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Abstract: The assimilation of L-band surface brightness temperature (Tb) into the land surface 14 

model (LSM) component of a numerical weather prediction (NWP) system is generally 15 

expected to improve the quality of summertime 2-m air temperature (T2m) forecasts during 16 

water-limited surface conditions. However, recent retrospective results from the European 17 

Centre for Medium-Range Weather Forecasts (ECMWF) suggest that the assimilation of L-18 

band Tb from the European Space Agency’s (ESA) Soil Moisture Ocean Salinity (SMOS) 19 

mission may, under certain circumstances, degrade the accuracy of growing-season 24-h T2m 20 

forecasts within the central United States. To diagnose the source of this degradation, we 21 

evaluate ECMWF soil moisture (SM) and evapotranspiration (ET) forecasts using both in situ 22 

and remotely sensing resources. Results demonstrate that the assimilation of SMOS Tb broadly 23 

improves the ECMWF SM analysis in the central United States while simultaneously degrading 24 

the quality of 24-h ET forecasts. Based on a recently derived map of true global SM/ET 25 

coupling and a synthetic fraternal twin data assimilation experiment, we argue that the spatial 26 

and temporal characteristics of ECMWF SM analyses and ET forecast errors are consistent with 27 
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the hypothesis that the ECMWF LSM over-couples SM and ET and, as a result, is unable to 28 

effectively convert an improved SM analysis into enhanced ET and T2m forecasts. We 29 

demonstrate that this over-coupling is likely linked to the systematic underestimation of root-30 

zone soil water storage capacity by LSMs within the United States Corn Belt region.  31 

1. Introduction 32 

During the growing season, soil moisture (SM) typically controls the partitioning of available 33 

energy between sensible and latent heat flux at the soil-atmosphere interface and thereby 34 

influences the energetic relationship between the land surface and the lower atmosphere. 35 

Furthermore, SM time series contain significant temporal persistence that can be exploited to 36 

forecast this relationship out in time. Therefore, the realistic initialization of SM states in the 37 

land surface model (LSM) component of a numerical weather prediction (NWP) system should, 38 

in theory, contribute to the skill of near-surface summer air temperature forecasts. However, this 39 

potential is not yet realized in operational weather prediction systems. Instead, SM values in 40 

operational NWP systems are often updated in a non-physical manner to minimize differences 41 

between observed and analyzed near-surface air temperature and relative humidity (Drusch and 42 

Viterbo 2007). 43 

The shortcomings of this approach have spurred interest in the assimilation of SM information 44 

into operational NWP systems (Liu et al. 2012). Since ground-based observations of SM are 45 

seldomly available in near-real-time, NWP centers have instead focused on the development of 46 

data assimilation (DA) techniques to merge near-surface SM information acquired from 47 

satellite-based observations into their LSMs (Dharssi et al. 2011, Muñoz-Sabater et al. 2015; 48 

2019, Carrera et al. 2015; 2019, Zheng et al. 2018). This approach combines best-possible 49 

estimates of land surface states based on available observations and short-range atmospheric 50 
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forecasts provided by the NWP system. In this regard, the European Space Agency (ESA) Soil 51 

Moisture and Ocean Salinity (SMOS) mission (Kerr et al. 2012), specifically designed to 52 

measure surface SM and ocean salinity from space, provides a unique opportunity to assimilate 53 

L-band microwave brightness temperature (Tb) observations that are highly sensitive to surface 54 

SM levels (Muñoz-Sabater et al. 2015). The assimilation of SMOS Tb should provide a more 55 

realistic representation of initial SM conditions, and subsequently, improved atmospheric 56 

forecasts in areas of significant land-atmosphere coupling. 57 

Despite this potential, recent results have suggested that the assimilation of SMOS Tb can, 58 

under certain circumstances, degrade 2-m air temperature forecasts (Muñoz-Sabater et al. 2019, 59 

Carrera et al. 2019). Figure 1, based on results published previously in Muñoz-Sabater et al. 60 

(2019), illustrates this for 2012 and 2013 summer forecasts obtained from a retrospective 61 

analysis by the European Center for Medium-Range Weather Forecasts (ECMWF) NWP 62 

system over the central United States. The figure plots differences in root-mean-square error 63 

(RMSE) for 24-h forecasts (corresponding to ~18:00 local solar time in the central United 64 

States) of 2-m air temperature (T2m) for three separate DA cases: i) a control (CTRL) case 65 

based on the operational ECMWF approach of assimilating T2m and 2-m relative humidity 66 

(RH2m) observations to update SM states, ii) a new experimental (EXPR) case based on the 67 

assimilation of only L-band SMOS Tb and iii) a baseline open loop (OL) case of no land data 68 

assimilation. See below and Muñoz-Sabater et al. (2019) for further case details.  69 

Red shading in Figure 1 indicates areas where the EXPR case has increased RMSE in 24-h T2m 70 

forecasts relative to either the CTRL (Figure 1a) or OL (Figure 1b) baseline cases. The 71 

increased 24-h T2m forecast RMSE (relative to the CTRL case) found along the eastern 72 

seaboard of the United States in Figure 1b is not wholly unexpected. The presence of significant 73 
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forest cover in this region reduces the amount of SM information present in SMOS Tb 74 

observations. In addition, the regional prevalence of energy-limited surface conditions reduces 75 

the value of SM for improving surface energy flux and, subsequently, T2m forecasts. As a 76 

result, it is not surprising that the assimilation of T2m and RH2m observations (in the CTRL 77 

case) is a more effective assimilation strategy in this region.  78 

In contrast, the degradation of 24-h T2m forecast skill in the EXPR case over the north-central 79 

United States is more concerning. This region contains relatively little forest cover and 80 

commonly exhibits water-limited summertime surface conditions. Therefore, SMOS Tb 81 

observations should contain significant amounts of SM information, and this information 82 

should, in turn, improve ECMWF’s ability to track surface energy fluxes and issue reliable 24-h 83 

T2m forecasts. This is especially true for comparisons against an OL case that is unaided by any 84 

data assimilation (Figure 1a). Bias results (not shown) reveal that elevated EXPR T2m RMSE 85 

values in this region are generally associated with a positive T2m bias. 86 

Consequently, EXPR T2m forecast degradation in the central United States suggests a 87 

breakdown (somewhere) in the beneficial sequential chain linking: i) successful SMOS L-band 88 

Tb assimilation, ii) improved SM analyses, iii) improved short-term evapotranspiration (ET) 89 

forecasts and iv) improved short-term T2m forecasts. Our goal here is to systematically examine 90 

individual links in this chain and clarify if, and how, T2m forecast skill is squandered in the 91 

EXPR case.  92 

ET forecasts at the center of this conceptual chain provide a critical link between SM analyses 93 

and forecasted T2m. However, the accuracy of ET forecasts is difficult to evaluate over large 94 

geographic regions. Recent work has illustrated that thermal infrared (TIR) remote sensing can 95 

be used to accurately constrain LSM representation of surface water and energy balance 96 
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processes – see, e.g., Han et al. (2015). Therefore, in addition to our conventional use of sparse, 97 

ground-based SM and ET observations to examine the SM-ET-T2m forecast chain, we also 98 

utilize ET retrievals acquired from TIR remote sensing and the Atmosphere-Land Exchange 99 

Inverse (ALEXI) model (Anderson et al. 2007; 2011) to continuously characterize the accuracy 100 

of ECMWF ET forecasts within a regional-scale domain. If successful, this application of large-101 

scale, satellite-based ET retrievals as a diagnostic tool would represent an important advance in 102 

our ability to track the impact of SM analysis errors on NWP forecasts of the lower atmosphere.  103 

Section 2 describes the ECMWF forecasts, ALEXI ET retrievals and ground-based SM and ET 104 

observations utilized in our analysis. Results are presented in Section 3 and discussed in Section 105 

4 with the aid of synthetic fraternal twin synthetic experiments generated using a simplified soil 106 

water balance model. Finally, key paper conclusions are summarized in Section 5. 107 

