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The assimilation of SMOS brightness temperature (TB) data in Numerical Weather

Prediction Systems influences the state of the soil, which in turn affects the exchange

of energy and water fluxes between the soil and the near surface atmosphere, with

potential implications in the prediction of atmospheric variables. In this paper, the

impact of assimilating SMOS TB alone or in combination with screen level observations

and ASCAT soil moisture retrievals is assessed. Independent quality controlled in situ

soil moisture observations belonging to several networks, included in the International

Soil Moisture Network, were used to validate the quality of both the new soil moisture

analyses and the skill to predict soil moisture up to 5 days ahead. The impact on

atmospheric variables is indirect and it was evaluated through computation of the

forecast skill at different lead times. The analysis period was selected to be around the

boreal summer, a period of the year when evaporatranspiration fluxes are stronger,

and when it is therefore expected that the assimilation of remote sensing data provides

the largest impact on the state of the soil. The results show that the soil moisture state

benefits from the direct assimilation of SMOS TB, especially in better representing

the temporal variations of soil moisture. The skill on atmospheric variables is mainly

driven by the screen level observations. Despite the clear benefits to the soil state,

remote sensing data needs to be used with screen level variables to add value to the

state of the atmosphere, pointing to inconsistencies in the physical coupling between the

land and near-surface components of the ECMWF Earth system.
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1. Introduction

An accurate description of the current state of the land sur-

face is essential for numerical weather prediction (NWP), as it

determines the lower boundary conditions for the atmospheric

processes. Over snow-free and unfrozen soils, root-zone soil

moisture is the soil variable of particular interest as it has a

strong influence on the exchange of energy and water fluxes

between the land and the atmosphere. A significant number of

studies in the literature have shown the impact of initial soil

moisture conditions on short and medium-range weather forecasts

(e.g. Beljaars et al. (1996); Mahfouf et al. (2000); Douville et al.

(2000); Drusch and Viterbo (2007); Van-Den-Hurk et al. (2008))

and even at longer time scales covering seasons (Koster et al.

(2010, 2011); Weisheimer et al. (2011); Materia et al. (2014);

Prodhomme et al. (2016)). Consequently, a lot of resources have

been devoted to integrating novel satellite measurements related

to soil moisture in NWP, improving data assimilation schemes and

quantifying the impact on the forecast skill.

Already in 1995 Viterbo and Beljaars (1995) pointed out that

excessive solar radiation at the surface in the European Centre for

Medium-Range Weather Forecasts’ (ECMWF) scheme, due for

example to a deficiency in the model clouds, led to an excessive

drying of the surface, and thus too little precipitation and cloud

cover formation. A nudging scheme was implemented (Viterbo

(1996)), where the soil moisture increments were computed from

the specific humidity increments at the lowest model level using

a single empirical regression coefficient. While this scheme pre-

vented the free running soil moisture from drifting, the resulting
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soil moisture was unrealistic, the main reason being that the nudg-

ing scheme compensated for model biases and did so too rapidly.

This shortcoming motivated the implementation of an Optimal

Interpolation (OI) scheme that assimilated simultaneously near

surface temperature and humidity observations, as proposed by

Mahfouf (1991) and evaluated by Douville et al. (2000). Assimi-

lation of these screen level variables benefits from the availability

of a large number of consolidated ground stations, providing

reliable 2 meter temperature and relative humidity measurements.

However, the density of these stations is not homogeneous around

the world, being much denser in developed countries whereas

in vast areas of Africa and Asia only a few stations exist.

Furthermore the main disadvantage of this assimilation approach

is that screen level observations are not always directly linked to

the underlying soil under certain weather conditions. For instance,

screen level variables and soil moisture can be decoupled in

synoptic situations characterized by weak radiative forcing, strong

precipitation, or high wind speeds. Drusch and Viterbo (2007)

showed that the assimilation of screen level parameters resulted

in improved atmospheric forecasts while at the same time the

accuracy of the soil moisture analyses was degraded. In this

scheme, soil moisture is used as a sink term, where errors accu-

mulate, in order to satisfy the land-atmosphere fluxes exchange.

The development and implementation at ECMWF of a point-

scale Simplified Extended Kalman Filter (SEKF) (Seuffert et al.

(2004); Drusch et al. (2009b); de Rosnay et al. (2013)) provided

more coherence to soil moisture analyses, especially at the root-

zone level, and made the system more flexible to accomodate

the increasing number of satellite data sensitive to soil moisture.

The implementation of the SEKF has permitted the operational

assimilation of ASCAT soil moisture retrievals since summer

2015 at ECMWF.

Since the early 90s low frequency microwave remote sensing

has offered the opportunity fo deriving more direct estimates

of soil moisture with the required temporal and spatial resolu-

tion and sampling. The first global datasets providing reliable

soil moisture estimates on a routine basis have been derived

from the C-band scatterometers onboard ERS-1/2 (Wagner et al.

(1999)) and METOP-A,B (Bartalis et al. (2007); Wagner et al.

(2007); Albergel et al. (2009); Wagner et al. (2013). Since 2002,

the Advanced Microwave Scanning Radiometer (AMSR) series

has offered low frequency passive microwave observations that

have been used for soil moisture retrievals, yielding an absolute

accuracy of approximately 6% in volumetric soil moisture. These

active and passive observations have been complemented with

additional measurements from various systems, such as TMI

onboard TRMM (Gao et al. (2006)), Windsat (Li et al. (2010)),

SSMI (Wen et al. (2005)), ASCAT (Wagner et al. (2013)) and

Sentinel-1 (Gao et al. (2017)). In parallel to these developments

of observational capabilities, Reichle and Koster (2005) pioneered

the assimilation of microwave measurements into land surface

models demonstrating the positive impact on the soil moisture

analysis.

Yet, none of the satellite instruments mentioned above had a

prime objective of providing information on soil moisture. The

Soil Moisture and Ocean Salinity (SMOS) mission, launched

in 2009, is the first satellite designed specifically to infer soil

moisture (Kerr et al. (2010, 2012); Mecklenburg et al. (2016)).

SMOS operates at L-band (1.4. GHz) where the sensitivity to

surface properties is high due to an increased penetration depth

and a reduced sensitivity to vegetation properties when com-

pared to measurements taken at higher frequencies. The SMOS

payload data ground segments generate brightness temperature

(TB) data over land with a Near Real Time (NRT) product

latency of less than 3 hours for NWP applications and other time-

critical applications such as flood forecasting. The soil moisture

products originating from SMOS are generally of high-quality

(Kerr et al. (2012, 2016)) meeting the targeted accuracy of 4%

volumetric soil moisture and a number of studies indicate a

positive analysis impact when the observations are assimilated in

their systems (e.g. Lievens et al. (2015); de Lannoy and Reichle

(2016b); Lievens et al. (2016)). However, integrating coarse res-

olution satellite observations from low frequency microwave

measurements (which represent the top 1 to 5 centimeters of

the soil) into land surface models, remains a challenge with

respect to, among others, observation operators, bias correction

schemes (e.g. Drusch et al. (2005); Verhoest et al. (2015)), and

the characterization of model and observation errors.

At ECMWF, the preparations for integrating SMOS observa-

tions started in 2001 with first feasibility studies using the SEKF

(Seuffert et al. (2004)). Since then ECMWF has developed both,

the capability to acquire, ingest, pre-process and monitor SMOS

NRT TB (Muñoz-Sabater et al. 2012) and to assimilate SMOS

data integrated as another component of the ECMWF Land Data

Assimilation System (Muñoz-Sabater 2015). The ECMWF root-

zone soil moisture retrieval algorithm optimally combines SMOS

Level-1 NRT TB observations with ECMWF forward modeled

TB into the SEKF data assimilation system. A number of analyses

were performed to optimize the parameters in the microwave

emission model used as the forward operator generating TB at

the top of the atmosphere. In addition, a bias correction scheme

using the Cumulative Density Function (CDF) matching approach

was implemented to reduce systematic differences between the

model background and the measurements (de Rosnay et al. 2018).

Several technical challenges addressing the large data volume and

the increased computational time required for the new surface

analysis using satellite observations, also needed to be solved.

In this paper we analyze how the water content in the top one

meter of the soil and numerical weather predictions of the lower

troposphere benefit from the combined assimilation of screen level

variables and remotely sensed observations. We perform several

long experiments assimilating SMOS TB, alone or in combination

with screen level variables and ASCAT soil moisture retrievals.

Following this introduction, section 2 provides a description of

the data used in this study, as well as the methodology and the

experimental set up conducted in this paper. The experimental

results are presented in section 3. Some important aspects of this

study are discussed in section 4, and finally the conclusions of this

study are collected and presented in section 5.

2. Material and Methods

2.1. Assimilated Observations

2.1.1. Conventional land observations

In situ observations of air temperature and relative humidity at

the screen level (two meters above the land surface) are routinely

available in NRT from the SYNOP network. In the past two

decades, several operational centers have used these observations

(referred to hereafter as Screen Level Variables (SLV)) to analyze

soil moisture for operational NWP applications (Mahfouf et al.

