not sufficient to lead to significant error estimates. 

4.1 Triple colocation of SMOS, ASCAT and LSM outputs

A TC analysis using data from SMOS, ASCAT/H-SAF and ERA-LAND collocated on

the  ISEA4h9  grid  was  performed.  The  NOAA  model  instead  of  ERA-LAND  was  also

considered, although the latter was expected to provide better results, at least for its finer spatial

resolution. 

4.1.1 “Point-by-point” triple colocation analysis
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The  total  number  of  colocations  is  4,279,434  out  of  the  59,116  grid  points,  with  spatial

distributions shown in Figure 2. The results of the analysis without removing the temporal trend

are presented in Figure 4, where the differences are a direct consequence, according to (4), of the

temporal  correlations.  Note  that  any  linear  normalization  does  not  affect  the  correlation

coefficient in each grid point (i.e., the temporal correlation coefficient), so that in a “point-by-

point” TC the scaling of ASCAT is ineffective and the original SD product can be considered as

well.

Overall, the range of error standard deviation of the three sources, expressed as mean and

standard deviation of εx,  εy,  εz in the considered area, is 3.04±2.04% m3/m3, 3.54±2.47% m3/m3

and 3.75±2.82% m3/m3, for ERA, ASCAT/H-SAF and SMOS, respectively. In this statistics we

discarded error  estimates outside the range [0%-100%],  i.e.,  only 65% of  the ISEA4h9 grid

points were retained (quite randomly distributed in the area of interest). Note that the gains are

also different for the three sources; in particular SMOS has a dynamic range generally smaller

than  ERA (i.e.,  the  reference),  whereas  the  dynamic  range  of  ASCAT/H-SAF  SD is  larger

because, according to its different definition, it ranges from 0 to 100%. 

In  Figure 4 (upper row) it can be observed that SMOS provides in general the worst

performances,  due  to  the  lower  temporal  correlation  with  ASCAT/H-SAF and  ERA-LAND,

while the correlation between the latter two datasets is higher. In fact, the temporal correlations

between different datasets were computed in each point of the ISEA4h9 grid (maps are not shown

for conciseness) finding out that the temporal correlation between ASCAT and ERA is high in

most of the Central Europe, while lower values were obtained considering SMOS and ERA.

Actually, there are areas where the situation is the opposite, like for example the desert, where

ASCAT/H-SAF  exhibits  negative  correlation  with  respect  to  both  SMOS  and  ERA-LAND
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which, on their turn, have a positive temporal correlation in this geographical area. Note that

according to this point wise analysis, the ASCAT/H-SAF error standard deviation is still low

over desert (Figure 4, upper central panel), thus the ASCAT/H-SAF failure is revealed only by

noticing in the lower left panel of Figure 4 the negative value of the scaling factor over most of

the grid points in this area. This is an example of the limitation of the point wise TC analysis. 

For a better comparison among systems, Figure 5 shows, through an RGB level slicing

(red, green and blue points indicates ERA-LAND, ASCAT/H-SAF, and SMOS, respectively),

where each system performs worse (left panel) or better (right panel) than the others. Close to the

Mediterranean coast of Spain there are zones where SMOS presents the best behaviour, but it

generally gives the worst performances in most of the Central European countries. Surprisingly,

ERA-LAND performs better than the other systems in a large portion of the investigated area,

while ASCAT/H-SAF exhibits the least error in the Northernmost and Easternmost areas, with

worse performances over the desert and most arid areas.
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Figure 4: Point wise TC analysis results. Upper row: error variances of ERA-LAND (left

panel),  ASCAT/H-SAF  SD (middle  panel)  and  SMOS  SMC (right  panel)  systems,  all

reported in the scale of the ERA-LAND product taken as reference. Bottom row: gain of

ASCAT/H-SAF SD (left panel) and SMOS (right panel).

    

Figure 5: RGB level slicing depicting what system performs worse (left) and better (right)

than the others. Red: ERA-LAND; green: ASCAT/H-SAF; blue: SMOS.

4.1.2  “Global” triple colocation analysis

When considering the three systems as characterized by an unique set of gain and bias,

i.e., independently of the specific point under consideration, we refer to it as a  global TC. In

section  3  it  was  underlined  that  in  this  case  it  is  necessary  to  remove  the  non-stationary

component in time and space which varies on a scale larger than the observation space (thus

working with the anomalies),  otherwise the hypothesis of constant mean is not kept.  This is

necessary for the spatial drift, whereas the seasonal variability can be considered as a random

component since our observations span a temporal range larger than the typical annual period.

