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Abstract

This paper presents the European Centre for Medium-Range Weather Forecasts (ECMWF) radiative transfer mod-

elling activities conducted to use Soil Moisture and Ocean Salinity (SMOS) brightness temperature observations

for Numerical Weather Forecast (NWP) applications. The Community Microwave Emission Modelling Platform

(CMEM) is used as the ECMWF SMOS forward operator to simulate L-band brightness temperatures (TBs). In a

first part, simulated brightness temperature are compared to the observed SMOS near real time reprocessed brightness

temperature product for 2010-2011 for several configurations of CMEM using different set of parameterisations. We

show that simulated brightness temperatures are more sensitive to the choice of vegetation opacity and soil roughness

models than to the dielectric model. Best configurations of CMEM are shown to be those using the so-called Wigneron

vegetation opacity model with the simple empirical Wigneron soil roughness model. The Wang and Schmugge and

the Mironov soil dielectric models perform similarly and lead to better agreement with SMOS observations than the

Dobson dielectric model. Based on this intercomparison the configuration of CMEM retained for ECMWF SMOS for-

ward modelling activities is the one based the Wang and Schmugge dielectric model, the Wigneron simple roughness

model and the Wigneron vegetation model. In a second part, this paper presents the SMOS brightness temperature bias

correction developed and used at ECMWF. It is a monthly Cumulative Distribution Function bias correction based on

SMOS and ECMWF re-analysis-based brightness temperatures for the period from 1 January 2010 to 31 December

2013. Results show that it efficiently corrects for systematic differences between observations and model, with global

root mean square differences (RMSD) and global mean bias for 2010-2013 for 30◦ 40◦, 50◦ incidence angles decreas-

ing from 16.7 K and -2.1 K before bias correction to 7.91K and 0.0016 K after bias correction, respectively. The

monthly approach allows to correct for seasonal cycles systematic differences, with correlation values improved from

0.56 before bias correction and 0.62 after bias correction. Residual differences remaining after bias correction corre-

spond to random differences between the model and observations which provide relevant information for monitoring

and data assimilation purposes. Finally, in a third part long term monitoring of SMOS brightness temperature moni-

toring is presented covering a 7-year period 2010-2016 at both polarisations, at 40 degrees incidence angle. RMSD,

correlation and anomaly correlation statistics show that SMOS and ECMWF reanalysis-based brightness temperature
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agreement steadily improves between 2010 and 2016, indicating improvement of SMOS products quality through the

SMOS lifetime.
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1. Introduction

Soil moisture is a key variable of the Earth System. It has a large influence on the exchange processes between

land surfaces and the atmosphere and it largely controls the water and energy budgets (Taylor et al., 2012; Koster

et al., 2004; Trenberth et al., 2007). Initial state of soil moisture influences weather prediction at at medium range

(de Rosnay et al., 2013; Drusch, 2007) and at seasonal range (Koster et al., 2011) . It is also of crucial importance for

agricultural drought monitoring (Kumar et al., 2014) and flood forecasts (Wanders et al., 2014; Alfieri et al., 2013).

At continental and global scale land surface models (Balsamo et al., 2015; Reichle et al., 2011; Dirmeyer et al., 2006)

and satellite sensors (Mecklenburg et al., 2016; Wagner et al., 2013; Entekhabi et al., 2010; Kerr et al., 2010) provide

reliable estimates of soil moisture. The Advanced Scatterometer (ASCAT) sensors on board the Metop satellite series

have been providing continuous active microwave measurements at C-Band (5.255 GHz) since 2006. ASCAT surface

soil moisture products are produced operationally, at resolutions of 50 km and 25 km, by EUMETSAT and made

available for Numerical Weather Prediction Centers. Passive microwave at L-band (1.4 GHz) are highly sensitive to

surface soil moisture and they are used for soil moisture dedicated missions. It was first demonstrated with the Skylab

mission which provides nine overpasses of L-band observations, at a resolution of 110 km, from 1973 to 1977 (Ea-

gleman and Lin, 1976). The European Space Agency (ESA) Soil Moisture and Ocean Salinity (SMOS) mission was

launched in 2009. SMOS was specifically designed for soil moisture measurements from space. Its concept relies on

measurements of multi-angular fully polarised passive microwave emission of the Earth at L-band (1.4 GHz). SMOS

brightness temperature observations have a resolution of about 40 km. These observations have been available in

Near Real Time (NRT) since 2010. In 2016 a NRT level2 soil moisture product has been developed and implemented

based on a neural network soil moisture retrieval approach (Muñoz Sabater et al., 2016; Rodriguez et al., 2016, 2017).

The NRT soil moisture product is of great interest for operational hydrology application in particular. Following

SMOS, the National Aeronautics and Space Administration (NASA) Soil Moisture Active Passive (SMAP) mission

(Entekhabi et al., 2010), was launched in January 2014. SMAP uses a rotating antenna, which takes measurements

at a single incidence angle. The concept of SMAP is based the combination between active and passive observations

to produce high resolution (9 km) soil moisture estimates from Space. After the active sensor of SMAP failed in

July 2014, it was decided to use the Sentinel-1 radar observations at C-band for the active component of the SMAP

mission.
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Several operational centres started to investigate the use of L-band passive microwave brightness temperature observa-

tions from SMOS and SMAP for Numerical Weather Prediction (NWP) applications (Muñoz Sabater et al., 2018a,b;

Carrera et al., 2015). At ECMWF the SMOS data has been passively implemented in the Integrated Forecasting Sys-

tem for monitoring purpose (Muñoz Sabater et al., 2011b). In these systems a forward operator is used to simulate the

brightness temperature as seen from space, so that the modelled and the observed brightness temperatures provide the

basis to monitoring and data assimilation. The Community Microwave Emission Modelling platform was developed

as low frequency passive microwave operator (Holmes et al., 2008; de Rosnay et al., 2009a,b; Drusch et al., 2009).

Drusch et al. (2009) conducted a first evaluation the ECMWF forward simulation by comparing ERA-40-based L-

band brightness temperature with the historic Skylab observations (S-194 radiometer). Their study was preliminary,

limited by the number of observations and the coarse resolutions of the observations and the ERA-40 reanalysis.

However it allowed to show that he choice of parameterisations used in CMEM to account for vegetation opacity or

soil roughness has a strong influence on the simulated brightness temperature. The authors showed that the simple

parameterisation of Kirdyashev et al. (1979) for the vegetation opacity model provided TB in best agreement with the

Sklab observations. de Rosnay et al. (2009a) used the Advanced Microwave Scanning Radiometer - Earth Observing

System (AMSR-E) C-band brightness temperature observations over West Africa to evaluate CMEM for different

combinations corresponding to 12 configurations of the soil dielectric model, soil roughness model and vegetation

opacity model. More recently the capacity of the Variable Infiltration Capacity model coupled to CMEM was evalu-

ated against SMOS L-Band observations over the upper Mississippi basin for 2010-2011 (Lievens et al., 2015).

This paper has three objectives. The first one is to evaluate different combinations of CMEM parameterisations

against SMOS observations in order to define CMEM’s configuration for SMOS monitoring and data assimilation in

the ECMWF Integrated Forecasting System (IFS). The second objective is to present and to evaluate the multi-angular

seasonal bias correction approach developed to use SMOS data at ECMWF. The third objective is to provide long term

monitoring statistics of SMOS observations for the period covering 2010-2016.