(2000); de Rosnay et al. (2013)). In the current ECMWF system,

more than 35,000 SYNOP SLV observations, covering continental

areas across the world, are assimilated daily in the land data

assimilation system. Prior to their use in the soil moisture

analysis, SLV observations are analyzed and regridded over all

land grid points using a two-dimensional Optimal Interpolation

(2D-OI) scheme. The maximum number of observations allowed

to influence the analysis value at a model grid point is 50, with

a search radius around the grid-point location of 1000 km. The

influence of the SYNOP observations on a given model grid-point

decreases proportionally to the distance from the grid point (see
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the IFS documentation for more information). The outcome of this

process is a series of 2 m temperature and 2 m relative humidity

pseudo-observations used for the adjustment of soil moisture. The

use of these pseudo-observations to analyze soil moisture relies

on the coupling processes between soil moisture and near surface

atmospheric temperature and humidity conditions. In other words,

2 m air temperature and relative humidity errors in the model

background are assumed to be related to corresponding errors in

the model soil moisture.

2.1.2. ASCAT soil moisture retrievals

ASCAT is a C-band (5.255 GHz) real aperture radar on board

the EUMETSAT (European Organisation for the Exploitation of

Meteorological Satellites) MetOp-A and MetOp-B operational

meteorological satellites that were launched in 2006 and 2012,

respectively. MetOp-C was launched on 7 November 2018,

and it carries a third ASCAT instrument. Initially designed for

ocean wind speed and direction monitoring, ASCAT is also

used to retrieve sea ice properties in polar areas and surface

soil moisture over land surfaces (Wagner et al. (2013)). The

ASCAT nominal resolution is 30-50 km, and the ASCAT level

2 gridded soil moisture products are available at 12.5 km and

25 km resolutions, with a 82% daily global coverage for each

MetOp satellite. The ASCAT soil moisture product retrieval

algorithm was developed by the University of Vienna (TU-Wien)

as described by Bartalis et al. (2007) and Wagner et al. (2013),

and is based on a change detection approach. Seasonal vegetation

effects are corrected by accounting for the yearly cycle of the

backscatter(σ0)-incidence angle(θ) relationship. This relationship

is important because soil moisture information is gained from the

slope and temporal variation of θ and σ0 (see for ex. (Naeimi et al.

2009)). The resulting ASCAT soil moisture is expressed in terms

of soil water index and it is representative of the top 2 cm of

the soil. At ECMWF, the soil moisture analysis assimilates the

ASCAT Level-2 25 km soil moisture product, and this is the

ASCAT product assimilated in this study. The quality control

discards data with noise levels larger than 8 as well as observations

contaminated by the presence of water bodies (water fractions

larger than 15%), or topographic complexity larger than 20%

(Scipal et al. (2005)).

2.1.3. SMOS TB

Launched in November 2009 as one of ESA’s Earth Explorer

missions, SMOS carries a novel interferometric radiometer

operating in the L-band at 1.4 GHz (Kerr et al. (2010)). The

spatial resolution of SMOS raw observations ranges from 35 to

50 km depending on the incidence angle and the geographical

location of the observation. The product received and used at

ECMWF is the NRT TB product, which is processed onto a fixed

hexagonal grid with approximately 15 km node separation.

Prior to assimilation in the ECMWF Integrated Forecasting

System (IFS), all observations are subjected to basic quality

checks, followed by a data thinning filter that is necessary due

to the vast amount of data available (see Muñoz-Sabater et al.

(2012)). The ECMWF spectral TL511 reduced Gaussian grid

(approximately equivalent to a 40 km horizontal grid) was

selected for the analysis and the NRT TB data converted to

this grid. The latter matches better the original resolution of

the SMOS observations and avoids horizontal correlations

present in the oversampled NRT product, which are difficult

to handle in a data assimilation system. This upscaling step is

equivalent to converting the original NRT product to the NRT

light BUFR product (see https://earth.esa.int/web/

guest/data-access/browse-data-products/-/

article/nrt-bufr-light-smos-miras-nrt_bufr_

light). It also acts as a data thinning step, frequently used

with most satellite sensors delivering radiances at ECMWF.

Only three incidence angles were selected and assimilated:

30◦, 40◦ and 50◦, as for these angles monthly linear rescaling

coefficients where computed (see section 2.2). The margin around

each incidence angle was set to ±1◦, i.e., observations in the

bins [29-31], [39-41] and [49-51] only were considered. For

each node of the model grid and angular bin, the observations

were averaged with the objective of reducing angular noise,

following Muñoz-Sabater et al. (2014b). Only the pure X and

Y polarisations (X and Y are the H and V polarisations in the

antenna frame, and thus different from those at ground level) were

used and assimilated in the antenna reference frame, for which

the model equivalents were rotated to be in the same reference

as the observations. Although the antenna views a large area of

several thousands of km, due to instrument design the useful field

of view is limited by aliases. Some of this can be corrected but the

signal is pure in a limited hexagon-like shape; the so-called the

alias-free zone. This is the zone without ambiguity in the phase-

difference and therefore the area of highest quality. Therefore,

only observations located in the alias-free field of view were

considered. SMOS observations are affected by Radio Frequency

Interference (RFI) (Daganzo-Eusebio et al. (2013); Oliva et al.

(2016)). In this paper the RFI flag contained in the BUFR product

was used to discard nodes affected by a high probability of RFI

contamination. This filtering method based on flags does not

guarantee observations free of RFI, but at least some of the most

contaminant sources will be filtered out. Finally, prior to use in

the assimilation scheme, only observations unaffected by snow

or frozen soil (according to 2 m temperature and the snow depth

short range 12h forecast), as well as by water surfaces and high

orography, were selected.

2.2. Rescaling of remote sensing data

Data assimilation methods assume that the observations assimi-

lated are unbiased. Therefore it is crucial to minimize systematic

differences with the corresponding model-based estimates. The

approach used in this study for both SMOS TB and ASCAT

soil moisture retrievals is a point-wise CDF matching following

the approach in Reichle and Koster (2004); Scipal et al. (2008);

Draper et al. (2012). The monthly mean and standard deviation

of observations were linearly rescaled to match the climatologies

of the model counterparts, which in this case was the model

equivalent TB at the top of the atmosphere calculated from the

soil moisture first-guess estimated by the land surface model. For

SMOS, the CDF matching technique was applied using 4 years

of reprocessed SMOS data, from 2010 to 2013. Two monthly

linear correction coefficients (one correcting for the mean value

and another one for the standard deviation) were obtained indi-

vidually for each month and used to eliminate systematic biases

between observations and model equivalents (see de Rosnay et al.

(2018)). The monthly coefficients are intended to account for the

seasonality of biases in TB.

Fig. 1 shows the histogram of the innovation vector (SMOS TB
minus model equivalent) at 40◦ incidence angle before and after

TB bias correction. The shape of the distribution becomes more

Gaussian after bias correction, especially for the X polarization,

with a larger number of innovations close to zero, showing better

agreement after bias correction. While the mean bias is almost

zero for Y polarization after bias correction, there is still a residual

bias remaining of about 4 K at X polarization. This reflects the

limitations of the CDF approach in accounting for all sources

of monthly (climatological) biases in TB, but it may also be

influenced by bad data, especially data contaminated by RFI

which were not tagged in the NRT product. There are still non-

Gaussian tails present, which partly reflect the complexity of
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4 J. Muñoz-Sabater et al.

simulating L-band TB under very heterogeneous land conditions

with a radiative transfer model driven by a limited number of

parameters and under very contrasting conditions.

Fig 1 about here

2.3. The ECMWF surface and root-zone soil moisture analysis

algorithm

The ECMWF soil moisture analysis system is composed of three

main independent modules:

• The Hydrology-Tiled ECMWF Scheme for Surface

Exchanges over Land (H-TESSEL),

• The Community Microwave Emission Model platform

(CMEM) forward operator,

• The Simplified Extended Kalman Filter (SEKF) assimila-

tion scheme,

The SEKF system combines screen level variables, ASCAT

soil moisture retrievals and SMOS TB observations with the

HTESSEL-CMEM simulated top of the atmosphere TB in order

to adjust the soil moisture background values at analysis times.

The three components are described in the following subsections.

2.3.1. H-TESSEL

H-TESSEL is the land surface scheme of the IFS used for

operational weather prediction at ECMWF. H-TESSEL represents

the time-space evolution of the most important hydrological and

cold surface processes. It provides the background value of the

land surface states for the atmospheric model integration. It

also benefits from the global 4D-Var data assimilation system

used for the upper air analysis, as it provides high quality

atmospheric conditions for land surface model integrations. H-

TESSEL is a point-wise model that describes the soil water

vertical diffusion using the Richards equation. On each grid point

the vertical soil column is discretised into four layers (thicknesses

of 7 cm, 21 cm, 72 cm and 1.89 m). The soil texture class

used in H-TESSEL is extracted from the Food and Agriculture

Organization (FAO)/ United Nations Educational, Scientific and

Cultural Organization (UNESCO) Digital Soil Map of the World

(DSMW) classification, which is available at a resolution of 5’x5’

(about 10 km). The seven soil texture types used in H-TESSEL are

coarse, medium, medium-fine, fine, very fine, organic and tropical

organic. To interpolate to model target resolution, the dominant

soil type is selected, with the advantage of preserving hydraulic

properties when moving across various model resolutions. Each

grid box in the model is divided into eight tiles (bare ground,

low and high vegetation without snow, exposed snow, snow

under high vegetation, interception reservoir, ocean/lakes, and

sea ice). In each grid box two vegetation classes (high and low)

are present. Twenty vegetation types, including also deserts, ice

caps, inland water and ocean, have been defined based on the

US Geological Survey (USGS) classification of the Global Land

Cover Characterization (GLCC, Loveland et al. (2000)) data.