The results  are  presented in  Table 1,  where ASCAT/H-SAF estimates scaled using a

nominally independent  set,  i.e.,  either  the  NOAA or  the  porosity maps,  are  considered,  and

SMOS is taken as reference. The ERA model presents the smallest error (in the order of 3.3 %)
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as  a  consequence  of  the  lower  correlation  between the  two satellite  retrievals,  and an error

slightly smaller than the entire estimated variability of the true variable (around 3.8 %). SMOS

has the worst performances, with errors of about 5.3%, due to the lower correlation with ERA

with respect to ASCAT/H-SAF. The latter has an error in the order of 4.7 %, which goes up to 5.2

% when the porosity is  used for scaling.  Note that the results are expressed into the SMOS

reference  scale,  so  that  ERA-LAND  presents  a  standard  deviation  of  3.6  %  m3/m3 and

ASCAT/H-SAF scaled using the porosity up to 7.6 % m3/m3, when considering their own scale

(i.e., multiplying by their respective gains). 

SMOS and ASCAT/H-SAF products  were also compared to the NOAA soil  moisture

product using again TC in its  global configuration. All the three products, were collocated in

time and space, removing the spatial drift, as previously done. The results are reported on Table

2; they were obtained by choosing again SMOS as reference for an easy comparison with Table

1. The NOAA product has a larger error than the others (around 6%), probably due to its very

low spatial resolution. It has also a smaller dynamic range (smaller gain, around 0.55), so that its

error standard deviation equals about 3.3 % in its own scale, still larger than the others in this

scale. This time SMOS slightly outperforms ASCAT/H-SAF, but it is noticeable that their error

standard deviation (in the range 5.3-5.5 %) are larger than the standard deviation of the true

variable, which is confirmed to be in the order of 3.8-3.9 %.

Table  1:  TC results  in  the  global configuration  considering  ERA-LAND,  SMOS and

ASCAT/H-SAF, with H-SAF product scaled using either NOAA (H-SAF_NOAA) or the

porosity  maps  (H-SAF_POR),  and  SMOS  taken  as  the  reference.  σ is  the  standard
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deviation of the true variable,  s and  ε denote the gain and the error standard deviation,

respectively, of each system (indicated by subscript).  The spatial  trends were removed,

whereas the temporal trends were retained.

Table 2: Same as Table 1, but considering NOAA data instead of ERA (that replaces NOAA

for the purpose of H-SAF scaling). 

 σ
% m3/m3

sNOA

A

#

sH-

SAF

#

εNOAA
% m3/m3

εH-SAF
% m3/m3

εSMOS
% m3/m3

H-SAF_ ERA 3.95 0.55 0.76 6.05 5.68 5.25
H-SAF_ POR 3.86 0.56 1.42 5.81 5.44 5.28

4.1.3 Investigation  surface cover factors

It is worth to compare the performances of the different systems for different surface categories.

We performed this comparison both for the pointwise TC (as in section 4.1.1) and global TC (as

in  section  4.1.2).  Table  3  reports  the  error  standard  deviations,  considering  the  mean  value

among all the grid points for the pointwise TC. The presence or absence of forest cover (since

dense forests  can  differently act  on the  two satellite  responses),  as  well  as  different  surface
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σ

% m3/m3

sERA

 #

sH-

SAF

#

εERA

% m3/m3

εH-SAF

% m3/m3

εSMOS

% m3/m3

H-SAF_ NOAA 3.82 1.09 0.69 3.30 4.75 5.35

H-SAF_ POR 3.83 1.09 1.47 3.31 5.20 5.33
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topography (strong topography, flat  and moderate  topography, flat  areas,  as annotated in the

SMOS product) were considered.

The pointwise TC predicts much better results since it allows the gains to change from point to

point, and the better performances of ERA-LAND are generally confirmed in any condition. The

impact of forest cover on SMOS is significant, especially for pointwise TC, much higher than

that  on  ASCAT, though SMOS works  at  lower frequency;  this  fact  could  indicate  a  greater

robustness  of  the  ASCAT empirical  algorithm to  the  land  cover  when  looking  at  temporal

changes. Conversely, in non-forested areas SMOS outperforms ASCAT. 