2. Data and methods 108 

a. ECMWF data assimilation experiments 109 

Launched in late 2009, ESA’s SMOS project is the first satellite mission designed specifically 110 

to provide global retrievals of surface (0-5 cm) SM and sea-surface salinity. Still functioning as 111 

of mid-2020, the SMOS sensor passively measures microwave radiation emitted by the Earth's 112 

surface within the L-band portion of the electromagnetic spectrum (1.4 GHz) using an 113 

interferometric radiometer (Kerr et al. 2012). At this frequency, microwave Tb is modestly 114 

affected by both vegetation cover and the atmosphere and relatively more sensitive to surface 115 

SM conditions than higher frequency C- and X-band observations available from older passive 116 

microwave satellite missions. The SMOS instrument acquires individual L-band Tb retrievals at 117 

a spatial resolution of about 40 km and with a repeat time of every 2-3 days (at the equator). 118 
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ECMWF has conducted a series of hindcasting DA experiments to gauge the impact of 119 

assimilating SMOS Tb into their operational weather forecasting system (Muñoz-Sabater et al. 120 

2015; 2019). Our focus here is on experiments conducted during the 2012– 2013 boreal summer 121 

and described in detail by Muñoz-Sabater et al. (2019). As discussed above, these experiments 122 

are based on comparisons between a “control” (CTRL) case that assimilates only screen-level 123 

meteorological variables (T2m and RH2m) versus an “experimental” (EXPR) case that 124 

assimilates only SMOS L-band Tb. An “open loop” (OL) case lacking any land data 125 

assimilation is also considered as a baseline. In all three cases, the LSM is the improved 126 

Hydrology Tiled ECMWF Scheme for Surface Exchanges over Land (HTESSEL) used 127 

operationally by ECMWF (Balsamo et al. 2009) within the ECMWF Integrated Forecasting 128 

System (IFS). 129 

All ECMWF data assimilation experiments were based on a 12-hour assimilation window in 130 

which all available observations of T2m and RH2m (for the CTRL case) and SMOS Tb (for the 131 

EXPR case) were collected and assimilated to update HTESSEL soil moisture states. For the 132 

CTRL case, the assimilation system assigned error standard deviations of 1 [°K] and 4 [%] for 133 

T2m and R2H observations, respectively. For the EXPR case, a variable SMOS Tb error 134 

standard deviation was assigned depending on the radiometric accuracy of the assimilated 135 

SMOS Tb observation. Updated states of soil moisture at 00 UTC were then used to launch the 136 

24-hour T2m and ET forecasts examined here. For further details, see Muñoz-Sabater et al. 137 

(2019). 138 

All ECMWF forecasts and analyses were interpolated to a spatial resolution of 0.25° (from their 139 

original non-regular grid at a horizontal resolution of approximately 40-km). Unless otherwise 140 

noted, forecasts were issued at 00 UTC with a lead time of 24 hours. Therefore, ET forecasts 141 
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[MJ m-2 d-1] reflect the accumulation of forecasted flux between 00 and 23:59 UTC. Likewise, 142 

24-h T2m forecasts reflect predictions of 2-m air temperature [°K] at 00 UTC – corresponding 143 

to ~18:00 local solar time in the central United States 144 

All presented SM results are based on a DA analysis that reflects the best-available estimate of 145 

current soil moisture conditions based on all prior information. Specifically, SM analyses 146 

represent volumetric soil moisture [m3 m-3] content at 00 UTC for three vertical HTESSEL soil 147 

layers (0-7 cm, 7-28 cm, and 28-100 cm). Our period of interest is the 2012 and 2013 growing 148 

seasons (1 May to 30 September). Unfortunately, 2012 ET and SM OL fields were lost during 149 

the cyclical purging of experimental results at ECMWF. Therefore 2012 results shown below 150 

are limited to EXPR versus CTRL comparisons.  151 

b. Satellite retrieval of daily ET 152 

As introduced above, ALEXI is a diagnostic thermal infrared (TIR) model that calculates 153 

surface energy fluxes using the two-source energy balance (TSEB) approach of Norman et al. 154 

(1995). It models the land surface as a composite of soil and vegetation cover and couples the 155 

TSEB with an atmospheric boundary layer model to capture land–atmosphere feedback on T2m 156 

(Anderson et al. 2007; 2011). The land-surface representation in the ALEXI model partitions 157 

TIR retrievals of surface radiometric temperature (𝑇𝑅𝐴𝐷) into its soil and canopy temperature 158 

components (𝑇𝑠 and 𝑇𝑐) assuming that 𝑓(𝜃) represents the apparent vegetation cover fraction at 159 

sensor view angle 𝜃: 160 

𝑇𝑅𝐴𝐷 (𝜃) = [𝑓(𝜃)𝑇𝑐
4 + [1 − 𝑓(𝜃)]𝑇𝑠

4]
1/4

.     (1) 161 

For a homogeneous vegetation canopy with a given leaf area index (LAI) and spherical leaf 162 

angle distribution, 𝑓(𝜃) is approximated as:  163 
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𝑓(𝜃) = 1 − exp (
−0.5Ω(𝜃)𝐿𝐴𝐼

𝑐𝑜𝑠𝜃
).      (2) 164 

where Ω is a vegetation clumping factor at view angle 𝜃 used to characterize non-random 165 

leaf area distributions (Anderson et al., 2005). Based on remote-sensing estimates 166 

of 𝑇𝑅𝐴𝐷 , LAI, and radiative forcing, ALEXI solves for the soil (subscript ‘s’) and the canopy 167 

(subscript ’c’) energy budget terms individually and calculates composite (soil plus canopy) 168 

net radiation (RN), sensible (H), latent heat (λE) and soil heat (G) fluxes as: 169 

𝑅𝑁 = 𝐻 + 𝜆𝐸 + 𝐺   {

𝑅𝑁 = 𝑅𝑁𝑐 + 𝑅𝑁𝑠

𝐻 = 𝐻𝑐 + 𝐻𝑠

𝜆𝐸 = 𝜆𝐸𝑐 + 𝜆𝐸𝑠

         (3) 170 

during cloud-free days. During cloudy days, fluxes are estimated by temporal smoothing and 171 

gap-filling the ratio of ET to solar radiation obtained on clear days and then multiplying this 172 

ratio by daily solar insolation values. 173 

For this study, time series of morning 𝑇𝑅𝐴𝐷  are obtained from the TIR channel (11 µm) on the 174 

Geostationary Operational Environmental Satellites (GOES) and LAI information from the 175 

Moderate Resolution Imaging Spectrometer (MODIS). The ALEXI model has been used to 176 

retrieve continuous daily ET since 2001 over the United States (Anderson et al. 2007, Hain et 177 

al. 2011). Here, we extracted daily (00 to 23:59 UTC) 0.25° ALEXI ET estimates [MJ m-2 d-1] 178 

acquired during the 2012 and 2013 growing seasons (1 May to 30 September). 179 

c. Ground-based SM observations 180 

ECMWF surface-layer (0- to 7-cm) SM analyses were evaluated using observations acquired at 181 

a 5-cm measurement depth from the USDA Soil Climate Analysis Network (SCAN) and 182 

NOAA United States Climate Reference Network (USCRN). All SCAN and USCRN sites 183 

passing a basic quality check were considered (see below for details).  184 

Accepted for publication in Journal of Hydrometeorology. DOI 10.1175/JHM-D-20-0088.1.