Section 2 presents the data and methods used in this paper. It describes the SMOS data, the ECMWF IFS and

the CMEM forward operator. It also presents the microwave models inter-comparison methods and the multi-angular

seasonal bias correction approach that was developed for SMOS. Section 3 presents results. It includes discussions on

the results of the microwave models inter comparison results, the bias correction results and the 7 year SMOS mon-

itoring statistics against the ERA-Interim based forward brightness temperature from ECMWF. Section 4 concludes

the paper.
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2. Data and Methods

2.1. SMOS brightness temperature observations

SMOS is the first satellite mission designed for soil moisture measurements from space (Kerr et al., 2010, 2012;

Mecklenburg et al., 2016). It provides 2D-interferometric measurements of multi-angular and full polarisation bright-

ness temperatures at L-band (1.4GHz) with a spatial resolution of 35 km to 50 km. At ECMWF the operational

Near Real Time (NRT) level 1 brightness temperature product of SMOS is used. It is available within three hours

of sensing, which is suitable for operational Numerical Weather Prediction applications. For this study we used the

consistent reprocessed and operational level1 brightness temperature products from the SMOS processor v5.05 from

January 2010 to March 2012 and from April 2012 to April 2015, respectively. From May 2015 to December 2016 the

operational SMOS NRT brightness temperature from the processor version 6.20 was used.

Brightness temperature data at XX and YY polarisations at the antenna frame are used in this study. Observations

at incidence angles of 30◦, 40◦ and 50◦ were pre-processed by applying a noise filtering using a 2◦ binning angle,

as described in Muñoz Sabater et al. (2014). Quality control based on the NRT v5.05 product flag information was

applied to ensure that only the Alias Free Field of View data is used for this study (SMOS information flag, code

025144, bit 5). We also discarded observations which are flagged to be affected by Radio Frequency Interferences

(RFI, indicated by bit number 1 and 4 of the same information flag), as well as observations with unrealistic brightness

temperature values lower than 150 K or larger than 330 K. SMOS observations are discarded for pixels with fraction of

water bodies larger than 5% (code 013048 in the NRT product) or with radiometric accuracy exceeding 4 K (parameter

code 012080).

The SMOS brightness temperature observations were interpolated, using a bi-linear interpolation approach, to

the ECMWF Gaussian Reduced model grid at 80km resolution (TL255) for the inter comparison study, and at 40km

(TL511) for the bias correction and for the SMOS long term monitoring and comparison with ERA-Interim based

brightness temperatures for 2010-2016 (see Sections 2.4 for the experiments description).

2.2. ECMWF Land surface model

H-TESSEL (Hydrology-Tiled ECMWF Scheme for Surface Exchanges over Land) is the land surface model used

in the ECMWF Integrated System (Balsamo et al., 2009; Viterbo and Beljaars, 1995). It is a point-wise land surface

model, which represents the vertical soil water movements by solving the Richard’s equation (Richards, 1931) over

four soil layers of 7 cm, 21 cm, 72 cm and 1.89 m thickness from top to bottom of the root zone. The surface

runoff is based on the variable infiltration capacity (Balsamo et al., 2009). The soil texture is accounted for using the

Food and Agriculture Organisation (FAO) Digital Soil Map of the World (DSMW) (FAO, 2003). H-TESSEL land

use classification follows the Global Land Cover Characteristics (GLCC) data (Loveland et al., 2000), with assigned

dominant high and low vegetation types. Land cover heterogeneities are represented using a tile approach, with up

to seven tiles in each grid box of the model: bare soil, low vegetation, high vegetation, interception and two tiles for
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snow (exposed and shaded snow) as described in Dutra et al. (2010). The vegetation annual cycle is accounted for

using a monthly Leaf Area Index climatology (Boussetta et al., 2013).

H-TESSEL is fully coupled to the atmosphere for NWP applications, as well as for the ERA-Interim reanalysis

(Dee et al., 2011). ERA-Interim provides global reanalysis of the land and the atmosphere, from 1979 to present. It is

produced at a resolution of 80 km (TL255 spectral resolution), with a delay of about one month from NRT. In the past

years a land surface model reanalysis, called ERA-Interim/Land was developed by running the land surface model

forced by the ERA-Interim forcing conditions with precipitation corrected by the Global Precipitation Climatology

Project data from 1979 to 2010 (Balsamo et al., 2015). ERA-Interim/Land was produced at the same resolution than

ERA-Interim, but using an up-to-date version of the land surface model (IFS cycle 38R1). The ERA-Interim/Land

soil moisture reanalysis was evaluated against in situ soil moisture measurements by Albergel et al. (2013), showing

good performance of the land reanalysis to capture soil moisture variabilities at time scales ranging from daily scale

to seasonal and inter-annual scales.

In this paper, we use a global land-reanalysis produced by forcing H-TESSEL, cycle 41R1, by ERA-Interim at-

mospheric conditions at a resolution of TL511 (40km), which is the Gaussian reduced grid closest to the SMOS

resolution. H-TESSEL simulations were conducted for the period from 2010 to 2016, providing input land surface

conditions, including soil moisture and temperature at different model depth, soil temperature, air temperature, vege-

tation characteristics, to CMEM.

2.3. The Community Microwave Emission Modelling Platform

CMEM is the forward operator used at ECMWF for low frequency passive microwave brightness temperatures

observations monitoring and data assimilation (de Rosnay et al., 2009a; Drusch et al., 2009; Holmes et al., 2008). It

is a community model, developed and maintained by ECMWF. In this paper, the latest release of CMEM (v5.1) is de-

scribed and results presented in section 3.1 define the default configuration of this CMEM release that has been used

for operational monitoring and research developments of SMOS brightness temperature data assimilation (Muñoz

Sabater et al., 2018b). CMEM is an open source code, freely available to the scientific community through the

ECMWF web pages, with an Apache licence. It has been used by a number of research and operational centres as

forward model for low frequency passive microwave applications (Muñoz Sabater et al., 2018a; Carrera et al., 2015;

Lievens et al., 2015).

For each model grid point, CMEM computes the Top-of-Atmosphere (TOA) brightness temperature for each polari-

sation p (h or v for horizontal or vertical), and for each incidence angle θ, as the sum of the ascending atmospheric

emission (TBau,p ) and the weighted sum the of the brightness temperature computed at the top the vegetation, TBtov,p(i)

, of each individual land surface model tile (i = 1 to 7, see section 2.2 above):

TBtoa,p,θ = TBau,p,θ + exp(−τatm,p,θ) ·
7∑

i=1

f (i) · TBtov,p,θ(i) (1)

where τatm,p,θ the atmospheric optical depth, and f (i) is the fraction coverage of each tile.
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The brightness temperature at the top of the vegetation layer computed for each tile as:

TBtov,p,θ = TBsoil,p,θ · exp(−τveg,p,θ) + TBveg,p,θ(1 + rr,p,θ · exp(−τveg,p,θ)) + TBad,p,θ · rr,p,θ · exp(−2 · τveg,p,θ) (2)

with TBS oil,p,θ, TBVeg,p,θ and TBad,p,θ the brightness temperature of the soil, vegetation and downward atmospheric com-

ponents, respectively; rr,p,θ the rough soil surface reflectivity (also expressed as one minus the emissivity er,p,θ), and

τveg,p,θ the vegetation optical depth at polarisation p and incidence angle θ.

CMEM is composed of four modules to compute the contributions from the soil, vegetation, snow and atmosphere

to the TOA brightness temperature. It includes a choice of different parameterizations for each component of the

modules as summarised in Table 1.

[Table 1 about here.]

2.3.1. CMEM soil module

In the soil module, the dielectric mixing model is used to compute dielectric constant as a function of volumetric

soil moisture, soil temperature, soil texture and microwave frequency. Three parameterizations are implemented in

CMEM to infer the soil dielectric constant. The Dobson model is valid for frequency in a range of 1 GHz to 20 GHz

(Dobson et al., 1985). The Mironov (Mironov et al., 2004) and the Wang and Schmugge (Wang and Schmugge,

1980) models are valid for frequencies between 1 GHz and 10 GHz. Results from de Rosnay et al. (2009a) over West

Africa showed that the Wang and Schmugge model and the Mironov model perform better than the Dobson model at

C-band. They account for the effect of bound soil water and they are more suitable for a large range of frequencies.