Each vegetation type is characterized by a set of fixed parameters

for the minimum canopy resistance, spatial coverage, and leaf area

index, a sensitivity coefficient describing the dependence of the

canopy resistance on water vapor deficit, and the root distribution

over the soil layers. The fraction of a grid box covered by each

of the tiles depends on the type and relative area of low and high

vegetation, and the presence of snow and intercepted water.

An extensive description of the H-TESSEL land surface model

is available in Balsamo et al. (2009).

2.3.2. CMEM

CMEM is the ECMWF forward model operator for low-

frequency passive microwave TB in the range from 1 to 20 GHz

(Drusch et al. (2009a); de Rosnay et al. (2009)). It provides a

model equivalent of the observed SMOS TB at the top of the

atmosphere, which is directly compared to the SMOS observed

TB at the time of the observation. CMEM input fields are

provided by H-TESSEL integrations, along with a monthly

value of Leaf Area Index (LAI) per type of vegetation (based

on a MODIS climatology, Boussetta et al. (2013)) and other

auxiliary land parameters such as soil texture or water fraction.

CMEM physics is based on the parameterisations used in the

L-Band Microwave Emission of the Biosphere (Wigneron et al.

(2007)) and the Land Surface Microwave Emission Model

(Drusch et al. (2001)). It is structured into four different modules

for the soil, vegetation, snow and atmospheric contributions to

the total microwave emission components. For each module,

different parameterisations are available. The skill of CMEM

in accurately representing the soil emission under different

conditions is documented in the studies of Drusch et al. (2009a),

using L-band observations from the NASA Skylab mission in

1973-1974, de Rosnay et al. (2009) using C-band observations

provided by the AMSR on Earth Observing System (AMSR-E)

on the NASA’s AQUA satellite over the AMMA area in West

Africa, and Muñoz-Sabater et al. (2011) using in situ L-band

observations from the SMOSREX (Soil Monitoring Of the Soil

Reservoir Experiment) site in South-West France. In this study,

the key parameterisation of Wigneron et al. (2007) is used for

the vegetation opacity contribution, in combination with the

Wang and Schmugge (1980) dielectric model, the Wigneron et al.

(2001) parameterisation for the soil roughness effect and the

Pellarin et al. (2003) parameterisation for the atmospheric

contribution. They were selected based on the minimum Root

Mean Squared Difference (RMSD), minimum mean bias (MB)

and best correlation (R) values of the simulated TB with the

reprocessed SMOS dataset for the whole period 2010-2011

(de Rosnay et al. (2018)). This combination of parameterisations

has also been used operationally at ECMWF since 19 November

2013 for monitoring purposes (Muñoz-Sabater et al. (2014a)).

2.3.3. SEKF

The ECMWF soil moisture analysis uses the SEKF methodology.

It is based on a point-wise EKF which combines a background

state, screen level variables (2 m temperature and relative

humidity) and satellite observations to obtain a soil moisture state

of better quality than the pure model-based estimation.

The soil moisture increment ∆x(ti), applied to the background

vector xb(ti) at time ti, grid point by grid point, is:

∆x(ti) = Ki[y
o(ti)−Hi(x

b)] (1)

The superscripts b and o stand for background and observations,

respectively, x is the model state vector, y the observation vector

and H the non-linear observation operator relating observation

and model equivalent. In this study, the model state vector has

dimension n = 3, and it is composed of the soil moisture of the

three top soil layers of H-TESSEL, whereas the observation vector

is composed of 2 m temperature, 2 m relative humidity, ASCAT

soil moisture retrievals and SMOS TB observations. The Kalman

gain matrix Ki weighs the uncertainties assigned to the model

background and the observations, and is computed at time ti as:

Ki = [B−1 + H
T
i R

−1
Hi]

−1
H

T
i R

−1
(2)
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where Hi is the linearised version of the observation operator,

B is the static error covariance matrix associated with the model

state vector xb and R is the observation error covariance matrix.

In its operational version, the R matrix is static. However, since

SMOS data were incorporated into the observation vector and,

in this study, the uncertainty of each SMOS TB observation

is proportional to its specific radiometric accuracy (see section

2.3.4), the R matrix varies in space and along the assimilation

window.

The Jacobian of the observation operator at time i, Hi, provides

information on the model sensitivities of 2 m temperature, 2 m

relative humidity, ASCAT soil moisture retrievals and SMOS TB
to small perturbations (δxj) of the top three j soil moisture layers.

For the experiments described in this paper, Hi is:

Hi =
δyi
δxj

(3)

At ECMWF, Hi is numerically solved in finite differences, by

forcing small δx perturbations of the background state vector,

one for each element of the control state vector. This approach

has the main advantage that tangent and linear models are not

required, at the expense of a larger computational cost. This

latter is however not prohibitive due to the low dimension

(n=3) of the control vector. The optimal amplitude of the soil

moisture perturbations for the linearisation of H , when only

screen variables are assimilated, is documented in Drusch et al.

(2009b), whereas Muñoz-Sabater (2015) found similar values

when SMOS TB data were added to the control vector.

Finally, the nonlinear equations of the land surface scheme

(described as the M operator) are used to make the new analyzed

state vector xa(ti) evolve between time ti and ti+1 according to:

x
b(ti+1) = Mi→i+1[x

a(ti)] (4)

2.3.4. SEKF setup and quality control

The success of the SEKF assimilation scheme depends on

the accurate specification of B, R and H, as well as on

different quality control checks to ensure that only good quality

observations are used. Following Muñoz-Sabater (2015) the

maximum perturbation of soil moisture permitted to linearize

the Jacobian matrix of the observation operator was set to

0.01m3m−3. For this perturbation value, an absolute value

of 250K/m3m−3 was found to be the maximum realistic

sensitivity of model TB to soil moisture variations. Negative

values of magnitude larger than 250K/m3m−3 were observed

in the interface between snow and snow free areas and these

observations are discarded. For the SMOS component of the

Jacobian matrix, most grid points show negative values, reflecting

the fact that, in general, an increased amount of water in the soil

decreases the soil emissivity.

The observations are subjected to several quality checks; if the

innovation (observation minus background) in observation space

is larger than 20 K for TB, then the observation is rejected. The

same applies for 2 m temperature innovations larger than 5 K,

2 m relative humidity innovations larger than 20% and ASCAT

soil moisture innovations larger than 0.1m3m−3. These values

are currently used in operations and they are based on long-

term statistics between modeled and observed values. Finally, soil

moisture increments larger than 0.1m3m−3 are not applied to

the background fields, as they are considered too large and not

realistic.

The covariance matrix of the observations R was assumed to be

diagonal, with standard deviation of screen level parameters σT =

1 K and σRH = 4 %, whereas the ASCAT soil moisture retrieval

error was set to σASCAT = 0.05m3m−3. These previous single

values are probably not optimal for all the ranges of temperatures,

humidities and soil moisture. However the same values are used

in the ECMWF operational system. For SMOS observations a

dynamical observation error was set to σ(TB) = 6 + α·rad acc,

with rad acc the pure radiometric accuracy of each individual pure

polarised angular observation and α an inflation parameter. Based

on long-term innovation statistics α was calibrated to be equal to

3. Thus the minimum error assigned to SMOS TB observations

is around 10 K and acknowledges the fact that the radiometric

accuracy, although an objective measure of the observation

error, does not account for all sources of error, including

the representativeness error and forward model uncertainties.

Other studies used observation errors of the same magnitude

(de Lannoy and Reichle (2016b,a)). The assumption of a diagonal

observation error covariance matrix also implies that there is

no correlation between screen-variables, ASCAT retrievals and

the different incidence angles of SMOS observations. However,

there exists at least a certain level of horizontal error correlation

among the different multiangular SMOS observations at each

model grid point. As in this study the resolution of the analysis

matches the resolution of the raw SMOS observations, we make

the hypothesis that this assumption will not significantly impact

the analysis. Investigating the effect of horizontal correlations

between observation errors is necessary, but it is out of the scope

of this paper.