D
ow

nloaded from
 http://journals.am

etsoc.org/jhm
/article-pdf/doi/10.1175/JH

M
-D

-20-0088.1/4994034/jhm
d200088.pdf by guest on 02 Septem

ber 2020



9 

 

In addition, ECMWF root-zone layer (0- to 1-m) SM analyses were evaluated at selected USDA 185 

SCAN sites in the central United States. These analyses were based on the weighted averaging 186 

of SM estimates for the top three HTESSEL vertical soil layers (i.e., 0-7 cm, 7-28 cm and 28-187 

100 cm). Corresponding USDA SCAN 1-m averages were based on the weighted averaging of 188 

SM observations available at ~5-, 10-, 20-, 50- and 100-cm depths assuming constant soil 189 

moisture within vertical soil layers (defined using boundaries corresponding to the mid-points 190 

between measurements obtained at successive depths). See Figure 2 for all site locations. 191 

For all USCRN and SCAN observations (regardless of depth), temporal measurement gaps of 192 

less than 6 hours in SM measurements were bilinearly interpolated. The resulting hourly SM 193 

time series were then sub-sampled to acquire daily estimates of SM at 00 UTC. Days containing 194 

gaps larger than 6 hours were masked, and at least 100 valid daily SM measurements were 195 

required (in total) during the 2012 and 2013 growing seasons (1 May to 30 September) for a 196 

given site to be considered. Point-scale ground observations were assumed to represent an entire 197 

0.25° grid cell. To identify non-representative sites, a minimum correlation of 0.30 [-] was 198 

required between USCRN/SCAN daily and (both) EXPR- and CTRL-case SM analyses for a 199 

given SM measurement site to be considered.  200 

d. Ground-based ET observations 201 

In addition to ALEXI ET retrievals, surface energy flux observations acquired at AmeriFlux 202 

network sites within the central United States (Table 1) were used to evaluate the quality of 203 

ECMWF 24-h ET forecasts. At these sites, all valid summertime 30-minute ET observations 204 

were multiplied by 48 and averaged within each day to obtain a daily (00 to 23:59 UTC) ET 205 

total [MJ m-2 d-1]. At least 36 valid half-hourly observations per day were required for a given 206 

day to be considered, and we enforced a minimum threshold requirement of at least 25 daily 207 
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data pairs per year between ECMWF forecasts and ground observations. Flux tower sites not 208 

meeting this availability threshold, or providing discontinuous and/or non-realistic time series, 209 

were not considered. Note that certain tower sites met these thresholds for only one year of our 210 

two-year analysis. For the case of highly clustered sites within a single 0.25° grid cell, 211 

AmeriFlux observations from multiple towers were averaged into a single daily ET time series 212 

(Table 1).  213 

In addition to the 17 AmeriFlux sites/clusters listed in Table 1, ground-based ET data were 214 

collected within the South Fork Watershed of the Iowa River at a Joint Experiment for Crop 215 

Assessment and Monitoring (JECAM) site maintained by the USDA Agricultural Research 216 

Service. During the 2012 and 2013 growing seasons (1 May to 30 September), 30-minute eddy 217 

covariance flux estimates were obtained from neighboring corn and soybean fields. Fluxes from 218 

these two sites were averaged based on weights consistent with local corn and soybean land 219 

cover fractions and summed into 00 to 23:59 UTC daily averages prior to their comparison 220 

against collocated 0.25° ECMWF ET forecasts.  221 

Despite our best-effort attempts to maximize the spatial support of the ground-based ET 222 

measurements, it is inevitable that residual spatial representativeness errors will be present 223 

when flux tower observations are used as a point-of-reference for 0.25° ECMWF ET forecasts. 224 

The impact of these errors is discussed below.  225 

e. SM/ET coupling assessment 226 

Due to the impact of random retrieval error, it is generally difficult to assess SM/ET coupling 227 

strength using remote sensing products. Left uncorrected, random retrieval errors in SM and ET 228 

remote sensing products will spuriously bias observation-based coupling estimates low and 229 

compromise their value as an absolute benchmark for LSMs (Findell et al. 2015). To address 230 
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this issue, Crow et al. (2015) proposed a triple-collocation (TC) approach that uses multiple 231 

independent estimates of both SM and ET to calculate unbiased estimates of the true Spearman 232 

rank coefficient of determination (bounded as [0,1]) between SM and ET - even in the presence 233 

of significant random retrieval error in individual SM and ET products.  234 

Lei et al. (2018) refined the approach of Crow et al. (2015) and applied it globally to weekly 235 

SM and ET products from a variety of global remote sensing and LSM sources. Specifically, 236 

they applied remotely sensed SM products acquired from the C-band Advanced SCATerometer 237 

(ASCAT) using the Vienna University of Technology (TU-Wien) change-detection algorithm 238 

(Naeimi et al. 2009) and passive microwave SM retrievals taken from the ESA Climate Change 239 

Initiative (CCI) Soil Moisture (v3.2) product (Dorigo et al. 2018). Remote sensing ET products 240 

were generated by applying the ALEXI model to both TIR- (Hain and Anderson 2017) and 241 

microwave-based land surface temperature retrievals (Holmes et al. 2015). LSM-based SM and 242 

ET products used to complete the required SM and ET triplets were obtained from offline LSM 243 

output provided by the Global Land Data Assimilation System (Rodell et al. 2004).  244 

Based on these products, Lei et al. (2018) constructed a global map of benchmark SM/ET 245 

coupling strength (i.e., the true Spearman rank coefficient of determination between weekly SM 246 

and ET values). The exact 0.25°-resolution SM/ET coupling strength values utilized here were 247 

derived by applying the Lei et al. (2018) approach to SM and ET products collected during the 248 

2012 and 2013 growing seasons.  249 

Provided the error assumptions underlying the application of TC are satisfied (i.e., estimation 250 

errors are orthogonal and mutually independent), this assessment can be considered robust and 251 

independent of the specific datasets used to create it (Crow et al. 2015, Lei et al. 2018). 252 

Therefore, it provides an absolute point-of-reference for evaluating (correlation-based) SM/ET 253 
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coupling strength estimates provided by HTESSEL. Since it has been shown to represent the 254 

most realistic soil moisture conditions, HTESSEL is evaluated based on EXPR case results 255 

generated within the ECMWF IFS system. Nevertheless, several limitations in this approach 256 

should be acknowledged. First, due to the lack of global root-zone SM products available from 257 

remote sensing, this benchmark is based on ET coupling with surface (0-5 cm), and not root-258 

zone (0-1 m), SM products. Second, like all TC assessments, the approach converges slowly in 259 

time. Therefore, two growing seasons of data (i.e., 2012 and 2013) represent a relatively short 260 

period for its application. Finally, the approach requires a minimum threshold of skill to be 261 

present in the SM and ET products it utilizes. Areas where this threshold is not met, due, e.g., to 262 

the loss of skill in surface SM retrievals under dense vegetation cover, must be masked.  263 

3. Results 264 

As noted above, the assimilation of SMOS surface SM (in the EXPR DA case) does not 265 

uniformly improve the accuracy of 24-h forecasts of T2m relative to the baseline CTRL case of 266 

assimilating T2m and RH2m or the OL case of no land data assimilation at all. Our primary 267 

goal here is explaining the source of this degradation within the central United States (Figure 1).  268 

a. 00 UTC SM analyses 269 

To start, it is important to confirm that SMOS Tb data assimilation improves the HTESSEL SM 270 

analysis at multiple soil depths. To this end, Figure 2 summarizes EXPR temporal correlation 271 

(R) differences, versus both the OL and CTRL baseline cases, for surface- (top row; 0- to 5-cm) 272 

and root-zone (bottom row; 0- to 1-m) 00 UTC SM analyses. All temporal correlations are 273 

sampled against benchmark SM observations acquired at USDA SCAN and NOAA USCRN 274 

sites (see Section 2.c). Prior to their assimilation in the EXPR case, SMOS Tb observations 275 

were linearly rescaled to match the climatological mean and standard deviation of the Tb values 276 
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estimated by applying a microwave forward model to surface state estimates provided by the 277 

ERA-Interim reanalysis (de Rosnay et al. 2019). This rescaling ensures that the assimilation of 278 

SMOS Tb cannot correct stable bias in HTESSEL SM estimates (used to generate the 279 

reanalysis) and, therefore, cannot significantly improve RMSE in cases where such bias is the 280 

major component of RMSE (Crow et al. 2005). Therefore, Figure 2 focuses on relative 281 

improvements in temporal R to summarize overall EXPR SM performance. Note that 282 

assessments of product-to-product R differences (for example, determining if EXPR or CTRL 283 

SM correlates better with true SM) are relatively insensitive to spatial representative errors 284 