The Mironov parameterization has been widely used for L-band applications at the field scale (Mialon et al., 2012, for

example), and at global scale in particular in the SMOS retrieval algorithm (Kerr et al., 2016).

The soil brightness temperature is expressed, following the Rayliegh-Jeans approximation, as the product between

the effective temperature Te f f and the soil emissivity er,p,θ. A simple model was proposed by Choudhury et al. (1982)

to approximate the effective as a function of the surface soil temperature (at ∼ 5 cm), soil temperature at depth (at ∼ 50

cm) and an empirical parameter C which depends on frequency. This parameterization was modified by Wigneron

et al. (2001) for L-band radiometry including a dependency of C to soil moisture. Holmes et al. (2006) proposed

a more complex parameterization where C is expressed as a function of the dielectric constant. Based on the long

term SMOSREX data set, de Rosnay et al. (2006) provided an inter-comparison of these three parameterizations. The

approximation from Wigneron et al. (2001) was shown to be well suited for global scale studies and it used as default

configuration in CMEM to compute the soil effective temperature (de Rosnay et al., 2009a).

Soil roughness has a large impact on soil emission and reflectivity (Mialon et al., 2012; Escorihuela et al., 2007).

Increase in surface roughness surfaces leads to higher emissivities and reduced difference between horizontally and

vertically polarized brightness temperatures. CMEM includes five soil roughness parameterizations listed in Table 1),
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and described in detail in Muñoz Sabater et al. (2011a). They are derived from the semi-empirical approach proposed

by Wang and Choudhury (1981) to represent soil roughness effects on the microwave emission. The rough emissivity

is computed as a function of the smooth emissivity rs,q,θ and three parameters Q, h, N:

rr,p,θ =
(
Q · rs,q,θ + (1 − Q) · rs,p,θ

)
· exp

(
−h · cosNθ

)
(3)

where p and q refer to the polarization states, Q is the polarization mixing factor, N is a parameter that describes the

angular dependence, h is the roughness parameter and θ the incidence angle. The mixing factor Q is considered to be

very low at low frequencies and is generally set to 0 (Wigneron et al. (2007); Njoku et al. (2003)). Based on equation

3 two parameterizations have been proposed with N = 0 and the following computation for the h parameter:

h = (2kσ)2 (Choudhury) (4)

h = 1.3972 · (σ/Lc)0.5879 (Wsimple) (5)

where k is the wave number and L and σ are correlation length and standard deviation of surface roughness. Other

soil roughness parameterizations account for the dependency of the roughness parameter on soil moisture and soil

texture (ATBD (2007)), or for both soil moisture and vegetation type with N depending on vegetation and polarization

(Wigneron et al. (2007)). Wegmüller and Mätzler (1999) uses a single roughness parameter h = k ·σ. In this paper the

parameterizations developed for L-band applications, as well as the simple Choudhury et al. (1979) model are used

and evaluated against the SMOS observations as indicted in bold in Table 1.

2.3.2. CMEM vegetation module

The vegetation layer is represented in CMEM following the so-called τ − ω approach. As formulated in Equation

2, vegetation contributes in several ways to the measured signal at the top of the atmosphere. It attenuates the soil

emission, it attenuates the downward atmospheric emission and the upward atmospheric emission after it was reflected

on the soil surface, and it has a direct contribution to the signal expressed as:

TBveg,p = Tc · (1 − ωp) · (1 − exp(−τveg,p)) (6)

where Tc is the canopy temperature and ωp is the single scattering albedo at polarization p. CMEM include a choice

of four parameterisations to account for the vegetation effect on the signal. They differ in the approach used to

compute the vegetation optical depth as described in details in a number of papers including for example (de Rosnay

et al., 2009a; Drusch et al., 2009; Wigneron et al., 2007). The parameterizations from Wigneron et al. (2007) and

Jackson and O’Neill (1990), are suitable at L-band. The Kirdyashev et al. (1979) and Wegmüller et al. (1995) models

account for the wave number in their parameterisation of the optical depth. They are applicable for a larger range

of frequencies. In this paper CMEM performances are compared and evaluated against SMOS data, for different

configurations using the parameterizations of Wigneron et al. (2007), Jackson and O’Neill (1990), and Kirdyashev

et al. (1979).
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2.3.3. CMEM snow and atmospheric modules

In the case of presence of snow, CMEM accounts for a snow layer as described in Holmes et al. (2008) with

the snow reflectivity computed using the single layer version of the Helsinki University of Technology (HUT) model

(Pulliainen et al., 1999). In this study the snow covered areas are filtered out in the quality control as described in the

next subsection.

In the atmospheric module of CMEM, the atmosphere optical thickness τatm,p is computed following the parameteri-

sation developed by Pellarin et al. (2003).

2.3.4. Faraday rotation

CMEM as described above simulates TOA brightness temperature in the Earth reference frame at both horizontal

and vertical polarisations. These brightness temperature need to be transformed into the SMOS antenna frame to

be compared to the SMOS data. The transformation of CMEM’s TBtoa,h and TBtoa,v into the SMOS antenna frame

accounts for the SMOS geometry and to the Faraday rotation in the ionosphere as described in ATBD (2007). In dual

polarisation mode, the transformation of brightness temperature is expressed as follow: TBecm,xx,θ

TBecm,yy,θ

 =
 cos2(a) sin2(a)

sin2(a) cos2(a)


 TBtoa,h,θ

TBtoa,v,θ

 (7)

where a is the total rotation angle computed as sum if the geometric and the faraday rotation angles. This transforma-

tion is included as a CMEM post-processing step in the ECMWF IFS. In the following of the paper, we use TBecm,xx,θ

and TBecm,yy,θ from CMEM to compare with the SMOS brightness temperature data in the antenna frame.

2.4. Numerical experiments

A series of numerical experiments were conducted with CMEM, using the H-TESSEL land surface model input,

to address the three objectives of this paper. To identify CMEM’s bests configurations, 36 different CMEM configu-

rations, corresponding to different combinations of three dielectric models, three vegetation opacity models and four

roughness models presented in Table 1, were evaluated against SMOS brightness temperature observations. Due to

the large number of experiments, this set was limited to 40◦ incidence angle and it was conducted at a resolution of

TL255 (80 km) for a two-year period (2010-2011). To develop the bias correction, the selected best CMEM configu-

ration was used and numerical experiments were conducted at three different incidence angles, 30◦, 40◦ and 50◦, at a

resolution of TL511 (40km), which is close to the SMOS resolution, for 2010-2013. The 40◦ experiment was extended

for 2014-2016 for long term monitoring purpose. Table 2 summarises the experiments conducted for each objective.

It also indicates the version of the SMOS processor used to produce the SMOS data compared to the ERA-Interim

based CMEM forward brightness temperatures, and it indicates in which section the results are presented.

[Table 2 about here.]
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In addition to the quality control described in Section 2.1, which was based on the SMOS product quality flags, we

used the reanalysed land surface conditions from H-TESSEL from each experiment to discard model and observation

values for grid points with presence of snow, and grid points with air temperature lower than 273 K. We also discarded

areas with complex topography with a slope larger than 4%, and areas with water fraction larger than 5%.