A 3D-background error matrix (3D-B) based on

Muñoz-Sabater et al. (2018) was used to describe the uncertainty

of the soil moisture background. The variance of each model soil

moisture layer is assumed to be dependent on the water holding

capacity (WHC), defined as the difference between soil moisture

at field capacity (wfc) and wilting point (wwp). This means

that the background error has a horizontal dependency as WHC

depends on spatially variable soil texture. In H-TESSEL the

WHC varies between 0.151m3m−3 for loamy texture-type soils

to 0.396m3m−3 for organic soils. It is also assumed that errors

in the top layer are more sensitive to precipitation and forcing

errors. Thus, the background error is simply defined as being

proportional to 10%, 5% and 5% of the WHC for the top, medium

and deepest layers of the soil, respectively. This is equivalent to

assuming the model soil moisture errors vary between 1.1 mm for

loamy soils to 2.8 mm for organic soils integrated over the top 7

cm of the top layer, or between 8.1 mm and 21.2 mm integrated

over the top meter of soil. If the background error was maintained

constant as is done in operations (1% volumetric error) this would

be equivalent to considering the error to vary from 0.11 mm to

0.31 mm for a medium type soil and for the top soil layer, or from

1.51 mm to 4.39 mm for the root-zone. This would mean a clearly

more conservative approach, as the background error would be

significantly reduced giving more weight to the model first guess.

Finally, the full operational observing system was used for the

upper air analysis, in order to provide the best possible quality of

the atmospheric and related land surface conditions for the surface

integrations.

2.4. Description of experiments

Six experiments of a duration of five months each, spanning

from 1 May to 30 September 2012, and six more covering

the same period but in 2013, were run. These years and this

season was selected because SMOS TB reprocessed data were

available at that time and because the Northern Hemisphere

evapotranspiration rates are stronger during this period of the

year, leading to a stronger sensitivity to the assimilated data

both in the soil and the atmosphere. The first experiment (SLV)

assimilates 2 m temperature and 2 m relative humidity pseudo-

observations from synoptic stations at synoptic times (00, 06, 12
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and 18UTC), in assimilation windows of 12 h, which is similar

to the assimilation window used in the ECMWF atmospheric 4D-

Var system. An open loop experiment (OL) was also used, i. e., an

experiment where the soil moisture analysis step is skipped, and

thus the soil moisture state evolves in time with the atmospheric

forcing providing the only constraint for the land-surface model.

The other four experiments used a combination of screen level

variables and remote sensing data, as follows:

• SMOS; Assimilates only SMOS TB,

• ASCAT; Assimilates only ASCAT soil moisture index

retrievals,

• SMAS; Assimilates SMOS TB and ASCAT soil moisture

index retrievals,

• SLVSMAS; Assimilates all sources of data, i.e., 2 m

temperature and 2 m relative humidity, SMOS TB and

ASCAT soil moisture retrievals.

The first 15 days of experimentation were discarded from the

evaluation as they were considered as a spin-up period to reach

hydrological balance, since the system may take time to adjust to

a new observation type. The experiments were run at global scale

and the model horizontal resolution was set to spectral truncation

TL511, approximately 40 km.

The components of the B error matrix in the experiments above

depend on the soil texture and the depth of the soil layer. This is

different from the operational configuration, in which background

variances are set to a fixed value of σ2(SM) = 0.012 m3m−3 for

all dimensions. In order to study the sensitivity of the forecast skill

to this new definition of the B error matrix, the SLV and SMOS

experiments were repeated in 2013 but using the operational

B fixed matrix. Results are presented in section 3.7. Table 1

summarizes all the experiments carried out in this study.

2.5. Evaluation strategy

The quality of the soil moisture analysis of each experiment

was evaluated by comparing the analyses to independent in situ

observations available through the International Soil Moisture

Network (ISMN) database. Available observations from the

following networks were used:

• 12 automated weather stations of the SMOSMANIA

network in the South-West of France (Calvet et al. (2007)),

• 177 stations belonging to the NRCS-SCAN network in the

US (Schaefer et al. (2007)),

• 114 stations of the U.S. Climate Reference Network from

the National Oceanic and Atmospheric Administration’s

National Climatic Data Center (USCRN NOAA’s NCDC,

(Bell et al. (2013))),

• 19 stations from the REMEDHUS network, in the Duero

Basin of Spain (Martinez-Fernandez and Ceballos (2003)).

The best spatial coverage is found in the US. In this evaluation

exercise, in situ data are considered the ground ”truth”, despite

in situ observations being affected by errors, depending on the

method used to provide measurements and representativeness

errors. We refer the reader to Dorigo et al. (2011) for more

information on each network. The metrics selected to evaluate

the analyses are the correlation time series coefficient (R) and the

unbiased Root Mean Square Difference (ubRMSD). The latter is

obtained after removing the (static) long term mean bias between

simulated soil moisture and ground station observations. These

metrics were applied to both the surface soil moisture (top 7 cm

of soil) and the root-zone (0-100 cm of soil), the latter being the

variable of interest for most hydrological and climate applications,

as it controls processes such as the evapotranspiration. In order

to avoid stations with a large seasonal amplitude artificially

increasing the correlation time series coefficient, the anomaly

correlation (an R) was also computed by removing the soil

moisture climatology from simulations and observations. The

difference from the mean was produced for a sliding window of

five weeks (if there are at least five measurements in this period),

and the difference scaled to the standard deviation.

For the root-zone, the averaged vertical value of in situ

observations at 5, 10, 20, 30, 50 and 100 cm over the SCAN and

USCRN networks in the US was compared to the averaged soil

moisture analyses of the three first layers of the soil (0-100 cm),

weighted by the layer thickness. For the SMOSMANIA network

the procedure was similar, but observations are only available up

to a depth of 30 cm. However they are representative of the root-

zone (Albergel et al. (2009)). The results are presented in the right

panel of Table 2. Note that an R was computed only for the top

soil moisture layer, as it provides information on the short term

variability, which is less pronounced in the root-zone. In addition,

the skill of the land surface model to predict soil moisture up

to 5 days ahead with an initial state resulting from the soil

moisture analysis step was also evaluated through comparison to

observations of the USCRN network. The soil moisture validation

database was harmonized using the p-value test (a measure of the

correlation significance). Only cases where the p-value was below

0.05 (i.e., 95% of probability that the correlation coefficient is

not a coincidence) for the analysis were retained. Stations with

non significant R values were excluded from the computation of

the network average metrics. Confidence intervals were provided

using the Fisher Z transform as in Draper et al. (2012) and

Albergel et al. (2013).

The sensitivity of temperature and humidity at screen

level (cooling or warming) to the new analyses was also

investigated and the forecast error of these variables evaluated

by comparing to their own analysis. In addition, four of the

lowest atmospheric pressure levels (700, 850, 925 and 1000 hPa)

were selected to evaluate the influence on the skill of forecasted

atmospheric variables, including air temperature, humidity, wind

and geopotential. The metrics investigated were the forecast

error and anomaly correlation, both normalized by the control

experiment. The operational analysis was used as a reference,

since this is the best possible analysis available. Statistical

significance, where given, is based on Geer (2016). Error bars

come from a Student’s T-test on the paired differences with

two additional corrections: autocorrelation correction based on

autocorrelation tables derived from Geer (2016) and an the

autogressesion AR(2) model and multiplicity correction of Geer

(2016), which is a Sidak correction assuming 4 independent tests

per experiment.

3. Results

3.1. Observations used in the analysis

Fig. 2a shows the number of SMOS TB observations, in X

polarization, available for assimilation in the ECMWF SEKF,

after applying the quality control and thinning steps explained in

section 2.1.3. As expected, due to the polar orbit of the SMOS

satellite with shorter revisit time at higher latitudes, the number

of observations increases with the latitude in the boreal summer

months, with few areas covered by snow and ice. This figure

also shows stripes that are due to some areas missing part of a

cycle as a consequence of using only the alias-free zone, but it

also reflects the winter conditions of the Southern Hemisphere,

rejecting observations in New Zealand, South-East Australia,

South Africa and Patagonia. The very low number of observations

available in the Andes, Alps, Himalayas and some areas of the

Rockies are due to filtering steps based on snow, frozen soils
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and high orography. Fig. 2b shows the standard deviation of

the background departures using these observations. The largest

variability is found either in areas very sensitive to soil moisture

variations, with large annual amplitude of TB, such as the Great

Plains of North-America, or in parts of the Middle-East and Asia,

the latter two of which are often strongly impacted by RFI. These

observations are in addition subjected to various SEKF quality

checks. Fig. 2c shows the percentage of SMOS observations that

were assimilated after the SEKF quality checks. It is observed

that the SEKF filters remove up to 90% of observations in the

Middle-East or some zones of China, due to large disagreements

with the simulated TB by CMEM. This reflects the limitations of

the RFI flagging used to detect contaminated measurements. The

SEKF quality control acts as an additional filter preventing poor

observations from influencing the analysis. Fig. 2c also shows

that a lot of observations were removed in very high latitudes,

especially in Canada, where the CMEM model TB is not accurate

in a mixed soil layer of liquid water and snow. The map of the

standard deviation of the background departures after the SEKF

filters were applied (Fig. 2d) shows significantly more realistic

values compared to Fig. 2b. They can be as large as 10 K,

showing areas that potentially contain rich information on soil

moisture variations. The number of SLV observations available

for the soil moisture analysis, after the SEKF quality control,

is shown in Fig. 3a. As explained in section 2.1.1, prior to use

in the SEKF, a 2D-OI scheme is applied to 2 m temperature

and 2 m relative humidity observations, making SLV pseudo-

observations available at each land grid point and each day at

00, 06, 12 and 18UTC. This means approximately 240 pseudo-

observations are available for 30 days at each model grid point

(Fig. 3a). The SEKF rejects some of these pseudo-observations

in areas with high information content of soil moisture, such as

the Sahel transition zone, where indeed the SMOS observations

show very good sensitivity. In Fig. 3b, much less ASCAT soil

moisture retrievals are available for assimilation, a maximum of 2

observations per assimilation window. Tropical forests and high-

density vegetation mask C-band observations, and this is reflected

in Fig. 3b, with no retrievals available in these areas.

