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Abstract 29 

Land surface models (LSMs) have traditionally been designed to focus on providing lower 30 

boundary conditions to the atmosphere with less focus on hydrological processes. State of the 31 

art application of LSMs include land data assimilation system (LDAS) which incorporates 32 

available land surface observations to provide an improved realism of surface conditions. 33 

While improved representations of the surface variables (such as soil moisture and snow 34 

depth) make LDAS an essential component of any Numerical Weather Prediction (NWP) 35 

system, the related increments remove or add water, potentially having a negative impact on 36 

the simulated hydrological cycle by opening the water budget. 37 

 38 

This paper focuses on evaluating how well global NWP configurations are able to support 39 

hydrological applications, in addition to the traditional weather forecasting. River discharge 40 

simulations from two climatological reanalyses are compared: one ‘online’ set which 41 

includes land-atmosphere coupling and LDAS with an open water budget, and also an 42 

‘offline’ set with a closed water budget and no LDAS. 43 

 44 

It was found that while the online version of the model largely improves temperature and 45 

snow depth conditions, it caused poorer representation of peak river flow, particularly in 46 

snowmelt-dominated areas in the high latitudes. Without addressing such issues there will 47 

never be confidence in using LSMs for hydrological forecasting applications across the 48 

globe. This type of analysis should be used to diagnose where improvements need to be 49 

made; considering the whole Earth System in the data assimilation and coupling 50 

developments is critical for moving towards the goal of holistic Earth System approaches. 51 

52 
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1 Introduction 53 

Land surface models (LSMs) have traditionally been designed to focus on providing lower 54 

boundary conditions to the atmosphere by describing the vertical fluxes of energy and water 55 

between the land surface and the atmosphere, with less focus on predicting runoff 56 

(Mengelkamp et al. 2001). LSMs therefore maximise the quality of the atmospheric forecast, 57 

but do not necessarily bring the same benefits in the representation of the hydrological cycle 58 

(Kauffeldt et al. 2015). 59 

 60 

There is a wide literature on assessing the hydrological capabilities of LSMs and describing 61 

various improvements in the modelling of the hydrological cycle (e.g. Balsamo et al. 2009; 62 

Wang et al. 2016; Blyth et al. 2011; Wu et al. 2014). However, there are significant 63 

limitations in the representation of hydrological fluxes and storages in LSMs, largely due to 64 

the large-scale focus of LSM applications, which has led to the neglect of some important 65 

processes for runoff generation (Overgaard et al. 2006; Le Vine et al. 2016), including 66 

inadequate snowmelt processes (Dutra et al. 2012, Zaitchik and Rodell 2009).  67 

 68 

Data assimilation is an essential part of any Numerical Weather Prediction (NWP) system 69 

(Rabier 2005). It is designed to provide initial conditions for the Earth System by updating 70 

the model in all of the components: atmosphere, land, ocean and sea ice. State of the art NWP 71 

configurations, such as used at the European Centre for Medium-Range Weather Forecasts 72 

(ECMWF), include both an LSM and a land data assimilation system (LDAS). The objective 73 

of the data assimilation in this context is to combine the land surface model state with the 74 

available land surface observations to initialise the land surface model prognostic variables of 75 

the forecasting system (Bélair et al. 2003). The current ECMWF LDAS analyses soil 76 

moisture, soil temperature, snow mass, density and temperature (de Rosnay et al. 2014). Land 77 
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data assimilation was shown to contribute significantly to more skilful atmospheric forecasts, 78 

with the soil moisture data assimilation also proven essential in countering a positive 79 

precipitation/evapotranspiration feedback which can cause large positive precipitation biases 80 

(e.g. de Rosnay et al. 2013; Drusch et al. 2007, Beljaars et al. 1996). 81 

 82 

While the improved surface conditions make LDAS an essential component of the ECMWF 83 

NWP system, by design the related increments remove or add water which can potentially 84 

have a negative impact on the representation of the hydrological cycle by opening the water 85 

budget (Zaitchik and Rodell 2009; Arsenault et al. 2013; Andreadis and Lettenmaier, 2006; 86 