In areas where topography is strong topography ASCAT yields the best results when considering

pointwise TC, whereas its performance is the worst according to the global TC. This is another

evidence that the two approaches are not equivalent and must be considered with care to draw

final conclusions. The pointwise TC predicts good ASCAT performances in high topography due

to the already mentioned robustness of the empirical algorithm to land cover, if one is more

interested in the temporal changes. Conversely, the global TC put in evidence the much higher

influence of topography on ASCAT radar backscatter, with respect to emissivity measured by

SMOS.  It  shows  that  topography  has  a  significant  impact  on  ASCAT performances  when

attempting to retrieve the absolute values of SMC. 

Table  3:  TC results  in  the  pointwise  (mean  value  of  error  standard  deviations  in  the

leftmost columns) and global configuration (rightmost columns) considering ERA-LAND,

SMOS and ASCAT/H-SAF, with H-SAF product scaled using porosity, and SMOS taken as

the reference. The spatial trends were removed, whereas the temporal trends were retained.

Pointwise TC Global TC

<εSMOS> <εASCAT> <εERA> εSMOS εASCAT εERA
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Total 3.75 3.54 3.04 5.33 5.20 3.31
C

ov
er

Forest 5.13 4.15 3.91 5.86 5.25 3.47

No forest 3.11 3.25 2.63 5.03 5.19 3.27

To
po

gr
ap

hy Flat 3.72 3.52 2.99 5.29 5.06 3.32

Flat+moderate 3.75 3.54 3.04 5.33 5.20 3.31

Strong 3.12 2.98 3.27 5.45 7.93 2.09

4.2 Triple colocation considering in-situ data 

The TC analysis was also undertaken in its global configuration (i.e., retrieving a unique

set of gains and error variances) considering station data instead of LSM ones, i.e., considering

ISMN upscaled probes, SMOS and ASCAT/H-SAF. While the spatial trend was systematically

removed, the seasonal variability was considered either a random component or a non-stationary

component and removed, so that the faster changes of soil moisture around the seasonal trend

(i.e.,  the  anomalies)  were  investigated  as  well.  The  additive  model  was  considered  for  the

temporal and spatial variability of the drift, as discussed in section 3.2, using the spatial means

depicted in Figure 1. 

The  TC  technique  was  applied  to  the  three  datasets  with  ASCAT/H-SAF  scaled  in

different ways, and SMOS was chosen as reference. The results are shown in Table 4. The error

is around 5% for all three systems, but it is relevant to note that it is larger than the variability of

the  true  variable  (in  the  order  of  4.2  %  for  the  anomalies,  or  5%  including  the  seasonal

variability). SMOS seems to be more capable to detect the seasonal variability, as its error is

smaller when the temporal trend is retained, whereas ASCAT/H-SAF slightly outperforms SMOS

when looking at the anomaly, except when scaled using NOAA. Surprisingly, satellite data are

characterized by slightly smaller errors (around 5% m3/m3) with respect to in situ probes (around

5.5% m3/m3), an outcome which is worth to be discussed.
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We are not considering single moisture probes, as we upscaled the probe measurements

to the resolution of the satellites by averaging the values within satellite field of view. Hence, we

are evaluating the capability of the probes to reproduce the “average” soil moisture within an

area in the order of 40-50 km rather than the capability of the probes to reproduce the moisture at

the exact location they are installed. In some pixels we were able to average a significant number

of probes, whereas in other pixels the number of available probes is smaller and the local scale

variability  concurred  to  increase  the  estimated  noise  of  the  ground  system,  which  is  here

evaluated at the large scale of the two satellites. In summary, there is the question about how well

in-situ  local  scale  measurements  are  able  to  represent  a  satellite  coarser  observation,

encompassing very different landscape conditions (lake, forest, bare soil, topography, etc.) in the

field of view.

Table 4: Results of the TC in its global configuration considering SMOS (the reference),

ISMN,  and  ASCAT/H-SAF.  ASCAT/H-SAF  is  scaled  using  different  minimum  and

maximum maps, derived from ERA, NOAA, or using the porosity (subscript in the first

column). The lower figure in the cells refers to the temporal anomalies (both spatial and

temporal trends are removed using the additive model). 