In summary, the adjustment of the background soil moisture

value over the whole assimilation period will be influenced by

a larger number of observations (and pseudo-observations) of air

temperature and air humidity at screen level. However when a grid

point is located in the satellite swath of SMOS, the number of

SMOS TB observations will dominate over screen observations

and ASCAT retrievals (six observations [three angles and two

polarisations] vs. four screen level observations or two ASCAT

retrievals) in the soil moisture analysis.

Fig. 2 about here

Fig. 3 about here

3.2. Soil moisture increments

Fig. 4 about here

Fig. 4 shows that the daily averaged increments of the SMOS

and ASCAT configurations are, for the top layer, numerically

comparable to those of the SLV experiment. However, one should

bear in mind that contrary to the screen level variables, the

assimilated SMOS TB and ASCAT L2 retrievals are assimilated

only over the satellite track in 12 h windows. Hence, the daily

averaged increments of ASCAT, SMOS and SMAS over all land

grid points are reduced by those land grid points without any

satellite observations, where increments will be zero. Therefore,

in relative terms, the top soil layer increments of the SMOS

and ASCAT experiments are larger than those of SLV. This is

what makes remote sensing data very useful for adjusting model

soil moisture at global scale, as they show strong sensitivity to

soil moisture variations in the top first cm of the soil layer.

For the top layer SMOS has a clear trend to, on average,

dry the soil of a wet biased model (see e.g. the soil moisture

evaluation of Albergel et al. (2012)). In the ideal case and after

bias correction, the analysis step should correct for random model

errors. However, the drying due to SMOS looks rather systematic.

As was shown in section 2.2, this partly reflects the limitations of

the SMOS CDF correction coefficients for matching model-based

and observation-based statistical moments for a period different

to the period used to compute the coefficients, particularly since

this a period where the quality of the observations has evolved

notably (de Rosnay et al. 2018). Yet, the bias correction makes

the SMOS drying moderate. After this drying at the analysis

step, the model bounces back during a short forecast (see eq.4)

towards a wetter soil state necessary to keep the screen level

errors at a minimum, generating the averaged overall continuous

drying. The drying occurs in areas mainly identified as ’hot spots’,

such as the Great Plains of the US, the Sahel, areas of Eurasia

and Eastern Australia (see the time-averaged top soil moisture

increments in Fig. 5c). As will be presented in section 5, the soil

drying is in good agreement with in situ soil moisture observations

in the US. The situation for ASCAT is the opposite, with the

assimilation of ASCAT soil moisture retrievals tending to add

water to the soil over larger areas (Fig. 5b). The time series of

the standard deviation of the SLV mean increments is nearly 50%

larger than that of SMOS and ASCAT, which is due to larger

absolute increments, as shown in Fig. 6. Their temporal and spatial

distribution is also more variable in the SLV experiment, because

it tries to keep screen level errors at a minimum. In the second and

third land model layers, SMOS also tends to dry the reservoir, and

is consistent and of similar magnitude to the ASCAT increments

(see Fig. 4b and c). Also, for both experiments, increments for the

third layer integrated over its thickness (72 cm) are relatively small

compared to those of SLV, reflecting the small penetration depth

of low frequency microwaves. Although screen temperature and

humidity observations also reduce in sensitivity with depth, they

still show larger sensitivity than satellite data through perturbed

forecasts of soil moisture.

Fig. 5 about here

Fig. 6 about here

3.3. Soil Moisture evaluation

Table 2 presents the ubRMSD, R and an R of the experiments’

analyses compared to ground observations for several networks

with available data, both for the surface layer (top 7 cm of the

soil) and the root-zone (top first meter of soil for US networks or

top 30 cm for the SMOSMANIA network). In order to check for

consistency, averaged values are shown separately for the period

May-September 2012 and 2013. The validation was carried out

on a daily basis and only at the analysis time, i.e, each day the

mean in situ soil moisture value for each station at 00, 06, 12 and

18UTC was computed and compared to the corresponding daily

mean analyses at the same four synoptic times. The number of

stations with statistically significant values for all the period of

study (according to the p-value test) is also included in Table 2.

Table 2 about here

For surface soil moisture and for all the evaluation networks

and both years under study, the analysis of the experiments

assimilating only satellite data (SMOS, ASCAT and SMAS)
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obtained the best correlation with in situ averaged values. In

particular, SMOS analyses were consistently the best over the

REMEDHUS, SMOSMANIA and USCRN networks for both

2012 and 2013. Only the combination of SMOS and ASCAT

data (SMAS experiment) obtained the best correlation in 2012

over the SCAN network. This result highlights the added value

of remotely sensed data for obtaining information on the relative

temporal variability of the shallow soil moisture time series, and

in particular of passive L-band microwaves given their larger

sampling depth and lower sensitivity to vegetation. The analyses

of the SLV experiment had the poorest correlation with in

situ data. The fact that correlation values for SLV are worse

than those of the OL evidences the problems of using screen

observations for realistically adjusting soil moisture over a long

period in a system originally designed to make the soil state

respond to errors of temperature and humidity at screen level. The

uncertainty estimation calculated through the Fisher Z transform

is larger for the SMOSMANIA and REMEDHUS stations, as the

number of stations with significant correlation values is much

reduced compared to the North American networks. The results

for the anomaly correlation show a lower skill of the analyses

in catching the short term variability, as the seasonal cycle does

not influence this metric, but they also show quite similar results

to the correlation coefficient, i.e., the ability of satellite data to

provide dynamic information of soil moisture more accurately

than screen level observations. The exception is the REMEDHUS

network. It should be noted that for soil moisture validation

the period under study is relatively short, and therefore the

confidence intervals of the correlation metrics calculated through

the Fisher Z transform are relatively large, making the results

mostly statistically non significant. The ubRMSD results show

relatively small differences among the experiments, mostly below

0.01m3m−3. The assimilation of SMOS and/or ASCAT data

reduces the ubRMSD by values up to 0.044m3m−3, consistently

showing the lowest values for the SMOS, ASCAT and SMAS

analyses, although they alternate depending on the network and

the year. In general, the SLV experiment obtained the largest

values of ubRMSD, up to 0.059m3m−3, showing again the

difficulties of the system in keeping realistic values of soil

moisture when it relies only on screen temperature and humidity.

For the root-zone, only observations in USCRN, SCAN and

SMOSMANIA networks were available. However, one should

bear in mind that this validation exercise is not trivial, as in situ

observations at only 5 different depths are used to sample the first

meter of soil. In general the correlation values are better than for

the top layer because variability is lower at deeper depths, and

these values are as high as 0.9. While in general the root-zone

evaluation still provides the best correlations for the experiments

assimilating satellite data, the differences to the OL are reduced.

This is because the soil moisture information contained in SMOS

and ASCAT data is mainly sensitive to the top few cms of the soil,

and the influence (and increments) in deeper layers is reduced

through perturbed forecasts. The SLV analyses also obtain the

worst correlation values, suggesting a degradation of soil moisture

when only screen information is assimilated. The ubRMSD is

quite similar for all experiments, in all cases below 0.04m3m−3

as a result of the lower variability of the water content in the root-

zone reservoir.

3.4. Soil moisture forecasts

The evaluation of the soil moisture forecasts of OL, SLV, SMOS

and ASCAT experiments against in situ stations from the USCRN

network is shown in Fig. 7. Each 5-day forecast was started at

00UTC and initialized from the same day 00UTC surface analysis,

and the forecasts were compared to the observation at the forecast

times. Fig. 7 shows the correlation coefficient and the ubRMSD

of the forecasts compared to in situ data at five leading times, 24h,

48h, 72h, 96h and 120h. As expected, the quality of the forecasts

decreases with lead time (lower correlation coefficient and greater

ubRMSD) and the correlation and biases tend to converge for

longer lead times. The latter also shows that the memory of

the better skill shown by the SMOS soil moisture forecasts, in

terms of correlation with in situ stations, is maintained at least

up to day 5, just ahead of OL and ASCAT. The comparison

also shows that SLV has the weakest skill for all lead times

and both metrics, which is consistent with the results analysis of

the previous section. For the first 48 h, none of the experiments

assimilating remote sensing data outperform the OL in terms of

ubRMSD.