2.5. Bias correction method

SMOS brightness temperature observations are used at ECMWF for monitoring and for data assimilation to ini-

tialise the NWP system (Muñoz Sabater et al., 2018b). A key assumption for data assimilation is that model and

observations are unbiased, with random zero-mean errors (Yilmaz and Crow, 2013; Dee, 2005). However, in reality,

systematic differences exist between modelled and observed radiances. They are caused by a number of reasons such

as problems with the data, representativeness issues, forward model approximations, simplified representation of the

processes. So, it is of crucial importance to correct for the systematic errors between the model and the observations

prior to data assimilation. Cumulative Distribution Function matching (CDF-matching) allows to match the statistical

moments of the data to the model ones (Reichle and Koster, 2004) and it has been used in different forms for a number

of studies (Lievens et al., 2015; Draper et al., 2012; Scipal et al., 2008, for example). As pointed out by Draper et al.

(2012) there are also systematic differences between the seasonal cycles of model and observations. Not accounting

for these seasonal scale systematic discrepancies would affect the matching at both short time scales and seasonal

scale.

In this paper we use a point-wise, multi-angular and monthly rescaling approach to remove the seasonally varying

systematic biases between the SMOS observations and the ECMWF CMEM forward simulations. We use the 4-year

(2010-2013) observations and forward simulations, at 40 km resolution of experiments of Set 2 (Table 2). Using a

3-month moving window, we compute the 4-year averaged statistical moments (mean and variance) of the observed

(TBsmos) and simulated (TBecm) brightness temperatures for each grid point, for each calendar month from January to

December, at each polarisation, and for each incidence angle. A minimum of 50 model and observations values per

angle, polarisation and moving window remaining after quality control (sections 2.1 and 2.4) is required to compute

the moments. The statistical moments are then used to compute monthly maps of CDF-matching parameters (A,B) at

xx and yy polarisations, for 30◦, 40◦ and 50◦ incidence angles, as follow:

A = < TBecm > − < TBsmos > ·
S tDev(TBecm)
S tDev(TBsmos)

(8)

B =
S tDev(TBecm)
S tDev(TBsmos)

(9)

The first parameter, A, is considered as a bias correction parameters and the second parameter, B, as a rescaling

parameter. They are used to transform the observed SMOS observations for assimilation purposes as:

T?
Bsmos = A + B · TBsmos (10)

The obtained matching parameters and results of the seasonal bias correction approach are presented in section 3.2.
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3. Results

3.1. CMEM global intercomparison

Figure 1 shows maps of 2010-2011 mean brightness temperatures at xx and yy polarisations, (a) as observed

from SMOS and (b) simulated from one of the experiments of Set 1 - the one using Wang for the dielectric model,

Wsimple roughness and Wigneron for the vegetation (see Tables 1 and 2). Figure 1c shows the mean first guess

departure (observation minus model) brightness temperature at each polarisation, and Figure 2 shows, maps of root

mean square error (RMSE), unbiased RMSE (uRMSE) and correlation for the same period and experiment. Mean

values of SMOS brightness temperature at xx polarisation typically range between 240 K and 280 K in most areas

(Figure 1a), with colder mean brightness temperatures at high latitude. As expected, measured SMOS brightness

temperatures are larger at yy than at xx polarisation, in particular over warm desert areas with up to 300 K mean values

for 2010-2011. Figure 1(b,c) show that forward simulations using this configuration of CMEM tend to overestimate

brightness temperature values at both xx and yy polarisations by up to 20 K, specially in dry areas, but also in North

America and India, and to underestimate them over tropical forest areas and at high latitudes.

[Figure 1 about here.]

The top panel of Figure 2 shows relatively large RMSE values often between 16 K and 30 K at xx and yy polari-

sations matching relatively well areas with large bias shown in Figure 1(c). Maps of uRMSE, Figure 2(b), show lower

values than for RMSE, indicating the large contribution of the bias to the RMSE for this configuration of CMEM.

Areas with uRMSE larger than 16K remain in Asia, Eastern Europe. These areas are known to be affected by Radio

Frequency Interference (RFI) sources leading to unreliable SMOS measurements. The RFI contamination is not sys-

tematically captured in the RFI flag, explaining large uRMSE in these regions despite the quality control applied as

described in the previous section. The bottom panel of Figure 2 shows that SMOS measurements and CMEM forward

simulations are well correlated for 2010-2011, with values larger than 0.4 in most areas. Lowest correlation values are

shown in grey in tropical forests areas. They are due to the relative stable brightness temperatures in these areas, with

low temporal dynamics in both the model and the observations, leading to low correlation. Low correlation values are

also shown in RFI affected areas of Asia. Global mean statistics for this configuration of CMEM indicate correlation

values of 0.57 and 0.53 at xx and yy polarisation, respectively. Values of uRMSE are 11.63 K and 11.49 K.

[Figure 2 about here.]

[Table 3 about here.]

[Table 4 about here.]
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Global mean 2010-2011 statistics are provided in Tables 3 and 4 for each of the 36 experiments of Set 1 corre-

sponding to different configurations of CMEM. They include correlation, uRMSE and bias and SDV, which is the

normalised standard deviation, i.e the ratio between the simulated and observed brightness temperature standard de-

viations. The results of these two Tables are also summarised in Taylor diagrams (Taylor and Clark, 2001) in Figure 3

and the annual cycles of uRMSE and correlation statistics are shown in Figure 4.

In this paper, the primary criteria of evaluation to select best CMEM parameterizations are correlation and uRMSE

metrics, whereas bias and SDV results are secondary criteria. This is because Numerical Weather Prediction applica-

tions, including monitoring and assimilation, apply an a priori a bias correction to match the mean and the variance of

model and observed brightness temperatures (Section 2.5).

Results of Tables 3 and 4 and Figures 3 all clearly show that the choice of the roughness parameterisation has the

largest impact on correlation, uRMSE, bias and SDV statistics. Wtexture generally shows poorer correlation and

uRMSE performances than the other parameterisations. Figure 4 shows that this result is persistent accros the an-

nual cycle. Results form the two tables and the Taylor diagrams show however that experiments using Wtexture

best capture the SMOS brightness temperature standard deviation, with SDV values close to 1. The other roughness

parameterisations lead to SDV values lower than 1, indicating that they underestimate the variance compared to the

SMOS data. The forward model is based on the 7 cm top soil layer of H-TESSEL, which is in most situations larger

than the SMOS sensing depth. In turn, the SMOS data with a shallower sensing depth is expected to capture larger

standard deviation, related to highly variable surface soil moisture, than the model, which explains that most rough-

ness models underestimate SDV. The Wigneron and Wsimple roughness parameterisations better match the SMOS

data than Wtexture or Choudhury in terms of correlation, uRMSE and bias. And looking into more details at the

Wsimple and Wigneron statistics, results show that Wsimple has lower uRMSE and larger correlation than Wigneron.

For the vegetation optical depth, statistics presented in Tables 3 and 4 show that Jackson and Wigneron perform better

than Kirdyashev in terms of correlation and uRMSE. This result differ from the ALMIP-MEM results of de Rosnay

et al. (2009a) who showed that Kirdyashev was performing better than Jackson or Wigneron at C-band over West

Africa. Result obtained here at L-band are not surprising as Jackson and Wigneron parameterisations were developed

for L-band, so they are best suited for SMOS applications, whereas Kirdyashev is a multi-frequency model. The

Wigneron parameterisation tend to show slightly better statistics than Jackson in terms of uRMSE.

Simulated brightness temperatures are less sensitive to the dielectric model than to the vegetation opacity and soil

roughness models. The Wang and Schmugge and the Mironov soil dielectric models perform similarly and lead to a

slightly better agreement with SMOS observations than the Dobson dielectric model. Either of them could be used

for ECMWF NWP applications. In this paper the Wang and Schmugge model is selected to be used.