(Dong et al. 2019, 2020). 285 

At both depths (0-5 cm and 0-1 m), the EXPR case consistently improves the precision (i.e., 286 

correlation versus a high-quality reference) of SM analyses relative to the CTRL and OL 287 

baseline cases. Such improvement is particularly strong versus the OL case of no land data 288 

assimilation. Due to the inability of SM DA to correct bias (see above), RMSE results (not 289 

shown) are relatively more mixed. Nevertheless, the EXPR DA case still generally reduces 290 

surface SM RMSE across a large swath of the central United States and has, at worst, a neutral 291 

impact on root-zone SM RMSE.  292 

Therefore, Figure 2 suggests that the degradation of EXPR T2m forecasts in the central United 293 

States in Figure 1 cannot be tied to a comparable degradation in the EXPR SM analysis. Instead, 294 

the SMOS Tb DA system functions as expected with regards to its net positive impact on the 295 

precision of ECMWF SM analyses. The relatively short temporal period of our analysis, 296 

combined with the highly autocorrelated nature of SM times series (particularly in the root-297 

zone), prevents us from establishing the statistical significance of most precision improvements 298 

in Figure 2. However, these result are broadly consistent with a number of prior studies that 299 
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demonstrated the positive impact of L-band Tb (or SM) assimilation on the accuracy of LSM 300 

surface- and root-zone SM estimates (Muñoz-Sabater et al. 2019, Reichle et al. 2017; 2019, 301 

Blankenship et al. 2016, Mladenova et al. 2019, Carrera et al. 2015; 2019). 302 

b. 24-h ET forecasts 303 

Given that the EXPR case appears to enhance SM analysis precision (Figure 2), it becomes 304 

important to examine ET forecasts as the next link in the SM-ET-T2m forecast chain and a 305 

potential source of T2m forecast degradation within the central United States (see Figure 1). To 306 

this end, the background images in Figure 3 describe temporal R (top row) and RMSE (bottom 307 

row) differences between 24-h EXPR ET forecasts versus both the OL (left column) and CTRL 308 

(right column) baseline cases for the case of utilizing ALEXI ET retrievals as the reference 309 

benchmark. Note that while SMOS Tb assimilation (i.e., the EXPR case) often makes ECMWF 310 

ET forecasts more precise and accurate (i.e., improves R and RMSE fit to independent ALEXI 311 

ET retrievals), consistent degradation relative to both the CTRL and OL baseline cases is found 312 

over an area of the central United States that corresponds roughly to the region of degraded 313 

T2m forecasts in Figure 1. This implies that the net degradation in EXPR T2m forecasts seen in 314 

Figure 1 is linked to a comparable degradation in ET forecasts. That is, the beneficial chain 315 

linking improved SM analyses, ET forecasts, and T2m forecasts appears to break down at the 316 

interface between SM and ET. 317 

As with the case of T2m forecasts in Figure 1, the net degradation in ET forecast accuracy is 318 

larger versus the CTRL baseline than against the OL case. Because of the beneficial impact of 319 

assimilating T2m and RH2m observations on surface flux forecasts, the CTRL case is a more 320 

accurate baseline and thus relatively harder to improve upon. In contrast, EXPR versus OL 321 

differences reflect only the (relatively smaller) net impact of assimilating SMOS Tb. 322 
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While ALEXI ET retrievals used as a benchmark in Figure 3 are not error free, random errors in 323 

ALEXI daily ET estimates should not preferentially favor any of the forecast cases. 324 

Consequently, comparison against ALEXI ET retrievals provide a reliable assessment of 325 

relative accuracy (or precision) differences across multiple DA cases. In addition, ALEXI-based 326 

assessments of relative ET precision/accuracy are generally consistent with analogous 327 

assessments based on sparse, ground-based flux tower observations. Note the approximate 328 

correspondence in Figure 3 between the color shading of the background (derived using ALEXI 329 

as the ET benchmark) and the symbol fill colors (derived using sparse flux-tower listed in Table 330 

1 as the ET benchmark). The agreement between these two independent assessments lends 331 

credibility to the conclusion that, within a broad swath of the central United States, the 332 

assimilation of SMOS Tb (in the EXPR DA case) degrades the accuracy of ECMWF short-term 333 

ET, and subsequently T2m forecasts, relative to both the CTRL and OL baseline cases (Figure 334 

3). As discussed above, this degradation occurs despite the apparent improvement of the EXPR 335 

SM analysis relative to both baseline cases (Figure 2).  336 

Figure 3 also reveals that, within the central United States, the CTRL case provides a far better 337 

fit to ALEXI ET than the OL case – note how ET degradation in the EXPR case becomes much 338 

more apparent when measured against the superior CTRL baseline (see the second column of 339 

Figure 3). Since the CTRL case is based on the use of T2m and RH2m observations to constrain 340 

ET, this improvement implies that the ECMWF IFS is correctly linking ET and T2m – which is 341 

consistent with the conclusion that the relationship between SM and ET represents the weak 342 

link in ECMWF IFS’ representation of the SM-ET-T2m chain. 343 

c. SM/ET temporal coupling 344 
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Taken as a whole, Figures 2-3 suggest that something in the way HTESSEL relates summertime 345 

SM to ET within the central United States prevents ET forecasts from realizing benefits derived 346 

from an improved SM analysis. This degradation in ET, in turn, appears responsible for the 347 

T2m forecast degradation seen in Figure 1. 348 

Figure 4 explores this possibility by replotting the background of Figure 3c (i.e., the change in 349 

24-h ET forecast RMSE between the EXPR and OL cases) and comparing it to a map of 350 

estimated bias in HTESSEL’s representation of SM/ET temporal coupling – as calculated using 351 

the TC approach in Lei et al. (2018). As described in Section 2.e, the Lei et al. (2018) approach 352 

is noteworthy in that it corrects for the spurious low bias present in remote sensing-based 353 

estimates of SM/ET coupling due to the presence of independent random error afflicting 354 

estimates of SM and ET derived from various modelling and remote sensing sources. Therefore, 355 

it provides a robust estimate of absolute SM/ET coupling strength that is insensitive to the 356 

specific set of SM and ET products used to derive it (Crow et al. 2015). It can therefore be 357 

directly compared to LSM-based estimates of SM/ET coupling strength to identify LSM 358 

coupling-strength biases. 359 

Areas where the assimilation of SMOS Tb degrades the accuracy of 24-h ET forecasts - see 360 

positive (blue) values in Figure 4a - generally correspond to regions where HTESSEL over-361 

couples SM and ET - see positive (blue) values in Figure 4b. This suggests that SM/ET over-362 

coupling is linked to the inability of the EXPR case to convert favorable EXPR SM results 363 

(Figure 2) into improved EXPR ET and T2m forecasts (Figures 1 and 3). It should also be noted 364 

that a general tendency towards LSM SM/ET over-coupling is also consistent with previous 365 

studies of LSM land-atmosphere coupling strength – see, e.g., Dirmeyer et al. (2018), Ukkola et 366 

al. (2016) and Lei et al. (2018). 367 
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4. Discussion  368 

The specific mechanism linking HTESSEL SM/ET over-coupling (see Figure 4b) with the 369 

degradation of both ET and T2m EXPR forecasts is not immediately obvious. In this section, 370 

we will utilize a set of synthetic twin data assimilation experiments to clarify this mechanism 371 

and explain conditional biases present in ET and SM time series results at three central United 372 

States locations (A, B, and C; labelled in Figure 4a) where EXPR ET degradation is particularly 373 

strong. 374 

a. Synthetic fraternal twin experiments 375 

Figure 3 demonstrates that assimilation of SMOS Tb often degrades ET forecasts in the central 376 

United States despite having a consistently beneficial impact on the precision of SM estimates 377 

(Figure 2). Here we utilize a set of synthetic twin data assimilation experiments to resolve this 378 

apparent paradox. These experiments are based on the synthetic generation of “true” and 379 