Figure 7 about here

3.5. Screen level variables and forecast error sensitivity to

analyses

Fig. 8 shows the sensitivity of 2 m temperature forecasts to the

soil moisture analyses of SLV, ASCAT (both at 24 h forecasts)

and SMOS (at 12 h and 24 h forecasts). The reference experiment

is the OL. As expected from section 3.2, the larger absolute

increments of soil moisture in SLV have the largest influence

on the forecasts of 2 m temperature, cooling the atmosphere in

large parts of Africa and Australia, Central Asia, Central North-

America and Brazil, most of them at night-time, which is in good

agreement with the top layer soil moisture increments of Fig. 5a.

This cooling can be even larger than 2 K in some areas due to a

warm summer model bias. On the contrary, warming patterns are

observed in several parts of America, Europe and China. These

complex large scale patterns of near surface air temperature

biases vary depending on the season and the lead forecast time.

Their origin is multiple and ranges from such diverse factors

as an overestimation of turbulent mixing in a cloudy boundary

layer to an overestimation of the thermal coupling between the

surface and the uppermost surface layer. They are currently under

investigation at ECMWF (Haiden et al. 2018). In comparison to

SLV assimilation, the small adjustment of the soil state produced

in the ASCAT and SMOS experiments has a weaker effect on 2 m

temperature forecasts at 24 h. ASCAT has a weak cooling effect

in most areas, which is consistent with the slight positive soil

moisture increments of the top layer. In contrast, the soil drying

due to SMOS has a clear warming effect on air temperature that

is more marked during daytime. An interesting area is the Great

Plains of Northern America, where an opposite signal is found

between SLV and remote sensing data assimilation (warming the

near-surface temperature). In this area the analyses of ASCAT

and SMOS show better agreement with in situ data (see section

3.3). Fig. 9 shows the equivalent figures for the mean absolute

forecast error differences. Negative values mean that the absolute

difference between the forecast and the own experiment analysis

is reduced compared to the OL, averaged over the period of study.

The latter is a sign of smaller corrections to the background and

better forecasts. As observed in Fig. 9a, SLV produces on average

the largest reduction in 2 m temperature forecast errors. Despite

a better match between soil moisture analyses and ground station

data, the assimilation of remote sensing data has a very weak

effect on screen level temperature. The same results are obtained

for 2 m relative humidity forecasts (not shown).

Figure 8 about here

Figure 9 about here
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3.6. Atmospheric forecast scores

Fig. 10 shows the root mean square (RMS) forecast error of air

humidity normalized by the open loop reference RMS error. In

total 276 samples were averaged using both 00UTC and 12UTC

forecasts. Negative values indicate an increase of skill in the

prediction of a variable with respect to the OL prediction, whereas

positive values indicate reduction of forecast skill. Error bars,

based on Geer (2016), are overlapped to the averages and those

crossing the zero line indicate non-significance from the statistical

point of view. The main impact of the assimilation is found very

close to the surface whereas the impact is reduced higher in

the troposphere, progressively losing statistical significance.

Indeed no impact at all is observed for heights above 700 hPa

(not shown). This result was expected, as the primary effect of

assimilating the data of these experiments is the change of the

soil moisture state. In turn, the influence in the troposphere is

complex and is not only driven by soil moisture changes, but by

many other factors such as the meteorological conditions or the

parametrized coupling strength between continental masses and

the lower troposphere, making the assimiliation of SMOS TB
difficult to evaluate.

The Northern Hemisphere extra-tropics, with the largest

continental masses, is the zone where the assimilation of

observations sensitive to soil moisture has the largest impact.

In this region, adding screen level data to the control vector

leads to a statistically significant increase in the air humidity

prediction skill, up to 3% in the first 48h, whereas this value can

be up to 1.5% in the Southern Hemisphere. Assimilating only

SMOS data has a small statistically significant degradation on

the Northern Hemisphere air humidity of up to 0.3% for the first

3 forecast days, whereas it has a statistically positive significant

improvement up to 0.7% in the Southern Hemisphere. The main

degradation signal comes from the Great Plains (not shown),

which indeed is a region where the SMOS data assimilation has

shown to be very positive for the initialization of the soil state

when evaluated against independent in situ soil moisture data.

This is also the region showing discrepancy between soil moisture

increments (Fig 4a) and screen level temperature errors (Fig. 8a)

for the SLV experiment. This points to an IFS model deficiency in

respect to how surface fluxes respond to the soil moisture content.

In this region an improvement of soil moisture by SMOS data

assimilation is achieved at the expense of degrading atmospheric

forecasts. Increasing realism of one surface process can leave the

model exposed to errors in other associated processes. Research

at ECMWF is ongoing to improve the realism of the IFS model

surface layer and surface fluxes. For the ASCAT experiment

the impact is in the opposite direction to SMOS but with even

lower magnitude, whereas the compensating effect of combining

ASCAT and SMOS data is reflected in more neutral scores in the

SMAS experiment. Adding all observations to the control vector

(SLVSMAS) has a very slight, but not statistically significant,

positive effect on the first 48 h compared to the SLV scores.

The situation in the Tropics is more neutral. Similar plots for

air temperature can be found in the appendix (Fig. 14), with

the main difference that scores are very neutral for the Southern

Hemisphere extra-tropics. For SLV significant positive impact

was also found in the Tropics and Northern Hemisphere extra-

tropics for the low-level cloud cover, mean sea level pressure and

geopotential height (see Figures 15, 16 and 17 in the Appendix).

Figure 10 about here

3.7. Operational vs. 3D-B background error matrix

The results presented above are based on experiments where a

3D-B matrix was specified for the model background error (as

described in section 2.3.4). This is different to the operational

set up where the B matrix is constant. It is important to test

the implications of this change with respect to the operational

configuration. Fig. 11 compares the scores of air temperature

forecasts of the SMOS and SLV assimilation experiments with

the equivalent experiments but using the static B matrix as used in

operations (SLV(Bfix) and SMOS(Bfix)). The reference here is

the SLV 3D-B experiment, as described in section 2.4.

Figure 11 about here

The significant negative values obtained by the black curve

indicate that, by using a static B matrix, a small but significant

increase in the skill of air temperature forecasts of approximately

0.5% is obtained up to day 3. The positive values of the red

and green lines indicate that, compared to SLV, assimilating

only SMOS TB degrades the skill of air temperature forecasts.

Although not statistically significant, slightly better results are

obtained by the SMOS(Bfix) experiment. This increase in skill is

only observed in the Northern Hemisphere. Air humidity follows

similar patterns (not shown). The net effect of specifying a 3D-B

matrix is a decrease of the weight given to the background error

(see discussion in section 2.3.4), and hence an increase of the

gain component. For instance, for the B-fix error matrix the 2

m component of the Gain matrix varies between -0.12 and 0

m3m−3K−1, whereas it ranges from -0.49 to 0 m3m−3K−1 for

the 3D-B error model. Even if in absolute terms the gain values

are small, they are significantly larger in the 3D-B configuration

and consequently produce much larger increments as shown in

Fig. 12. This result suggests that despite adding realism to the

soil moisture background error, if in the ECMWF soil moisture

analysis the weight assigned to the model background is reduced,

then no extra benefit in predictive skill is obtained at longer

periods. And this is true for the assimilation of only SMOS data

or only screen level variables.

Figure 12 about here

4. Discussion

This is the first time that L-band TB data from a remote sensing

platform have been implemented and used in the ECMWF land

data assimilation scheme to constrain the temporal and spatial

evolution of a very heterogeneous variable such as soil moisture.

The challenges in the implementation have been multiple,

including the data management (Muñoz-Sabater et al. (2012)),

the varying uncertainty of the observations (Muñoz-Sabater et al.

(2014b)) and the optimal use of this information in the data

assimilation system (Muñoz-Sabater et al. (2018)). There are

also other challenges associated with modeling, including

the calibration of the radiative transfer model to accurately

simulate TB under such diverse land conditions and limited

soil information, as well as the consistency with boundary

layer parameterization and coupling land-atmosphere aspects.

This paper has shown the feasibility of implementing and

assimilating SMOS data in the IFS, but it also exposed the many

other challenges associated. In particular we acknowledge the

complexity of making efficient use of these observations in a

land surface model coupled with an atmospheric model, where

the focus during the last few decades has been on atmospheric

forecast skill. Soil moisture has been used as a sink variable to

absorb errors in the model surface layer formulation.

The challenges involved also stand out when comparing the

use of SMOS TB with the use of indirect screen level variables in

the soil moisture analysis; the left panel of Fig. 13 shows the ratio

of variances between SMOS TB observations and soil moisture
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background error values projected into observation space through

the observation operator (HBHT ), as a function of the linearized

observation operator. The right panel is the equivalent for 2

m temperature. The red curve corresponds to a soil moisture

background error of σ(SM) = 0.01m3m−3 (as currently set up

in operations). The observation error for SMOS TB has been

fixed to a typical value of 15 K in our distribution, and 1 K for 2

m temperature. A grid point showing good sensitivity of TB to

soil moisture variations has typical values of H=150K/m3m−3.