Based on this intercomparison the configuration of CMEM retained for ECMWF SMOS forward modelling activities

is the one based the Wang and Schmugge dielectric model, the Wigneron simple roughness model and the Wigneron

vegetation model. This combination of CMEM options also defines the CMEM v5.1 default configuration which was

released by ECMWF based on these results.
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[Figure 3 about here.]

[Figure 4 about here.]

3.2. Bias correction results

Figures 5 and 6 show the maps of CDF-matching parameters at xx polarisation, for 30◦, 40◦ and 50◦ incidence

angles, for January and July, respectively, using the 2010-2013 data sets (see Table 2). Both the bias correction term A

and the rescaling term B show a relatively good consistency accross the different incidence angles. The bias correction

parameter A has generally positive values in desert areas, in particular in Sahara and Australia, which are consistent

with the departure results presented at 40◦ in Figure 1 for 2010-2011 at coarser resolution. In January, Figure 5 shows

that large areas in the northern hemisphere do not have any CDF-matching parameters due quality control rejecting

frozen and snow covered areas in the winter hemisphere. In both January and July, areas with complex topography

(e.g. in the US Rocky mountains, The Andes, the Alpes and parts of the Himalayan mountains) are masked out. The

Figures also show that regions in China are masked out, which is due to RFI filtering.

These CDF-matching parameters are applied to the ERA-Interim based CMEM forward simulations conducted for

2010-2013 for experiments Set 2 as detailed in Section 2. Figure 7 shows maps of RMSE and mean difference between

SMOS observations and ECMWF CMEM forward simulations at 40◦ incidence angle, for 2013 computed before (left)

and after (right) CDF-matching. Before CDF-matching, RMSE values typically range between 16 K and 20 K (red

colours). After bias correction RMSE values are in the range of 4 K to 8 K in most areas. The mean bias is also

reduced to a residual value lower than 1 K in most areas. Figure 8 presents maps of correlation and standard deviation

before and after bias correction. The top-left panel of Figure 8 indicates very good correlation values between SMOS

observations and CMEM even before bias correction. In North America and in parts of Australia, correlation values

larger than 0.8 dominate. The bias correction, because it relies on a monthly approach, further improves the agreement

between the SMOS observations and CMEM at the seasonal scale, leading to increased correlation values after bias

correction (top right of Figure 8).

[Figure 5 about here.]

[Figure 6 about here.]

[Figure 7 about here.]

[Figure 8 about here.]

[Figure 9 about here.]
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[Figure 10 about here.]

Figure 9 shows the CDF of brightness temperatures at xx polarisation (left) and yy polarisation (right), at 40◦ incidence

angle for ECMWF CMEM forward simulations (blue), SMOS observations before bias correction (red) and SMOS

observations after bias correction (green). It shows that the multi-angular polarised monthly CDF matching approach

allows to effectively match the cumulative distributions of the observed and simulated brightness temperatures.

Figure 10 gives detailed examples of time series and CDF of ECMWF CMEM simulations and SMOS observations

before and after bias correction in two areas of Australia (25S-35S; 140E-150E), and South America (15S-20S;50W-

45W). The time series shown in the top panel of Figures 10, in Australia, shows that the SMOS observations before

bias correction (red) are colder that the ECMWF CMEM forward simulations, as already pointed out with the global

maps shown in Figure 7. It also shows that the annual cycle and the shorter time scale variability are captured by

the observations and the model (as shown in Figure 8 for this area). There are several occurrences of strong decrease

in brightness temperature, typically corresponding to precipitation events and increased soil moisture, observed and

simulated around day 25 and 60 and 145. It is clear from this figure that the SMOS observations have a larger

variability than the model forward simulations as expected and as discussed in the previous subsection, due to a

shallower SMOS sampling depth than the ECMWF model top layer thickness. For example on days 90 and 145, the

amplitude of the SMOS signal is larger than that of ECMWF. On a single event it could be attributed to a number

of reasons, such as for example a lack of precipitation in the ECMWF system leading an underestimation of soil

moisture increase. However, the fact that the SMOS variability is systematically larger than the ECMWF CMEM

forward simulations is consistent with the model layer and SMOS sampling depth mismatch. One of the purpose of

bias correction is specifically to correct for model approximations than lead to systematic differences (Dee, 2005).

The green curve of the top panel of Figure 10 shows that after bias correction, the SMOS data is in general better

agreement with the model at the seasonal scale with remaining differences at the daily scale and precipitation event

scale which are of potential relevance for data assimilation purpose. In South Americia (bottom panel of Figure 10)

the observed and simulated brightness temperature are already in relatively good agreement before bias correction,

both in term of mean value and variability. For both regions of Figure 10, the right panels show that the CDF are

efficiently matched at the regional scale.

Figures 11 and 12 show histograms of global scale SMOS first guess departure (observations minus model) be-

fore and after bias correction, for different incidence angles at xx polarisation and yy polarisation, for the months of

January 2013 and July 2013, respectively. Before bias correction (in red) they show uncentered distributions with a

relatively large spread, which illustrate systematic differences between the observations and the model at all incidence

angles and polarisations. The monthly bias correction (in green) leads to narrow and centred first guess departure

distributions. A yearly bias correction, based on CDF matching parameters that would be computed on yearly statis-

tical moments of SMOS and ECMWF brightness temperatures, is also illustrated (in yellow) in the Figure. It shows

that the obtained first guess departure distribution would have a larger spread than with the monthly bias correction,
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demonstrating the benefit of the seasonal approach.

[Figure 11 about here.]

[Figure 12 about here.]

Tables 5 and 6 give an overview of the yearly statistics of the ECMWF CMEM forward simulations and the

SMOS brightness temperatures observations for each incidence angle, each polarisation for 2010, 2011, 2012 and

2013. Table 5 shows that, before bias correction, depending on the incidence angle and the year, RMSE values range

between 16.96 K and 20.64 K at xx polarisation and between 12.77 K and 17.30 K at yy polarisation, with mean value

for all polarisations and incidence angles of of 16.67 K. Global mean bias are mostly negative, between -7.16 K and

-0.64 K at xx polarisation and between -2.74 K and 0.5 K at yy polarisation. The multi-angle multi-polarisation bias

is -2.097 K. These mean statistics hide large spatial scale differences as shown in Figure 7 and 8. Correlation values

are on average 0.56, varying between 0.51 and 0.60 at xx polarisation, and between 0.49 and 0.64 at yy polarisation,

with large confidence interval for each angle, polarisation and year. Anomaly correlations are computed based on time

series obtained by removing the seasonal cycle based on a 4-month moving window with an averaged value of 0.31.

After bias correction, the mean correlation, RMSE and bias are improved to 0.62, 9.91 K and 0.0016 K, respectively.

The anomaly correlation remain very close to its value before bias correction, 0.31 K, which is as expected since the

seasonal bias correction approach preserves the SMOS signal short term variability.

[Table 5 about here.]

[Table 6 about here.]