“observed” SM states using a dynamic model and the re-assimilation of these synthetic 380 

observations back into the original dynamic model (after it has been degraded by synthetic 381 

modelling error). We will additionally differentiate the models applied in the observation-382 

generation and assimilation steps by systematically introducing differences with respect to the 383 

assumed strength of SM/ET coupling (see above). Therefore, these synthetic twin experiments 384 

are “fraternal” in the sense that the assimilation model systematically differs from the base 385 

model used to generate the synthetic observations. Such experiments provide a well-controlled 386 

testbed for examining the impact of systematic modelling errors on data assimilation 387 

performance.  388 

To this end, we will employ a simple model (and an assumption of statistically stationary 389 

climate) to describe the temporal evolution of SM as: 390 
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SMt+1 = exp(-α)SMt - βt + Pt       (4) 391 

where Pt [mm] is time-varying precipitation; exp(-α)SMt [mm] is a loss term assumed to be 392 

proportional to SM; βt [mm] is a representation of random time-varying loss that is not linked to 393 

SM and α is a unit-less constant. Both loss terms in (4) are assumed due to ET - which can 394 

therefore be expressed via water balance principles as: 395 

ETt = [1 - exp(-α)]SMt  + βt.       (5) 396 

It is easily confirmed that the coupling strength between SM and ET (i.e., the partial derivative 397 

of (5) with respect to SM) is a monotonically increasing function of α. Therefore, hereinafter, α 398 

is used as a (nonlinear) unit-less proxy for SM/ET coupling strength. 399 

Using the modelling system in (4-5), we conducted a series of synthetic fraternal twin 400 

experiments whereby synthetic “truth” estimates of SM were: i) generated via (4), ii) degraded 401 

through the introduction of synthetic random error and iii) then re-assimilated back into (4) 402 

using a Kalman Filter (KF) following the degradation of the Pt time series via random additive 403 

noise. A large set of such experiments was then produced where both true and assumed values 404 

of α were systematically varied (see axes on Figure 5). As such, these experiments illustrate the 405 

impact of assimilating SM observations into a model that systematically misrepresents the 406 

strength of SM/ET coupling (i.e., the magnitude of α). See Appendix A for additional 407 

methodological details on these experiments. 408 

Our representation of this conditional bias in Figure 5 is based on the binary classification of 409 

true SM conditions as either “wet” or “dry” (i.e., less than or greater than the median value of 410 

the entire true SM times series). Conditional bias manifests itself as a difference between these 411 

opposing wet and dry time periods (i.e., column-wise differences in Figure 5 for a given row). 412 
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For presentation purposes, a single, long-term SM value has been removed from each individual 413 

synthetic result prior to plotting. Note that this has no impact on the magnitude of conditional 414 

biases. 415 

Prior to DA, the inaccurate specification of α leads to conditional SM and ET biases in the OL 416 

case (see column versus column differences for the top two rows of Figure 5). Naturally, these 417 

biases are largest for cases where the assimilation model misrepresents SM/ET coupling (i.e., 418 

the off-diagonal portions of sub-plots in Figure 5 where assumed α does not match true α). 419 

However, the misspecification of α leads to contrasting signs in SM and ET conditional biases. 420 

That is, under conditions where the OL underestimates ET, excess moisture accumulates in the 421 

soil, leading to an overestimation of SM (and vice versa). 422 

This sign contrast has important consequences for SM data assimilation. Since our simple 423 

model always assumes SM and ET are positively correlated via (5), efforts to correct time-424 

varying errors in SM will tend to move ET in the wrong direction. Therefore, ET conditional 425 

bias is generally worsened by the correction of SM via DA in models that poorly describe 426 

SM/ET coupling. To see this, compare off-diagonal ET results for the OL case in the second 427 

row of Figure 5 to off-diagonal results for the KF case shown in the bottom row of Figure 5. 428 

This amplification of conditional bias during DA is generally stronger for the case of over-429 

coupling (captured in the bottom-right corner of plots in Figure 5) than under-coupling 430 

(captured in the top-left corner). This break in symmetry occurs because the impact of SM 431 

errors on ET is relatively small when SM and ET are under-coupled. This allows the under-432 

coupled SM/ET case to circumvent the negative inter-play between SM and ET conditional 433 

biases seen in the over-coupled case. Therefore, from the perspective of estimating ET using 434 

SM DA, over-coupling SM and ET is relatively more dangerous than analogous under-coupling. 435 
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Also, note that ET degradation occurs despite the relatively robust removal of conditional SM 436 

bias present in the OL SM results by SM DA (compare the top row and the third rows in Figure 437 

5). That is, the amplification of conditional bias by DA is only evident in ET estimates and is 438 

not reflected in the SM analysis. 439 

b. Link to ECMWF forecast cases 440 

Fraternal synthetic twin experiments summarized in Figure 5 illustrate that systematic errors in 441 

SM/ET coupling can lead to ET conditional biases that are exacerbated by the subsequent 442 

assimilation of SM observations. While these results are generated using a simplistic SM model, 443 

there is a substantial amount of overlap between synthetic twin DA results in Figure 5 and 444 

earlier real-data results presented in Figures 1-4.  445 

To start, the observed ability of SMOS Tb DA to consistently improve the precision of SM 446 

analyses (see Figure 2) is consistent with the improvement of SM in the synthetic twin case 447 

(compare the first and third rows of Figure 5) – even for cases where SM/ET coupling is poorly 448 

characterized by the assimilation model. At the same time, synthetic results in Figure 5 illustrate 449 

how SM/ET over-coupling can produce a DA analysis where degraded ET forecasts and 450 

enhanced SM analyses simultaneously co-exist – thus explaining the apparent paradox noted 451 

above in the real-data EXPR SM and ET results over the central United States. The presence of 452 

SM/ET over-coupling in the central United States is also implied by comparisons between 453 

HTESSEL SM/ET coupling strengths and the independent SM/ET coupling strength assessment 454 

provided by Lei et al. (2018) (see Figure 4b). 455 

Insight from the synthetic experiments in Figure 5 can also be used to explain SM and ET time 456 

series results (see Figure 6) extracted at labelled locations in Figure 4a. To start, it should be 457 

stressed that the model underlying the synthetic results is based on the simplistic assumption 458 
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that SM and ET are linearly related – see (5). However, both in nature and in HTESSEL 459 

physics, such coupling exists only for relatively dry SM conditions consistent with water-460 

limited surface energy fluxes. Therefore, only the “dry-case” synthetic results (captured in the 461 

right-hand column of Figure 5) are likely to be directly relevant for interpreting time series 462 

results in Figure 6. Therefore, we will focus on the impact of SM/ET over-coupling during 463 

generally dry mid- to late-summer conditions.  464 

During this period, all three sites in Figure 6 show a sharp decline in 1-m SM levels (see the 465 

bottom row of Figure 6). Because surface energy fluxes in the Corn Belt are commonly water-466 

limited during the summer, this drying leads to a reduction in ET for the OL case (see the top 467 

row of Figure 6). However, since HTESSEL generally over-couples summertime SM and ET in 468 

the region (see Figure 4b), the resulting reduction in ET is excessive and induces a spurious 469 

reduction into OL ET results relative to the independent ALEXI ET benchmark (see the OL ET 470 

results along the top row of Figure 6). This reduction causes excess SM to progressively 471 

accumulate at all three sites during the late summer due to water balance considerations. As a 472 

result, late-summer SMOS Tb assimilation tends to remove soil water in the EXPR DA case 473 

(note the gap between OL and EXPR SM results that develops during this period in Figure 6). 474 