For the latter and σ(SM) = 0.01m3m−3, the ratio of variances

is approximately 100, whereas it is approximately 4000 for 2 m

temperature with a typical H=1.5K/m3m−3. This is equivalent

to assuming that, under these conditions, the observation error of

2 m temperature observations is approximately 65 times larger

than the background error, whereas it is just 10 times for SMOS

TB. If the background error is doubled (tripled), then the ratio

is 33 (22) for 2 m temperature and 5 (3.3) for SMOS TB. This

simple exercise shows that the relative weight assigned to SMOS

TB observations in the analysis is larger than the relative weight

given to screen level observations. To have equivalent weights

in the analysis (under the previous conditions), the SMOS TB
error should be increased to almost 100 K, or the error of 2 m

temperature decreased to 0.15 K. These values show that, the

fact that SMOS observations are very sensitive to soil moisture

variations (with large Jacobians components compared to 2 m

temperature) also makes them contribute with a larger relative

weight to the analysis. Therefore, despite the rich information

content of soil moisture embedded in TB, one has to be very

careful when assimilating this type of data in an atmospheric

model.

Figure 13 about here

There is no technical limitation preventing the assimilation of

more incidence angles, however in our study the CDF monthly

linear coefficients were optimized only for 30◦, 40◦ and 50◦, and

X and Y polarizations. These angles are also less affected by

angular noise and therefore of better quality (Muñoz-Sabater et al.

(2014b)). Besides, at intermediate incidence angles more data are

available than at lower or larger angles, and they are separated

at equal intervals of 10◦. Yet, the combined use of these three

angles also helps the radiative transfer model to account for and

discrimate the vegetation effect in the microwave signal. In our

assimilation experiments, another consequence of such a system is

that the number of SMOS observations is so large that for a given

grid point they can easily outnumber other conventional sources

used for soil moisture analysis. Thus, again one has to be very

careful when using these data in the assimilation system.

A final and non negligible challenge is the RFI contamination

from sources emitting in the protected L-band frequency (1400-

1427 MHz), which can substantially corrupt the measurements

and render them unusable in some parts of the world. Although

the SMOS TB used in this study for assimilation contains a flag

indicating substantial or severe contamination by RFI, it is not

able to capture small sources of just a few Kelvin, which may be

enough to wrongly interpret the signal as episodes of rainfall or

higher evapotranspiration than in reality. Yet, the SEKF quality

control is able to get rid of many of these small sources of RFI, as

shown in Fig. 2c, but surely some contaminated observations will

still be assimilated and will influence the accuracy of the analyses.

A further study focusing on this aspect is recommended.

5. Conclusions

This paper has three main objectives: 1) to demonstrate the

feasibility of assimilating direct TB in the ECMWF operational

land surface data assimilation system, i.e., complementing the

routine assimilation of screen level variables and ASCAT soil

moisture retrievals, 2) to investigate the added value of this new

type of observation for providing more accurate soil moisture

states, and 3) to evaluate the meteorological impact over relatively

long-time periods.

The first objective has involved complex technical challenges

as discussed above. Based on the data flow and results obtained in

this paper, the feasibility of incorporating SMOS data into the soil

moisture analysis has been demonstrated.

For the second objective, soil moisture analyses and forecasts

were compared to in situ data from different networks in the

US and Europe. The results of the evaluation exercise have

shown that the best matching of analyses and forecasts to ground

data was achieved when SMOS TB were assimilated alone. The

improvement is more pronounced for the top layer where the

satellite signal carries direct information on soil moisture. With

the bias correction technique applied to the satellite data of this

study and setup of these experiments, the adjustment of the soil

moisture background state was, on average, small over the period

under investigation. This led to the Open Loop experiment also

obtaining relatively good skill on soil moisture states. SMOS data

tend to globally dry the soil of the ECMWF land surface model.

This is consistent with a wet biased model as documented in

previous studies. Although the ASCAT increments for the top

soil layer showed the opposite sign to SMOS TB, they were

quite small and therefore they still compared well to in situ

observations. Larger absolute increments were obtained due to

the assimilation of screen level variables, which is a consequence

of having 2D gridded fields of 2 m temperature and 2 m relative

humidity (generated by an OI scheme) available at each synoptic

time. The adjustment of the soil states by screen variables has as

its main objective keeping air temperature and humidity errors at a

minimum. The latter is very beneficial for atmospheric variables,

as demonstrated by very good scores of meteorological variables

such as air temperature and humidity, low-cloud cover or mean sea

level pressure, when compared to an open loop. However, it was

demonstrated that this was achieved at the expense of degrading

the soil moisture state, although strictly speaking the relatively

short evaluation period makes this degradation statistically non-

significant. Therefore, contrary to the theoretical idea that an

improvement of the soil moisture state would be followed by

an improvement of the lower atmospheric state, the model’s

reality is different and more complex. The previous statement

would be true if the physical coupling processes between root-

zone moisture and the near surface atmosphere were realistically

simulated in the IFS model. On the contrary, they are related

through a number of nonlinear equations and parameterizations,

many of which use coefficients that have been tuned at local

scale from field or regional-scale experiments. The application

at global scale introduces errors which are reflected in poorer

soil moisture analyses. The focus has not been on obtaining

a realistic soil moisture state. The consequence is that if the

only source of assimilated data is remote sensing data, then no

significant improvement is seen in near-surface temperature or

relative humidity. Hence our current system demands the use of

screen level variables.

Our study has demonstrated the complexity of a system

that was originally designed to use soil moisture as a tuning

parameter to obtain the right upwelling fluxes. The family of

ESA Earth explorer satellite missions addresses key scientific

challenges identified by the science community and demonstrates

breakthrough technology in observing techniques. SMOS has

demonstrated its ability to bring unprecedented information

on soil moisture. It has also been tremendously useful for

understanding the complexity of assimilating direct remote
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sensing data into a surface scheme coupled to the atmosphere,

but also to point to where future research should be directed, in

particular where the interaction between land and atmosphere in

the ECMWF forecast model can be improved.
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expt name SLV ASCAT SMOS 2012 2013 B-fix 3D-B

OL X X

SLV X X X X

ASCAT X X X X

SMOS X X X X

SMAS X X X X X

SLVSMAS X X X X X X

SLV(Bfix) X X X

SMOS(Bfix) X X X

Table 1. Experiments carried out in this study; The left column is the name of the experiment and the top row shows the type of assimilated observation (screen

level variables (SLV), ASCAT soil moisture retrievals and/or SMOS TB), the year of experiment (2012 and/or 2013) and the definition of the background B

error covariance matrix (static variances (Bfix) or depending on the soil texture and depth (3D-B)).
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surface root-zone