3.3. Long term SMOS monitoring

Figure 13 shows long term global scale monitoring statistics obtained at a 40◦ incidence angle, from 2010 to 2016

using the ERA-Interim-based CMEM forward simulations of Set 3 described in Table 2 and the SMOS brightness

temperature measurements for the entire period as described in Section 2.1. The left panel shows that at both polarisa-

tions, correlations and anomaly correlation statistics steadily improve between 2010 and 2016. The correlation values

increase from 0.57 to 0.63 at xx polarisation and from 0.53 to 0.63 at yy polarisation, respectively. The anomaly

correlation values also increase from 0.34 to 0.40 and from 0.27 to 0.37 at xx and at yy polarisations. The right panel

shows that the RMSE and uRMSE values decrease from 2010 to 2016 at both polarisations. The RMSE values range

from 18.62 K in 2010 to 17.12 K in 2016 at xx polarisation and from 16.27 K to 13.57 K at yy polarisation. For the

uRMSE, the results show an improvement from 11.82 K to 10.46 K and from 11.75 K to 9.25 K at xx and yy polar-

isations, respectively. These results are based on reanalysis based forward simulations, which are expected to be of
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constant quality. Consistent SMOS brightness temperatures from the SMOS processor v5.05 are used until April 2015

and from the SMOS processor v6.20 after May 2015 (Section 2.1). So, the steady improvement shown from 2010 to

2014 is entirely due to SMOS observations improvement, possibly due to actions taken to manage RFI contamination

(Mecklenburg et al., 2016; Kerr et al., 2016). Improvements for 2015-2016 result from combined SMOS processor

improvements and possible RFI contamination decrease. Although the different contributions are difficult to disen-

tangle these results clearly show an overall SMOS brightness temperature product quality substantial improvement at

both polarisations between 2010 and 2016.

[Figure 13 about here.]

4. Summary and Conclusion

This paper presented the SMOS forward modelling activities conducted at ECMWF to use the SMOS brightness

temperature data.

The first objective of the paper was to evaluate different combinations of CMEM parameterisations against SMOS

observations and to define CMEM’s configuration for SMOS monitoring and data assimilation activities at ECMWF.

To identify the best configuration of CMEM, 36 numerical experiments, using different combinations of three dielec-

tric models, three vegetation opacity models and four roughness models, were conducted at 80 km resolution and at

40◦ incidence angle for 2010-2011. Experiments were conducted using ERA-Interim conditions as input of the land

surface model H-TESSEL and the forward model CMEM. Results were evaluated against SMOS brightness tempera-

ture observations at both polarisations. Results show that simulated brightness temperatures are most sensitive to the

soil roughness models and least sensitive to the dielectric model. Best configurations of CMEM are shown to be those

using the so-called Wigneron vegetation opacity model with the simple empirical Wigneron soil roughness model.

The Wang and Schmugge and the Mironov soil dielectric models perform similarly and lead to better agreement with

SMOS observations than the Dobson dielectric model. Based on this intercomparison the configuration of CMEM

retained for ECMWF SMOS forward modelling activities is the one based the Wang and Schmugge dielectric model,

the Wigneron simple roughness model and the Wigneron vegetation model.

The second objective of the paper was to present and to evaluate the SMOS bias correction approach developed

to use SMOS brightness temperature data at ECMWF. The paper described a multi-angular multi-polarised monthly

Cumulative Distribution Function bias correction based on SMOS and ECMWF re-analysed (ERA-Interim based)

brightness temperatures for the period from 1 January 2010 to 31 December 2013. Experiments were conducted at

40 km resolution with and without bias correction and results were compared to the SMOS observations at global

scale and at regional scale. Results show that the seasonal multi-angular multi-polarisation CDF-matching approach

efficiently corrects for systematic differences between observations and model, with global root mean square differ-

ences (RMSD) and global mean bias for 2010-2013 for 30◦, 40◦, 50◦ incidence angles decreasing from 16.7 K and -2.1
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K before bias correction to 7.91K and 0.0016 K after bias correction, respectively. The monthly approach allows to

correct for seasonal cycles systematic differences, with correlation values improved from 0.56 before bias correction

and 0.62 after bias correction. Residual differences remaining after bias correction correspond to random differences

between the model and observations which provide relevant information for monitoring and data assimilation pur-

poses.

The third objective of this paper was to provide long term monitoring statistics of SMOS observations for an extended

period covering 2010-2016, focusing on 40◦ incidence angle data. Results of the comparison with reanalysis-based

forward simulations were presented in terms of RMSD, uRMSD, correlation and anomaly correlation statistics. They

consistently show that SMOS and ECMWF reanalysis-based brightness temperatures agreement steadily improves be-

tween 2010 and 2016, pointing out improvements of level 1 SMOS brightness temperature products quality through

the SMOS lifetime. The improvement shown from 2010 to 2014 relies on a consistent SMOS processor version and

reanalysed ECMWF brightness temperatures of constant quality. So, it is entirely due to SMOS observations improve-

ment, possibly due to actions taken to manage RFI contamination. Improvements for 2015-2016 result from combined

SMOS processor improvements and possible RFI contamination decrease. These results nevertheless clearly show an

overall substantial quality improvement SMOS brightness temperature product at both polarisations between 2010

and 2014 and between 2015 and 2016.

The forward modelling results and bias correction results presented in this paper demonstrate the relevance of the

SMOS observations for numerical weather prediction applications. Long term monitoring results also open perspec-

tives for SMOS data assimilation studies for environmental systems monitoring, prediction and long term reanalyses.
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(a) SMOS Observations (K)

(b) ECMWF_CMEM Model simulations (K)

(c) First Guess Departure (Observation - Model) (K)

Figure 1: L-band brightness temperature (K) annual mean maps (2010-2011), at 40◦ incidence angle, xx polarisation (left) and yy polarisation
(right), observed by SMOS (a), simulated by ECMWF (b), and first guess departure (Observation-Model, c). ECMWF brightness temperatures
shown here are obtained from one of the Set1 experiments (Table 2), using the dielectric model of Wang and Schmugge (1981), the simple soil
roughness Model of Wigneron et al. (2001) and the Wigneron et al. (2007) vegetation opacity model.
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(a) RMSE (K)

(b) URMSE (K)

(c) Correlation

Figure 2: Comparison between SMOS observations and simulated L-band brightness temperature for 2010-2011, at 40◦ incidence angle, at xx
polarisation (left) and yy polarisation (right): RMSE (a), URMSE (b) and correlation (c). ECMWF brightness temperatures shown here are
obtained from one of the Set1 experiments (Table 2), using the dielectric model of Wang and Schmugge, the simple soil roughness Model of
Wigneron et al., 2001 and the Wigneron et al., 2007 vegetation opacity model.
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(a) xx polarization (b) yy polarization

Figure 3: Comparison between ECMWF simulated and SMOS measured brightness temperatures at L-band (1.4 GHz) at xx (left) and yy (right)
polarisations, for 2010-2011 for 36 CMEM configurations of Set 1 experiments (see Tables 1 and 2). Symbols colour and shapes represent different
vegetation opacity and roughness models, respectively; and for each three identical symbols are used for the different dielectric models.
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Figure 4: Annual cycle of the global mean correlation (top) and URMSD (bottom) between L-band brightness temperatures observations from
SMOS and ECMWF forward simulations for the 36 CMEM configurations of Set 1 experiments (see Tables 1 and 2), at xx (left) and yy (right)
polarisations, for a 40◦ incidence angle. Statistics are computed on the period 2010-2011.
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(a) Angle 30◦

(b) Angle 40◦

(c) Angle 50◦

Figure 5: ECMWF monthly CDF matching parameters A (left) and B (right), for January, at xx polarization, computed at 40km resolution, at
30circ (top panel), 40circ (middle panel) and 50circ (bottom panel), for the default CMEM configuration using the dielectric model of Wang and
Schmugge, the simple soil roughness Model of Wigneron et al., 2001 and the Wigneron et al., 2007 vegetation opacity model.
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(a) Angle 30◦

(b) Angle 40◦

(c) Angle 50◦

Figure 6: ECMWF monthly CDF matching parameters A (left) and B (right), for July in xx polarization, computed at 40km resolution, at 30circ (top
panel), 40circ (middle panel) and 50circ (bottom panel), for the default CMEM configuration using the dielectric model of Wang and Schmugge, the
simple soil roughness Model of Wigneron et al., 2001 and the Wigneron et al., 2007 vegetation opacity model.
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(a) RMSE (K)