While this removal of water generally improves the HTESSEL SM analysis (see Figure 2), it 475 

also degrades ET forecasts relative to the OL baseline (Figure 3 and Figure 6) which, in turn, 476 

negatively impacts summertime T2m forecasts (Figure 1).  477 

Note that these (real-data) dynamics are entirely consistent with earlier “dry” case synthetic 478 

results in Figure 5 for the over-coupled assimilation case (shown in the bottom-right of each 479 

plot along the right column of Figure 5). That is, during dry late summer conditions, over-480 

coupling SM and ET leads to a simultaneous positive SM conditional bias (see bottom-right 481 
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portion of Figure 5b) and negative ET conditional bias in OL results (see bottom-right portion 482 

of Figure 5d). When SM DA is performed, the positive conditional SM bias is generally 483 

corrected (see bottom-right portion of Figure 5f); however, the negative conditional ET bias is 484 

exacerbated (compare the bottom-right portions of Figure 5d and 5h). Therefore, time series 485 

results in Figure 6 are consistent with expectations concerning the assimilation of SM (or Tb) 486 

information into a land model that over-couples SM and ET.  487 

In addition, given the expected link between lower ET and higher T2m, the underestimation of 488 

growing season ET for the EXPR case in Figure 6 is consistent with the noted tendency for 489 

EXPR T2m RMSE results to be elevated by a positive T2m forecast bias in the central United 490 

States (see discussion of Figure 1 in Section 1). This also qualitatively agrees with independent 491 

results in Carrera et al. (2019) who noted that - in their conceptually similar Canadian Land 492 

Data Assimilation system - L-band Tb assimilation tends to introduce a negative bias into 493 

summertime 2-m dew point temperature forecasts within the central United States. Such a dry 494 

bias in near surface conditions is a natural consequence of underestimating surface ET. 495 

c. Role of root-zone capacity 496 

Given the apparent importance of SM/ET coupling strength bias on ECMWF EXPR ET and 497 

T2m forecasts, it is worthwhile to consider various candidate sources for this bias. One clue is 498 

the spatial correspondence between the region of degraded ET forecasts for the EXPR case 499 

relative to the CTRL baseline and the regional extent of the United States Corn Belt region (see 500 

Figure 3b). 501 

Due to the depth and high organic content of its soils, the Corn Belt is generally characterized 502 

by very high values of root-zone soil water holding capacity. This capacity is exploited by the 503 

rapid vertical development of corn and soybean rooting systems that commonly extend below 1-504 
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m in depth by late-summer (Ordonez et al. 2018, Abendroth et al. 2011). However, HTESSEL 505 

lumps all cultivated land under a single “crop” land cover type and assigns 96% of root volume 506 

for this land cover type into the top 1-m of the soil column – see Table 8.4 in ECMWF (2018). 507 

This suggests that real corn and soybean crops commonly have access to deeper (i.e., > 1-m) 508 

soil water storage than assumed by HTESSEL, and actual conditions exhibit less sensitivity 509 

(relative to HTESSEL) to temporal fluctuations in shallower SM values. Therefore, a low bias 510 

in root-zone water holding capacity (arrived at via mischaracterization of either soil type or 511 

rooting depth) will be associated with a high bias in HTESSEL SM/ET coupling strength, and 512 

the HTESSEL OL case can reasonably be expected to underestimate the (considerable) ability 513 

of the real Corn Belt system to buffer temporal periods of drying (Williams et al. 2016). 514 

For the CTRL case, any such bias in root-zone capacity is mitigated by a DA analysis that 515 

systematically adds water during dry late summer (note the wetting of the CTRL case versus the 516 

OL baseline in Figure 6b) conditions to increase ET and match screen-level T2m and RH2m 517 

observations. For the NW Iowa and NE Kansas sites in Figure 6, such re-wetting of the soil 518 

column compensates for the late-summer underestimation of root-zone storage capacity in the 519 

model and generally maintains CTRL ET levels at or near independent ALEXI ET retrievals. In 520 

effect, the CTRL case adds water to the top-1-m of the soil column (and bolsters ET) to 521 

compensate for HTESSEL’s inability to capture the root extraction of soil water below 1-m. 522 

However, this compensating mechanism is not present in the OL case - causing a low bias in 523 

late-summer ET (Figure 6). This OL tendency is only exacerbated by SMOS Tb assimilation (in 524 

the EXPR case) due to the impact of SM/ET over-coupling (see earlier discussion in Section 525 

4.b).  526 

d. Alternative explanations 527 
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Above we argue that ECMWF T2m forecast errors are linked to SM/ET over-coupling in 528 

HTESSEL which, in turn, is associated with a low bias in assumed root-zone soil water holding 529 

capacity. However, since our case is admittedly circumstantial, the misrepresentation of other 530 

key processes within the United States Corn Belt region should also be considered. 531 

1) NEGLECT OF C4 CROPS 532 

In addition to large soil water holding capacities, a second defining characteristic of the Corn 533 

Belt is the preponderance of C4 crop cover (i.e., corn) and the inability of most LSMs to 534 

appropriately distinguish between C3 and C4 crops. The neglect of highly nonlinear C4 crop 535 

water stress processes has been shown to be a major limitation of existing LSMs (Verhoef and 536 

Egea 2014) and can cause systematic errors in the representation of SM/ET coupling strength - 537 

even in the case where root-zone water holding capacities are properly specified. However, an 538 

underestimation of non-linearity in the relationship between SM and ET does not appear to 539 

explain key ET conditional biases noted earlier in the Corn Belt for the OL case. For instance, if 540 

HTESSEL truly neglects nonlinearity in the grid-scale relationship between SM and ET (due to 541 

its neglect of C4 crops), then its OL case will produce too little ET during wet springtime 542 

conditions and too much ET during dry late-summer conditions (relative to a more nonlinear 543 

model that abruptly transitions between very high and very low ET conditions within a narrow 544 

root-zone SM window). This tendency is effectively the opposite of that seen in Figure 6 where, 545 

relative to the ALEXI ET baseline, the HTESSEL OL has too much ET in the spring and too 546 

little in the late summer.  547 

In addition, the abrupt shut-off of ET in the nonlinear case would likely lead to higher late-548 

summer SM than the linear case (where ET continues as a significant soil water loss mechanism 549 

down to much lower SM levels). Therefore, an excessively linear SM/ET case would likely 550 
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produce a low bias in late-summer SM conditions – whereas a comparison of EXPR and OL 551 

results in Figure 6 suggests the opposite (i.e. a positive late-summer SM bias in the HTESSEL 552 

OL case). One potential explanation for this is that the highly nonlinear evaporative stress 553 

relationship governing C4 crop ET response at a plot-scale (~10-m) is effectively linearized 554 

when applied to a coarse-scale grid containing large amounts of sub-grid SM spatial variability 555 

(Crow and Wood 1999). Therefore, the relatively linear HTESSEL evaporative stress 556 

relationship may, in the end, be more appropriate at the coarse grid-scale (~40-km) utilized in 557 

the ECMWF forecast system. 558 

2) NEGLECT OF TILE DRAINAGE 559 

A third defining characteristic of the United States Corn Belt (in addition to deep soil and C4 560 

crop cover) is the widespread installation of tile drains to compensate for poor natural drainage 561 

from the soil column. These drains represent a key sink of root-zone soil water in the region that 562 

is typically neglected by LSMs (Hain et al. 2015, Yang et al. 2017). Therefore, it is reasonable 563 

to suggest the neglect of tile drainage in HTESSEL may produce a large-scale bias in 564 

HTESSEL OL ET and SM estimates. In fact, SM OL time series results in the bottom row of 565 

Figure 6 are generally consistent with this possibility. Note that SMOS Tb assimilation in the 566 

EXPR DA case tends to remove summertime SM from the OL case – which is consistent with 567 

the hypothesis that the HTESSEL OL case overestimates summertime SM due to its neglect of 568 

tile drainage losses. However, it is reasonable to expect that the neglect of tile drainage would 569 

also lead to excessive ET – since tile drainage increases the loss of spring SM storage and 570 

hastens the development of water-limited ET conditions later in the summer. This expected ET 571 

signal is not seen in OL ET results presented in the top row of Figure 6. To the contrary, the OL 572 
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case appears to underestimate ET in the late summer - which is difficult to rectify with the 573 

neglect of tile drainage from a water balance perspective. 574 

3) NEGLECT OF IRRIGATION 575 

Finally, while agriculture in the Corn Belt is generally rain-fed, the neglect of irrigation could 576 

potentially explain the observed underestimation of summertime ET for the HTESSEL OL case 577 

in Figure 6. However, the neglect of irrigation would also be associated with the 578 

underestimation of SM (particularly during the late summer) and an increase of SM (versus the 579 