ubRMSD R an R N ubRMSD R N

REMEDHUS

OL
0.053 0.72 (0.12) 0.42 (0.16) 17

0.049 0.72 (0.12) 0.50 (0.12) 15

SLV
0.052 0.74 (0.08) 0.56 (0.16) 17

0.049 0.68 (0.07) 0.55 (0.12) 15

ASCAT
0.045 0.69 (0.12) 0.45 (0.13) 17

0.047 0.68 (0.10) 0.42 (0.09) 15

SMOS
0.049 0.77 (0.12) 0.54 (0.13) 17

0.050 0.73 (0.14) 0.46 (0.09) 15

SMAS
0.048 0.72 (0.09) 0.49 (0.13) 17

0.046 0.71 (0.05) 0.42 (0.10) 15

SLVSMAS
0.055 0.74 (0.08) 0.48 (0.11) 17

0.048 0.66 (0.07) 0.45 (0.11) 15

SMOSMANIA

OL
0.049 0.78 (0.08) 0.62 (0.11) 11 0.030 0.85 (0.09) 11

0.049 0.84 (0.08) 0.62 (0.14) 10 0.032 0.89 (0.06) 10

SLV
0.048 0.75 (0.12) 0.61 (0.10) 11 0.029 0.82 (0.08) 11

0.049 0.83 (0.11) 0.55 (0.14) 10 0.031 0.89 (0.06) 10

ASCAT
0.047 0.80 (0.06) 0.64 (0.15) 11 0.035 0.84 (0.06) 11

0.052 0.85 (0.08) 0.59 (0.12) 10 0.034 0.90 (0.06) 10

SMOS
0.044 0.80 (0.09) 0.65 (0.12) 11 0.031 0.86 (0.12) 11

0.049 0.86 (0.09) 0.62 (0.10) 10 0.032 0.90 (0.07) 10

SMAS
0.046 0.80 (0.07) 0.65 (0.12) 11 0.031 0.86 (0.08) 11

0.050 0.84 (0.10) 0.62 (0.12) 10 0.032 0.90 (0.06) 10

SLVSMAS
0.047 0.74 (0.09) 0.64 (0.14) 11 0.031 0.89 (0.09) 11

0.047 0.80 (0.09) 0.59 (0.11) 10 0.031 0.88 (0.10) 10

USCRN

OL
0.049 0.68 (0.04) 0.62 (0.04) 63 0.030 0.80 (0.06) 63

0.052 0.70 (0.06) 0.63 (0.03) 61 0.027 0.78 (0.05) 61

SLV
0.054 0.64 (0.08) 0.56 (0.04) 63 0.031 0.73 (0.06) 63

0.055 0.66 (0.03) 0.59 (0.05) 61 0.029 0.68 (0.08) 61

ASCAT
0.047 0.68 (0.05) 0.62 (0.06) 63 0.030 0.77 (0.05) 63

0.050 0.72 (0.04) 0.61 (0.04) 61 0.029 0.77 (0.06) 61

SMOS
0.048 0.72 (0.04) 0.63 (0.04) 63 0.030 0.81 (0.07) 63

0.049 0.73 (0.04) 0.65 (0.03) 61 0.026 0.80 (0.06) 61

SMAS
0.050 0.69 (0.04) 0.63 (0.04) 63 0.031 0.79 (0.05) 63

0.049 0.72 (0.04) 0.64 (0.06) 61 0.027 0.79 (0.06) 61

SLVSMAS
0.054 0.65 (0.06) 0.57 (0.06) 63 0.029 0.74 (0.07) 63

0.056 0.66 (0.04) 0.61 (0.05) 61 0.031 0.73 (0.04) 61

SCAN

OL
0.054 0.61 (0.05) 0.59 (0.04) 80 0.033 0.63 (0.14) 80

0.053 0.68 (0.03) 0.60 (0.04) 107 0.029 0.71 (0.06) 107

SLV
0.056 0.59 (0.05) 0.51 (0.06) 80 0.032 0.54 (0.09) 80

0.059 0.64 (0.04) 0.60 (0.04) 107 0.031 0.66 (0.06) 107

ASCAT
0.054 0.62 (0.05) 0.59 (0.04) 80 0.032 0.60 (0.11) 80

0.052 0.70 (0.03) 0.60 (0.06) 107 0.029 0.70 (0.04) 107

SMOS
0.054 0.62 (0.05) 0.58 (0.03) 80 0.031 0.62 (0.05) 80

0.053 0.70 (0.03) 0.62 (0.04) 107 0.028 0.73 (0.04) 107

SMAS
0.053 0.64 (0.05) 0.61 (0.06) 80 0.032 0.62 (0.11) 80

0.052 0.67 (0.04) 0.62 (0.03) 107 0.026 0.71 (0.04) 107

SLVSMAS
0.058 0.59 (0.05) 0.54 (0.06) 80 0.030 0.58 (0.07) 80

0.055 0.66 (0.04) 0.60 (0.04) 107 0.030 0.68 (0.04) 107

Table 2. Network averaged unbiased Root Mean Square Error Difference (ubRMSD) (m3
m

−3), time series correlation (R) and anomaly correlation (an R)

between soil moisture analyses and ground observations. For each experiment, the top line is the average over the period May-Sept. 2012, and the second line

for the equivalent period in 2013. Values in parenthesis for R and an R represent the estimated uncertainty. Bold-face values are the numerically best scores for

each year and metric. N represents the number of stations with statistically significant values for all the period under study.
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Figure 1. Normalized distribution of SMOS TB observations minus equivalent CMEM simulations before bias correction (red curve) and after bias correction (blue curve)
for 40◦X (left) and 40◦Y (right).
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Figure 2. a) Number of SMOS TB observations in X polarization at 30◦, 40◦ and 50◦, after quality control and the filters applied in section 2.1.3, b) Standard deviation of

the background departures with observations used in a), c) Percentage of remaining assimilated SMOS TB observations after the SEKF quality control steps, d) Standard

deviation of the background departures with observations used in c). Values are calculated for a 30-day period in July-August 2013.
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Figure 3. Number of a) screen level observations (2 m temperature and 2 m relative humidity) and b) ASCAT soil moisture retrievals, available for analysis after the SEKF

quality control. Values are for the same 30-day period as Fig. 2.
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Figure 4. Time series of daily soil moisture averaged increments (top panel) and their daily averaged standard deviation (bottom panel) for the a) 0-7 cm, b) 7-28 cm and

c) 28-100 cm soil layers. The blue curve is for the SMOS experiment, red for ASCAT, green for SLV and black for SLVSMAS. Time series are shown for the period 1

June 2013 to 31 August 2013. Units are mm/day.
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Figure 5. Time-averaged soil moisture increments (in mm) from May-Sept 2013 for the a) SLV, b) ASCAT and c) SMOS experiments and for the top 7 cm of the soil.A
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Figure 6. Time-Averaged absolute soil moisture increments (in mm) from May-Sept 2013 for the a) SLV, b) ASCAT and c) SMOS experiments and for the top 7 cm of

the soil.A
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Figure 7. Time averaged correlation coefficient (left y-axis, black symbols) and ubRMSD (right y-axis, red symbols) between the soil moisture forecasts of OL (circles),

SLV (triangles), ASCAT (squares) and SMOS (diamonds) and in situ observations of the USCRN network. Values are an average over the periods 15 May to 30 Sept 2012

and 2013, combined.
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Figure 8. Sensitivity of 24 h screen level temperature forecasts (fc) to the soil moisture analyses of a) SLV, b) ASCAT, and to SMOS soil moisture analyses at c) 12 h

and d) 24 h forecasts. The reference experiment is the OL. The blue colour bar indicates cooling of 2 m temperature with respect to the reference experiment, and the red

colour bar indicates warming of 2 m temperature with respect to the reference experiment. The plots show averaged values over the period May-September 2012 and 2013

combined. Units are K.
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Figure 9. Screen level temperature absolute forecast error difference between the soil moisture analyses of a) SLV, b) ASCAT (both at 24 h) and SMOS at c) 12 h and

d) 24 h forecasts, and the OL reference experiment. The blue colour bar indicates reduction of forecast error (improvement) and the red colour bar indicates increase of

forecast error (degradation). The plots show averaged values over the period May-September 2012 and 2013 combined. Units are K.
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 Confidence range 95% with AR(1) inflation and Sidak correction for 20 independent tests
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Figure 10. Change in normalized RMS forecast error of the lower troposphere air humidity for the Southern Hemisphere extra tropics region (left column), Tropics (middle
column) and Northern Hemisphere extra-tropics (right column), and for the 700 hPa (top row), 850 hPa (second row), 925 hPa (third row) and 1000 hPa (bottom row)

pressure levels. Values are shown for up to 10 days forecast lead time. The black curve is for the SLV experiment, the red curve is for ASCAT, the green curve is for

SMOS, the dark blue is for SMAS and the light blue curve is for SLVSMAS. All the experiments above are compared to (and normalized by) the OL experiment. The

forecast period is from 15 May to 30 Sept 2012 and 2013, combined.
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, 1000hPa T: NH 20° to 90°, 1000hPa
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Figure 11. Change in Northern Hemisphere normalized RMS forecast error of air temperature at 1000 hPa pressure level for the period May-Sept 2013. The reference

experiment is SLV with 3D-B background error. The black curve is equivalent to SLV but with the constant B matrix as used in operations, the red curve is the SMOS

experiment with the 3D-B specification, and the green curve corresponds to the SMOS experiment with a constant B matrix.
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Figure 12. Daily averaged soil moisture increments obtained by assimilating only screen level variables, using a 3D-B matrix of the background error (red bars) and the

operational static B matrix (blue bars).
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Figure 13. Ratio of variances between SMOS brightness temperature observations and the soil moisture background values (left panel) and 2 m temperature observations

and the soil moisture background values (right panel). The red curve corresponds to a soil moisture background error of σ(SM) = 0.01m3m−3 (as currently set up in

operations), whereas in the blue and green lines the error has been doubled and tripled, respectively.
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15−May−2012 to 30−Sep−2013 from 258 to 278 samples.
 Confidence range 95% with AR(1) inflation and Sidak correction for 20 independent tests
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Figure 14. Change in normalized RMS forecast error of the lower troposphere air temperature for the Southern Hemisphere extra tropics region (left column), Tropics

(middle column) and Northern Hemisphere extra-tropics (right column), and for the 700 hPa (top row), 850 hPa (second row), 925 hPa (third row) and 1000 hPa (bottom

row) pressure levels. The RMS forecast error is shown for up to 10 days forecast lead time. The black curve is for the SLV experiment, the red curve is for ASCAT, the

green curve is for SMOS, the dark blue is for SMAS and the light blue curve is for SLVSMAS. All the experiments above are compared to (and normalized by) the OL

experiment. The forecast period is from 15 May to 30 Sept 2012 and 2013, combined.
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Figure 15. Change in normalized RMS forecast error of the tropospheric averaged low cloud cover for the Southern Hemisphere extra tropics region (left column), Tropics

(middle column) and North-Hemisphere extra-tropics (right column). The black curve is for the SLV experiment, the red curve is for ASCAT, the green curve is for

SMOS, the dark blue is for SMAS and the light blue curve is for SLVSMAS. All the experiments above are compared to (and normalized by) the OL experiment. The

forecast period is from 15 May to 30 Sept 2012 and 2013, combined.
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Figure 16. As Fig. 15 but for the mean sea level pressure.
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Figure 17. As Fig. 15 but for the geopotential height at 925 hPa.
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