(b) Bias (Observation - Model) (K)

Figure 7: Comparison between ECMWF CMEM and SMOS brightness temperatures before (left) and after (right) bias correction for 2013 xx pol
and 40◦ incidence angle. Panels a and b show RMSE (K) and bias (K), respectively.
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(a) Correlation

(b) STD difference (Observation - Model) (K)

Figure 8: Comparison between ECMWF CMEM and SMOS brightness temperatures before (left) and after (right) bias correction for 2013 xx pol
and 40◦ incidence angle. Panels a and b show correlation and STD (K) difference, respectively.
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Figure 9: Cumulative Distribution Function of SMOS observed brightness temperatures (red), ECMWF reanalysed brightness temperatures (blue)
and monthly CDF-matched SMOS brightness temperatures (green) for 2013 at xx pol (left) and yy pol (right) at 40◦ incidence angle for 2010-2014.
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Figure 10: Annual cycle (left) and CDF (right) for 2013 of xx pol brightness temperature (in K), at 40◦ incidence angle, simulated by ECMWF
CMEM (blue), observed by SMOS (red) and matched using monthly CDF matching (green), for two areas located in Australia (a) and South
America (b).
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(a) Angle 30◦

(b) Angle 40◦

(c) Angle 50◦

Figure 11: Histograms of monthly mean first guess departures (Observation - Model in K) for January 2013 for xx pol (left) and yy pol (right), for
incidence angles of 30◦ (a), 40◦ (b), 50◦ (c). Red, green and orange colours show first guess departure distribution with no bias correction (red),
monthly bias correction (green) and yearly bias correction (yellow), respectively.
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(a) Angle 30◦

(b) Angle 40◦

(c) Angle 50◦

Figure 12: Histograms of monthly mean first guess departures (Observation - Model in K) for July 2013 for xx pol (left) and yy pol (right), for
incidence angles of 30◦ (a), 40◦ (b), 50◦ (c). Red, green and orange colours show first guess departure distribution with no bias correction (red),
monthly bias correction (green) and yearly bias correction (yellow), respectively.
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Figure 13: Global mean statistics of SMOS brightness temperatures monitoring from 2010 to 2016, comparing SMOS observations to ECMWF
CMEM reanalysis of L-Band brightness temperature, at 40◦ incidence angle, at xx (solid line) and yy (dashed line) polarisations. Left panel show
correlation (black) and anomaly correlation (grey). Right panel shows RMSE (black) and uRMSE (grey).
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CMEM modules Choice of parameterizations
Short name Reference

Soil module:
Dielectric mixing model Dobson (Dobson et al., 1985),

Mironov (Mironov et al., 2004)
Wang (Wang and Schmugge, 1980)

Effective temperature model Surface temperature forcing,
Choudhury (Choudhury et al., 1982)
Wigneron (Wigneron et al., 2001)
Holmes (Holmes et al., 2006)

Soil roughness model Choudhury (Choudhury et al., 1979),
Wigneron (Wigneron et al., 2007)
Wsimple (Wigneron et al., 2001)
Wtexture (ATBD, 2007)
Wegmüller (Wegmüller and Mätzler, 1999)

Vegetation module:
Vegetation optical depth model Wegmüller (Wegmüller et al., 1995),

Jackson (Jackson and O’Neill, 1990)
Kirdyashev (Kirdyashev et al., 1979)
Wigneron (Wigneron et al., 2007)

Snow module:
Snow emission model HUT single layer model (Pulliainen et al., 1999)
Atmospheric module:

Atmospheric emission model Pellarin (Pellarin et al., 2003),
Ulaby (Ulaby et al., 1986)

Table 1: Modular configuration of CMEM. For each module components, a choice of parameterizations is available. Parameterizations in bold
are those used in this paper. Different combinations of CMEM using three different dielectric models, four roughness models and three vegetation
optical depths models are compared, leading to 36 configurations evaluated against SMOS observations.
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Objective Set Number Period Resolution Incidence SMOS Results
name of runs angle processor

CMEM Set 1 36 2010-2011 80 km 40◦ v5 Section
configuration (TL255) 3.1

Bias Set 2 1 2010-2013 40km 30◦ , 40◦ , 50◦ v5 Section
correction (TL511) 2.5
Long term Set 3 1 2010-2016 40km 40◦ v5 (until 04.2015) Section
monitoring (TL511) v6 (from 05.2015) 3.3

Table 2: Description of the numerical experiments conducted to address the three objectives of the paper: for model configuration, bias correction
and long term monitoring. The 36 experiments of Set 1 use different CMEM configurations corresponding to different combinations of parameter-
isations shown in Table 1. Experiments conducted for Set 2 and Set 3 rely on the best CMEM configuration selected after Set 1 experiments are
compared to SMOS data.
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Dielectric Vegetation Soil Roughness R uRMSE Bias SDV
Model Opacity Model Model (K) (K)

Jackson Choudhury 0.53 12.00 -20.92 0.45
Wigneron 0.56 11.90 -0.16 0.71
Wsimple 0.56 11.77 -7.13 0.59
Wtexture 0.55 13.20 17.17 0.92

Kirdyashev Choudhury 0.54 11.90 -20.04 0.45
Dobson Wigneron 0.54 12.14 5.71 0.72

Wsimple 0.55 11.82 -2.30 0.58
Wtexture 0.46 14.28 29.10 0.97

Wigneron Choudhury 0.54 11.92 -19.06 0.46
Wigneron 0.56 11.96 5.09 0.76
Wsimple 0.56 11.70 -2.20 0.63
Wtexture 0.55 13.57 27.65 1.03

Jackson Choudhury 0.53 11.93 -21.98 0.45
Wigneron 0.57 11.81 -3.15 0.72
Wsimple 0.57 11.65 -9.69 0.60
Wtexture 0.56 13.21 12.01 0.94

Kirdyashev Choudhury 0.55 11.82 -21.29 0.46
Mironov Wigneron 0.54 12.17 2.18 0.75

Wsimple 0.55 11.76 -5.34 0.62
Wtexture 0.48 14.61 22.96 1.05

Wigneron Choudhury 0.55 11.84 -20.24 0.47
Wigneron 0.57 11.91 1.76 0.78
Wsimple 0.57 11.60 -5.08 0.65
Wtexture 0.55 13.72 21.86 1.07

Jackson Choudhury 0.53 11.94 -21.60 0.46
Wigneron 0.56 11.90 -1.96 0.73
Wsimple 0.56 11.67 -8.78 0.61
Wtexture 0.56 13.32 13.84 0.96

Kirdyashev Choudhury 0.55 11.81 -20.92 0.46
Wang Wigneron 0.55 12.23 3.33 0.77

Wsimple 0.56 11.74 -4.46 0.62
Wtexture 0.48 14.63 24.74 1.05

Wigneron Choudhury 0.55 11.84 -19.86 0.47
Wigneron 0.56 12.03 2.95 0.80
Wsimple 0.57 11.63 -4.16 0.66
Wtexture 0.55 13.90 23.70 1.09

Table 3: Statistics of the global scale comparison between ECMWF ERA-Interim-based CMEM simulations and SMOS observations of L-band
brightness temperature at xx polarization for a 40◦ incidence angle for 2010-2011 for 36 CMEM configurations of Set 1 experiments (see Ta-
bles 1 and 2). For each dielectric model best statistics are highlighted in bold. SDV is the normalised standard deviation (ratio between the
simulated and observed brightness temperature standard deviations).
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Dielectric Vegetation Soil Roughness R uRMSE Bias SDV
Model Opacity Model Model (K) (K)

Jackson Choudhury 0.51 11.46 -12.11 0.48
Wigneron 0.52 11.66 -0.59 0.69
Wsimple 0.53 11.47 -3.57 0.62
Wtexture 0.51 13.07 11.16 0.94