OL case) in the EXPR DA case – a tendency that contradicts SM results in the bottom row of 580 

Figure 6.  581 

In addition, the single area of the Corn Belt with extensive irrigation (eastern Nebraska; Green 582 

et al. 2018) is also the single Corn Belt sub-region where the EXPR case improves 24-h ET 583 

forecasts relative to the OL case (see the red-shaded area to the northwest of point “C” in Figure 584 

4a). This suggests that unrepresented irrigation is not a plausible reason for the general 585 

degradation of EXPR ET forecasts across the Corn Belt. In fact, the presence of significant 586 

irrigation in eastern Nebraska seems to enhance the relative performance of the EXPR case 587 

since SMOS Tb assimilation provides an opportunity to compensate ET forecasts for irrigation 588 

water inputs that are missed in the OL case. Note that such compensation is generally consistent 589 

with previous assessments that L-band microwave observations (or SM retrievals based on these 590 

observations) can detect the presence of irrigation (Lawston et al. 2017). 591 

Table 2 briefly summarizes the expected impact of missing (and/or mis-parameterized) land 592 

surface processes discussed above on late-summer SM and ET biases in HTESSEL OL output 593 

and compares these anticipated biases to actual biases found in Figure 6. While multiple 594 

processes operating within the United States Corn Belt are potentially neglected and/or poorly 595 
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represented by the HTESSEL OL case, only our original hypothesis of SM/ET over-coupling 596 

due to the underestimation of root-zone soil water holding capacity is fully consistent with the 597 

sign of observed late-summer SM and ET HTESSEL OL biases.  598 

5. Summary and conclusions 599 

It is commonly assumed that the improved representation of land surface states via DA will 600 

directly translate into better estimates of surface water and energy fluxes. This reasoning has 601 

formed the basis for intensive efforts to enhance NWP via the assimilation of microwave 602 

brightness temperature (Tb) observations (or surface soil moisture retrievals derived from such 603 

observations) into LSMs. While some success has been reported in these efforts (Muñoz-604 

Sabater et al. 2019, Carrera et al. 2019), it is important to critically diagnose cases where 605 

expected improvements have not materialized. Here, we focus on the specific degradation of 24-606 

h T2m forecasts within the central United States produced by the ECMWF forecast system 607 

during an experimental retrospective analysis assimilating SMOS L-band Tb ((Muñoz-Sabater 608 

et al. 2019).  609 

An area of degraded 24-h T2m forecasts (Figure 1) in the central United States corresponds to a 610 

region where SMOS Tb assimilation improves surface and root-zone SM analyses (Figure 2), 611 

degrades ET forecasts (Figures 3) and the HTESSEL LSM over-couples SM and ET (Figure 4b) 612 

relative to the independent coupling benchmark provided by Lei et al. (2018). Using a synthetic 613 

twin analysis (Figure 5), we demonstrate that this third observation (i.e., SM/ET over-coupling) 614 

effectively explains the first two. In particular, the over-coupling of SM and ET can induce 615 

conditional biases into SM and ET estimates that are consistent with those found in the real-data 616 

OL results. In addition, the sign contrast in OL SM and ET conditional biases ensures that ET 617 

biases are exacerbated (rather that mitigated) by L-band Tb (or SM) DA. Therefore, SMOS Tb 618 
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DA (in the EXPR case) corrects surface and root-zone SM but simultaneously intensifies an 619 

existing conditional bias in ET. Based on this mechanism, the EXPR case DA systematically 620 

underpredicts ET during the middle to late summer (Figures 4 and 6), which, in turn, degrades 621 

T2m forecasts relative to both the CTRL and OL baseline cases (Figure 1).  622 

Given that the area of degraded ET and T2m forecasts correspond well to the spatial extent of 623 

the United States Corn Belt, an agricultural source for SM/ET over-coupling (and associated ET 624 

and T2m degradation of the EXPR DA case) appears likely. The Corn Belt region is 625 

characterized by deep and organically rich soils and, as a result, very large root-zone soil water 626 

holding capacities. LSMs often underappreciate this capacity. In fact, the systematic under-627 

estimation of root-zone soil water holding capacity by HTESSEL is generally consistent with 628 

the temporal and spatial characteristics of observed ET and SM conditional biases (see Section 629 

4.c). Other agricultural characteristics of the Corn Belt region that are potentially neglected by 630 

the HTESSEL OL case (i.e., C4 crop cover, tile drainage and irrigation) are shown to be less 631 

likely causes of the bias due to their inability to explain the observed time and space 632 

characteristics of conditional biases present in OL SM and ET results (see Section 4.d and Table 633 

2).  634 

Alternative DA re-scaling techniques (capable of correcting for the presence of seasonally 635 

varying relative bias between HTESSEL and SMOS SM estimates) may improve EXPR DA 636 

results (Yilmaz et al. 2016). However, such a solution is arguably ad hoc and does not address 637 

the underlying SM/ET coupling strength bias present in the LSM. Instead, direct modifications 638 

to HTESSEL appear necessary for a robust solution. To this end, ECMWF is currently testing 639 

an HTESSEL implementation that utilizes a more extensive soil column (up to 8-m in depth 640 
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with 10 soil layers) capable of accommodating much deeper crop rooting depths. Results 641 

presented here are supportive of this approach. 642 

While our focus here is solely on the central United States, ECMWF EXPR DA results were 643 

also degraded relative to the OL and CTRL cases over agricultural areas of central California, 644 

eastern Australia, the Sahel and the Eurasian wheat belt – see Figure 9 in Muñoz-Sabater et al. 645 

(2019). This implies that results presented here are relevant for multiple agricultural regions 646 

worldwide. Future research will explore this possibility.  647 

Overall, results highlight the need to consider systematic aspects of LSMs before assuming the 648 

correction of random error in land surface states will directly translate into improved estimates 649 

of surface water and energy fluxes. Specifically, we highlight that systematic coupling errors 650 

can produce cases where conditional flux biases are reinforced (rather than mitigated) by DA. 651 

While past research has demonstrated that improperly parameterized DA systems can degrade 652 

model and state predictions (Reichle et al. 2008), this analysis illustrates that this danger 653 

extends to the case of a high-quality DA implementation for an LSM with systematic errors in 654 

its representation of state/flux coupling. Therefore, in a broader sense, this work highlights the 655 

danger of assuming that all LSM flux errors – regardless of their source – can be corrected by 656 

DA state correction. Instead, our results suggest that broader approaches considering the effects 657 

of both random and systematic errors sources must be used before land DA can consistently 658 

contribute additional value to NWP. In this regard, on-going improvements in the availability of 659 

remotely sensed ET retrievals (Holmes et al. 2018) and the improved accuracy of remote-660 

sensing-based estimates of SM/ET coupling strength (Lei et al. 2018) provide valuable large-661 

scale baselines for improving LSM representation of state/flux coupling strength. 662 
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Appendix A – Synthetic fraternal twin experiments 672 

Synthetic twin experiments presented in Section 4.a and Figure 5 are based on the following 673 

steps. First, (4) is integrated forward in time for 150000 daily times for the case where: SM0 = 0; 674 

βt is sampled from a uniform distribution bounded between 0 and 10 mm; the parameter α is set 675 

to an arbitrary “true” value, and Pt is non-zero on 20% of days and sampled from the uniformed 676 

distribution bounded between 0 to 50 mm on rainy days. The results of this integration are 677 

assumed to represent a set of “true” SMt observations.  678 

Second, these “true” SMt values are degraded via the introduction of mean-zero, additive, 679 

random, Gaussian noise with a variance of 25 mm2 to represent observation certainty (i.e., the 680 

classical R in Kalman Filtering equations). Likewise, the precipitation time series Pt is degraded 681 

by mean-zero, random, Gaussian noise with a variance of 25 mm2 to represent model forecast 682 

uncertainty (i.e., the classical Q in the Kalman filtering equations). 683 

Third, the degraded observation are assimilated back into an integration of (4) driven by the 684 

degraded precipitation time series and using an assumed value of α. Assimilation is based on 685 
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applying a Kalman Filter (KF) and the same Q and R parameters given above. In addition, 686 

following typical practice in soil moisture data assimilation, the degraded SMt time series is de-687 

biased with respect to a temporal integration of (4) using the degraded Pt time series and the 688 

assumed value of α. This is done to minimize systematic errors arising from the 689 

misspecification of α and allow the KF to focus solely on the correction of random errors. 690 