 σ
% m3m-3

sISM

N

#

sH-

SAF

#

εISMN
% m3m-3

εH-SAF
% m3m-3

εSMOS
% m3m-3

H-SAF_ERA 5.05
4.26

1.00
0.88

0.89
1.04

5.39
5.79

5.60
4.91

4.92
5.08

H-SAF_NOAA 5.13
4.35

0.98
0.84

0.751
0.87

5.62
6.13

5.64
5.12

4.84
5.00

H-SAF_porosity 4.92
4.10

1.06
0.95

1.56
1.84

4.99
5.26

5.55
4.83

5.05
5.21
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5. Conclusions

An in depth and extensive comparison of soil moisture retrievals over the area of interest

of the EUMETSAT H-SAF project (Europe and North Africa) was carried out considering the H-

SAF  SM-OBS-1  and  the  SMOS  L2  products  (5.51  processor  version),  as  well  as  in  situ

measurements  and  different  land  surface  model  predictions  (ERA-LAND and  NOAA).  The

analysis spanned a period of 3 years (2010-2012) and the triple colocation approach was used to

evaluate the results of the comparison . This technique was reviewed in detail, showing common

aspects and differences among few fundamental papers. 

ERA yielded the best performances when the point-wise triple colocation was applied to

ERA,  SMOS and  ASCAT/H-SAF products,  with  average  error  standard  deviation  of  3.04%

m3/m3, as compared to 3.75% m3/m3 of SMOS and 3.54% m3/m3 of ASCAT/H-SAF. Note that in

this case it was assumed that the system gains can vary from point to point, a condition that can

be considered as questionable if one looks at satellites and models as a unique system. A global

TC analysis was also performed and this represents a novelty with respect to literature works; the

spatial drift (non-stationary component of the soil moisture field) was removed for this purpose.

ERA exhibited  the  smallest  error  (around  3.3% m3/m3)  that  turned  out  to  be  less  than  the

variability of the true variable (3.8% m3/m3); the satellite products error was in the order of 5.3%

m3/m3 for SMOS and in the range 4.8-5.2% m3/m3 for ASCAT/H-SAF, depending on the way the

scaling was performed. Replacing ERA with NOAA, the model performances worsened, with

error of about 6% m3/m3, and SMOS slightly outperformed ASCAT/H-SAF, both just above 5%

m3/m3, a figure still to be compared with a true variable standard deviation of 3.9% m3/m3. 
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A global TC was accomplished considering also the in situ data from the ISMN network.

Also in this case the spatial drifts were removed and different ways to scale the ASCAT/H-SAF

saturation  degree  were  considered.  Although  the  results  changed  according  to  the  scaling

approach, SMOS slightly outperformed ASCAT/H-SAF when the seasonal variability is left in

place (4.9-5.1% m3/m3 as compared 5.5-5.6% m3/m3), whereas ASCAT/H-SAF performed better

in  detecting  the  temporal  anomalies  (4.8-5.1%  m3/m3 as  compared  to  5-5.2%  m3/m3).

Surprisingly, both seemed to perform better  than  in-situ  data  (5-6% m3/m3),  but  this  can be

related to the ability of local in situ probes to represent the average condition within the satellite

field of view. It is noticeable that the errors were generally larger than the variability of the true

variable (standard deviation in the range 4.1-5.1% m3/m3).

When  considering  the  anomalies  with  respect  to  the  temporal  trend,  the  in-situ  data

exhibited even worse results, which indicates that their residual short scale variability, in time

and space, was not detected by the satellite products and was therefore interpreted as noise by the

TC analysis. This demands for a better way to account for the different spatial resolution of the

systems,  through  a  characterization  of  the  representative  errors  throughout  geostatistical

techniques, which is foreseen in future studies. 
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Appendix

Starting from eq. (1), under the premise that we estimate r2, considering all the possible

second order statistics of the measured quantities which can be estimated from the TC data set,

namely the three variances σ2
x, σ2

y, σ2
z, and covariances Cxy=<(x-<x>)(y-<y>)>, Cxz=<(x-<x>)(z-

<z>)> and Cyz=<(y-<y>)(z-<z>)>, one can write three equations with three unknowns, that are the

two scaling factors sy and sz and the true variable variance σ 2. It turns out:
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(A.1)

In  (A.1),  the  correlation  coefficients  among  observations,  i.e.,  ρxy,  ρxy,  and  ρxy are

introduced. The variance of the random errors affecting the three systems can be expressed as:

( ) 22222
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 (A.2)

Equations (A.2) are slightly different from the expression proposed by Stoeffelen (1998), since,

due to the presence of biases and mean < θ >, the variances and covariances replace the second

order statistical moments <x2>, <y2>, <z2>, <xy>, <xz> and <yz> considered in that paper.