Kirdyashev Choudhury 0.52 11.38 -12.12 0.49
Dobson Wigneron 0.50 11.91 2.62 0.73

Wsimple 0.52 11.54 -0.93 0.64
Wtexture 0.45 14.01 18.57 1.02

Wigneron Choudhury 0.52 11.41 -11.01 0.49
Wigneron 0.51 11.79 2.37 0.75
Wsimple 0.52 11.49 -0.51 0.66
Wtexture 0.49 13.57 17.81 1.06

Jackson Choudhury 0.52 11.42 -12.92 0.48
Wigneron 0.52 11.60 -2.69 0.69
Wsimple 0.53 11.39 -5.55 0.62
Wtexture 0.52 13.02 7.24 0.94

Kirdyashev Choudhury 0.53 11.34 -13.10 0.50
Mironov Wigneron 0.51 11.93 0.04 0.75

Wsimple 0.52 11.52 -3.32 0.66
Wtexture 0.46 14.16 13.78 1.06

Wigneron Choudhury 0.52 11.37 -11.93 0.49
Wigneron 0.52 11.75 -0.00 0.75
Wsimple 0.53 11.43 -2.75 0.67
Wtexture 0.50 13.60 13.35 1.07

Jackson Choudhury 0.52 11.42 -12.71 0.48
Wigneron 0.52 11.71 -2.10 0.71
Wsimple 0.53 11.44 -5.06 0.63
Wtexture 0.51 13.23 8.21 0.97

Kirdyashev Choudhury 0.53 11.34 -12.91 0.50
Wang Wigneron 0.51 12.05 0.61 0.77

Wsimple 0.52 11.56 -2.85 0.67
Wtexture 0.46 14.38 14.72 1.09

Wigneron Choudhury 0.52 11.37 -11.73 0.50
Wigneron 0.51 11.88 0.60 0.78
Wsimple 0.53 11.49 -2.25 0.69
Wtexture 0.49 13.87 14.34 1.11

Table 4: Statistics of the global scale comparison between ECMWF CMEM simulations and SMOS observations of L-band brightness temperature
at yy polarization for a 40◦ incidence angle for 2010-2011 for 36 CMEM configurations if Set 1 experiments (see Tables 1 and 2). For each
dielectric model best statistics are highlighted in bold. SDV is the normalised standard deviation (ratio between the simulated and observed
brightness temperature standard deviations)
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Angle Year pol N R Confidence Anomaly R RMSE (K) Bias (K)
30 2010 xx 101.63 0.57 0.43 0.69 0.32 18.06 -1.95
30 2011 xx 106.86 0.59 0.45 0.70 0.32 17.53 -1.10
30 2012 xx 94.66 0.59 0.44 0.71 0.33 17.11 -0.64
30 2013 xx 101.44 0.60 0.46 0.72 0.34 16.96 -1.01
40 2010 xx 150.17 0.57 0.45 0.67 0.34 18.62 -2.84
40 2011 xx 157.68 0.58 0.46 0.68 0.35 18.04 -1.91
40 2012 xx 139.84 0.58 0.46 0.68 0.36 17.61 -1.33
40 2013 xx 149.58 0.60 0.48 0.69 0.37 17.38 -1.64
50 2010 xx 148.28 0.51 0.37 0.62 0.27 20.64 -7.16
50 2011 xx 155.76 0.51 0.38 0.62 0.27 20.02 -6.48
50 2012 xx 138.50 0.52 0.38 0.63 0.27 19.57 -5.89
50 2013 xx 147.69 0.53 0.41 0.64 0.28 19.33 -6.26
30 2010 yy 101.00 0.58 0.43 0.69 0.33 17.30 -2.74
30 2011 yy 106.34 0.60 0.46 0.71 0.36 16.30 -1.73
30 2012 yy 94.44 0.62 0.47 0.73 0.39 15.34 -0.97
30 2013 yy 101.11 0.64 0.50 0.74 0.40 14.81 -0.97
40 2010 yy 146.74 0.53 0.40 0.64 0.27 16.27 -1.29
40 2011 yy 154.41 0.54 0.42 0.65 0.28 15.46 -0.24
40 2012 yy 136.88 0.56 0.43 0.66 0.30 14.49 0.43
40 2013 yy 146.83 0.58 0.46 0.68 0.31 13.97 0.55
50 2010 yy 140.68 0.49 0.35 0.61 0.24 15.14 -2.49
50 2011 yy 147.65 0.50 0.37 0.61 0.24 14.26 -1.37
50 2012 yy 130.59 0.53 0.39 0.64 0.27 13.29 -0.76
50 2013 yy 140.27 0.54 0.41 0.65 0.28 12.77 -0.55

Table 5: Statistics of the global scale comparison, before bias correction, between the ECMWF CMEM Set 2 experiment, using Wang and
Schmugge, Wsimple and Wigneron parameterisations (see Tables 1 and 2), and SMOS observations of L-band brightness temperature at xx and yy
polarizations for 30◦, 40◦, 50◦ incidence angles, for 2010-2013.
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Angle Year pol N R Confidence Anomaly R RMSE (K) Bias (K)
30 2010 xx 102.08 0.64 0.50 0.74 0.31 7.95 -0.36
30 2011 xx 107.54 0.65 0.52 0.75 0.32 7.46 0.20
30 2012 xx 95.69 0.65 0.51 0.75 0.32 7.42 0.50
30 2013 xx 101.74 0.67 0.54 0.76 0.34 7.09 0.24
40 2010 xx 151.29 0.63 0.52 0.72 0.34 8.04 -0.42
40 2011 xx 159.04 0.64 0.54 0.73 0.35 7.53 0.18
40 2012 xx 141.95 0.65 0.54 0.73 0.35 7.48 0.55
40 2013 xx 150.50 0.67 0.56 0.75 0.37 7.13 0.35
50 2010 xx 148.95 0.57 0.44 0.67 0.26 8.96 -0.33
50 2011 xx 156.65 0.58 0.46 0.67 0.26 8.50 0.12
50 2012 xx 139.98 0.58 0.46 0.68 0.27 8.41 0.50
50 2013 xx 148.16 0.60 0.48 0.70 0.28 8.05 0.33
30 2010 yy 100.90 0.63 0.50 0.74 0.33 8.53 -0.76
30 2011 yy 106.17 0.66 0.53 0.76 0.35 7.64 -0.13
30 2012 yy 94.79 0.68 0.55 0.77 0.39 7.14 0.37
30 2013 yy 100.76 0.70 0.58 0.79 0.40 6.76 0.32
40 2010 yy 147.16 0.58 0.46 0.68 0.27 8.90 -0.84
40 2011 yy 154.34 0.60 0.49 0.69 0.28 8.16 -0.15
40 2012 yy 137.43 0.62 0.50 0.71 0.30 7.68 0.28
40 2013 yy 146.12 0.64 0.53 0.73 0.31 7.26 0.32
50 2010 yy 139.51 0.54 0.41 0.65 0.25 9.43 -1.17
50 2011 yy 145.79 0.56 0.43 0.66 0.25 8.66 -0.36
50 2012 yy 129.31 0.58 0.45 0.69 0.28 8.07 0.14
50 2013 yy 137.93 0.60 0.47 0.70 0.29 7.75 0.16

Table 6: Statistics of the global scale comparison, after bias correction, between the ECMWF CMEM Set 2 experiment, using Wang and Schmugge,
Wsimple and Wigneron parameterisations (see Tables 1 and 2), and SMOS observations of L-band brightness temperature at xx and yy polarizations
for 30◦, 40◦, 50◦ incidence angles, for 2010-2013.
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