Finally, conditional bias is calculated in the KF analysis results relative to the true SMt time 691 

series calculated in the first step. To construct the two-dimensional fields plotted in Figure 5, 692 

the entire procedure is systematically repeated for a range of true and assumed values of α. 693 

Plotted results in Figure 5 are averages obtained across 10000 separate experimental iterations. 694 

As discussed in the main text, the term “fraternal twin” is used because the assimilation model 695 

and the “true” model simulation diverge due to the use of different α values. However, the KF 696 

assimilation system is considered optimal in the sense that it utilizes the correct values of Q and 697 

R (i.e., the error statistics that the Kalman Filter assumes to merge model estimates with 698 

observations are the exact statistics used to degrade the model and the observations in the 699 

synthetic experiment). This issue does become slightly ambiguous, however, due to the 700 

introduction of systematic error via the misspecification of α in the assimilation model. 701 

Therefore, one could argue that Q should be inflated in the Kalman filter implementation to 702 

capture the impact of both random error (explicitly introduced in the synthetic experiment) and 703 

this additional (implicit) source of systematic error. However, re-generating Figure 5 using Q 704 

inflation factors between 2 and 10 [-] had no qualitative impact on results.  705 
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 872 

 873 

 874 

 875 

 876 

 877 

Table 1. List of Ameriflux stations utilized in the analysis. Multiple site IDs listed under a 878 

single cluster number were averaged into a single time series prior to comparison with 0.25° 879 

ECMWF ET forecast grids. 880 

Cluster # Site ID Latitude Longitude Elevation (m) Land Cover 

1 IB1 41.86 -88.22 226 Crop 

 IB2 41.84 -88.24 226 Crop 

2 RO1 44.71 -93.01 290 Crop 

 RO2 44.73 -93.09 292 Crop 

3 NE1 44.16 -96.48 361 Crop 

 NE2 44.16 -96.47 362 Crop 

 NE3 44.18 -96.44 362 Crop 

4 ARM 36.61 -97.49 314 Crop 

5 CRT 41.63 -83.35 180 Crop 

6 KFS 39.06 -95.19 310 Grassland 

7 KLS 38.77 -97.57 373 Grassland 

8 GLE 41.37 -106.24 3197 Evergreen Forest 

9 WHS 31.74 -110.05 1360 Shrubland 

10 CPK 41.07 -106.12 2750 Evergreen Forest 

11 NR1 40.03 -105.54 3050 Evergreen Forest 
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12 MOZ 38.74 -92.20 219 Deciduous Forest 

13 PFA 45.95 -90.27 470 Mixed Forest 

14 WCR 45.81 -90.08 520 Deciduous Forest 

15 SYV 46.24 -89.35 540 Mixed Forest 

16 MMS 39.32 -86.41 275 Deciduous Forest 

17 UMB 45.56 -84.70 239 Deciduous Forest 
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 905 

 906 

 907 

 908 

 909 

 910 

Table 2. Summary of signs in observed and expected late-summer SM and ET biases. The 911 

positive sign for the “observed” SM OL bias is inferred from the tendency for SMOS Tb 912 

assimilation (i.e., the EXPR case) to remove soil water from late-summer OL results in Figure 913 

6. Likewise, the negative sign for “observed” ET OL bias is based on late-summer comparisons 914 

between OL and ALEXI ET time series in Figure 6. 915 

 916 

 SM OL bias 

(late summer) 

ET OL bias 

(late summer) 

Observed (see Section 4.c and Figure 6): 

 Positive Negative  

Anticipated impacts of model errors (see Section 4.d): 

Too little soil water cap. Positive Negative 

C4 crops neglected Negative Positive 

Tile-drainage neglected Positive Positive 

Irrigation neglected Negative Negative 

 917 

 918 

 919 

 920 

 921 
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 922 

 923 

 924 

 925 

 926 

 927 

 928 

Figure 1. Change in EXPR T2m RMSE relative to the a) OL and b) CTRL cases for 24-h T2m 929 

forecasts. RMSE [°K] results are sampled across the 2012 and 2013 growing seasons (1 May to 930 

30 September). Red shading indicates areas where SMOS Tb assimilation degrades T2m 931 

forecast skill relative to either the OL or CTRL baselines. Results taken from Muñoz-Sabater et 932 

al. (2019). 933 

 934 

 935 

 936 

 937 

 938 

 939 

 940 
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 944 
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 945 

 946 

 947 

 948 

Figure 2. For USDA SCAN and NOAA USCRN ground sites, EXPR surface- (top row) and 949 

root-zone (bottom row) SM analysis correlation differences (ΔR) versus both the OL (left 950 

column) and CTRL (right column) baselines (00 UTC analyses). As discussed in the main text, 951 

EXPR-CTRL comparisons are for the 2012 and 2013 growing seasons while EXPR-OL 952 

comparisons are for the 2013 growing season only. The reduction of site density for the root-953 

zone analysis reflects the limited availability of adequate profile soil moisture observations to 954 

obtain accurate surface to 1-m estimates. 955 

 956 
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 957 

Figure 3. Change in EXPR ET 24-h forecast accuracy versus both the OL (left column) and 958 

CTRL (right column) baseline cases for temporal R (top row) and RMSE (bottom row) 959 

evaluation metrics. Background and symbol fill color shading reflect metric differences sampled 960 

against ALEXI ET retrievals and flux-tower ET observations, respectively. Plotted EXPR-961 

CTRL differences (right column) are for the 2012 and 2013 growing seasons. EXPR-OL 962 

differences (left column) are for the 2013 growing season only. The white outline in part b) 963 

approximates the United States “Corn Belt” region (Schnitkey, 2014). All maps have been 964 

smoothed via a 2 x 2 moving-average filter applied to the original 0.25°-resolution image. 965 
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 968 

 969 

Figure 4. a) Replotting of the background in Figure 3c (i.e., the change in RMSE versus the 970 

ALEXI ET baseline between the EXPR and OL cases) with labeled locations (A, B and C) of 971 

sites examined later in Figure 6. b) HTESSEL SM/ET coupling bias (expressed as the Spearman 972 

rank coefficient of determination between weekly variables) versus the SM/ET coupling 973 

baseline provided in Lei et al. (2018). White areas in b) reflect regions where the approach in 974 

Lei et al. (2018) could not be reliably applied due to the low accuracy (or inadequate 975 

availability) of remotely sensed SM retrievals. Both maps have been smoothed via a 2 x 2 976 

moving-average filter applied to the original 0.25°-resolution image. 977 
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 984 

Figure 5. Daily OL SM (top row), OL ET (second row), KF SM (third row), and KF ET 985 

(bottom row) biases conditioned on true SM into “wet” (left column) and “dry” (right column) 986 

classifications. For each case, results are systematically generated for a range of true and 987 

assumed cases of SM/ET coupling strength (i.e., α). Open loop (OL) and Kalman Filter (KF) 988 

results correspond to before and after SM assimilation, respectively. Note that, in contrast to 989 

real-data results, ET is expressed in depth [mm] units. 990 
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 991 

 992 

 993 

 994 

Figure 6. 2013 growing season time series of 24-h ET forecasts and 1-m SM analyses (00 995 

UTC) for the CTRL, EXPR and OL DA cases (plus ALEXI ET retrievals) at sites (from left to 996 

right) in NW Iowa (A), NE Missouri (B) and NE Kansas (C) - see Figure 4a for exact site 997 

locations. Note that ALEXI does not provide SM estimates. 998 
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