According  to  an  alternative  approach  (Dorigo  et  al.,  2010;  Scipal  et  al,.  2008),  the

constant bias affecting the three systems is removed by introducing new observations scaled to
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the true variable  θ space domain (i.e.,  x¿
=x / sx−bx  ;  y¿

= y /s y−b y  ;  z¿
=z / sz−bz ).

Then the calibration constants are evaluated applying a simple rescaling of the measurements

into the observation space of the reference dataset. More specifically, the mean and variance of Y

and Z systems are scaled to those of the reference X, which is implicitly assumed to have unitary

gain and null bias (sx=1, bx=0) (Dorigo et al., 2010; Hain et al., 2011):

y❑
¿ =〈 x 〉+( y− 〈 y 〉 )❑x

❑/❑y
❑ z❑

¿ = 〈 x 〉+( z− 〈 z 〉 )❑x
❑/❑z

❑    (A.3)

It can be easily shown that in this way sy=σy/σx and sz=σz/σx are calculated as in (A.1), but setting

the correlation coefficients to one and assuming σr
2=0. Considering that from eq. (2) in the main

text the differences among the scaled variable turn out to be equal to the difference among the

error  terms  (e.g.,  x− y❑
¿
=δ x−δ y ),  by cross  multiplying  those  differences,  averaging,  and

considering the assumption of null correlation between errors of different systems, it is possible

to obtain a direct estimate of the error variances as well: 

ε x
2
= 〈 ( x− y❑

¿ ) ( x−z❑
¿ ) 〉

ε y
2
=〈 ( x− y❑

¿ ) ( z❑
¿
− y❑

¿ ) 〉 (A.4)

ε z
2
=〈 ( x− z❑

¿ ) ( y❑
¿
− z❑

¿ ) 〉
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List of Table captions

Table  1:  TC results  in  the  global configuration  considering  ERA-LAND,  SMOS and

ASCAT/H-SAF, with H-SAF product scaled using either NOAA (H-SAF_NOAA) or the

porosity  maps  (H-SAF_POR),  and  SMOS  taken  as  the  reference.  σ is  the  standard

deviation of the true variable,  s and  ε denote the gain and the error standard deviation,

respectively, of each system (indicated by subscript).  The spatial  trends were removed,

whereas the temporal trends were retained.

Table  2:  Same as  Table  1,  but  considering  NOAA data  instead  of  ERA (that  replaces

NOAA for the purpose of H-SAF scaling). 

Table  3:  TC results  in  the  pointwise  (mean  value  of  error  standard  deviations  in  the

leftmost columns) and global configuration (rightmost columns) considering ERA-LAND,

SMOS and ASCAT/H-SAF, with H-SAF product scaled using porosity, and SMOS taken as

the reference. The spatial trends were removed, whereas the temporal trends were retained.

Table 4: Results of the TC in its global configuration considering SMOS (the reference),

ISMN,  and  ASCAT/H-SAF.  ASCAT/H-SAF  is  scaled  using  different  minimum  and

maximum maps, derived from ERA, NOAA, or using the porosity (subscript in the first

column). The lower figure in the cells refers to the temporal anomalies (both spatial and

temporal trends are removed using the additive model). 
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List of Figure captions

Figure 1:  Maps of minimum (left), maximum (central) and mean (right) values of  SMC

derived  from ERA (upper  row, years  1991-2012),  SMOS with  processor  version  5.51

(middle  row,  years  2010-2013)  and  ASCAT product  rescaled  using  the  porosity  map

(bottom row, years 2010-2013). 

Figure 2: Number of colocations of SMOS, ASCAT/H-SAF and ERA-LAND estimates in

each point of the ISEA4h9 in the considered time frame grid (January 2010 – December

2012). Note that grid points with more than 150 occurrences are about 4% of the total. 

Figure 3: Example of ISMN data up-scaling approach. Blue stars are stations associated to

both ASCAT and SMOS field of view,  the yellow star is associated only to SMOS and the

red star only to ASCAT.

Figure 4: Point wise TC analysis results. Upper row: error variances of ERA-LAND (left

panel),  ASCAT/H-SAF  SD (middle  panel)  and  SMOS  SMC (right  panel)  systems,  all

reported in the scale of the ERA-LAND product taken as reference. Bottom row: gain of

ASCAT/H-SAF SD (left panel) and SMOS (right panel).

Figure 5: RGB level slicing depicting what system performs worse (left) and better (right)

than the others. Red: ERA-LAND; green: ASCAT/H-SAF; blue: SMOS.
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