De Lannoy et al. 2012; Pan and Wood, 2006). On the contrary, in a system without LDAS 87 

and coupling, the errors resulting from atmospheric forcing insufficiencies and imperfect land 88 

surface process representations are not corrected by the assimilation of land surface 89 

observations. 90 

 91 

As an ideal configuration, an Earth System model should always maintain a closed water 92 

budget, where the amount of water in the system remains the same. By opening the water 93 

budget, river discharge biases could emerge in situations where the LSM has energy balance 94 

bias that is not corrected by the assimilation but only by accurate precipitation and snow 95 

accumulation forcing. For example, if the snow in the LSM is melting too slowly, this forces 96 

the LDAS to remove water (through snow) artificially to correct for the excessive amount of 97 

snow on the surface. If the water that is removed with the snow (and thus could not melt) is 98 

not retained within the Earth System that could lead to soil water deficit downstream, 99 

potentially causing an incorrect rate of river discharge. In such cases, LDAS could lead to 100 

replace incorrect snowmelt timing issue with incorrect snowmelt runoff amount. 101 

 102 

Accepted for publication in Journal of Hydrometeorology. DOI 10.1175/JHM-D-18-0086.1.



6 

 

Thus, an open water budget could cause problems for associated hydrological forecasting 103 

applications, which uses runoff calculated from LSMs with LDAS, such as the Global Flood 104 

Awareness System (GloFAS; Alfieri et al. 2013). As global hydrological modelling is 105 

increasingly possible with the improved realism that the state-of-the-art LSMs can nowadays 106 

offer (Overgaard et al. 2006), it is important to investigate how an LSM with LDAS can 107 

support the combined task of traditional weather forecasting and hydrology at the same time. 108 

This investigation was undertaken with this dual focus in mind, by analysing the hydrological 109 

cycle and the open water budget issues that can help the Earth System model developments 110 

with highlighting areas where the coupled system with LDAS does not yet work effectively 111 

for flood simulations.  112 

 113 

In order to understand how well an NWP configuration with LSM and LDAS represents 114 

hydrology, and in particular to interpret the influence of the LDAS on hydrological 115 

simulations from LSMs, in this paper river discharge simulations from two climatological 116 

reanalyses of GloFAS are compared: one operational set which includes land-atmosphere 117 

coupling and LDAS with an open water budget, and also an ‘offline’ set with a closed water 118 

budget and no LDAS. From these two datasets, a range of hydrological and atmospheric 119 

variables will be analysed globally. 120 

  121 

2 System Description, datasets and methods 122 

Two hydrological experiments, ONLINE (run in operational mode with active land-123 

atmosphere coupling and LDAS) and OFFLINE (run in offline mode without coupling and 124 

LDAS) provide time series of various surface variables (e.g. 2-metre temperature, snow depth 125 

and runoff), and also discharge after routing the runoff. Figure 1 highlights the schematic of 126 

ONLINE and OFFLINE with the main characteristics, components and data periods. In this 127 

Accepted for publication in Journal of Hydrometeorology. DOI 10.1175/JHM-D-18-0086.1.



7 

 

section the two experiments with the model and data aspects, and the data analysis methods 128 

will be described in detail. 129 

 130 

2.1 Land surface model HTESSEL 131 

The hydrological component of the analysed data sets is based on the HTESSEL land surface 132 

model (The Hydrology-Tiled ECMWF Scheme for Surface Exchange over Land; Balsamo et 133 

al. 2009; Balsamo et al. 2011). HTESSEL is part of the ECMWF NWP system and used in 134 

coupled land-atmosphere mode on time ranges from short-range to seasonal forecasts. It 135 

includes a snow parameterisation based on a single-layer snow pack model (Dutra et al., 136 

2010). The soil vertical diffusion solves the Richards equation using a four-layer vertical 137 

discretisation with layer depths at 7 cm, 28 cm, 100 cm and 289 cm (Balsamo et al. 2009). 138 

HTESSEL provides boundary conditions for the atmosphere (heat, moisture, and momentum) 139 

by simulating water and energy budgets on the surface and through the soil, snowpack and 140 

vegetation interception. HTESSEL generates surface (fast) and subsurface (slow) runoff 141 

components at each grid point (Balsamo et al. 2009). Surface runoff depends on the standard 142 

deviation of the orography, soil texture and soil moisture, while subsurface runoff is 143 

determined by the soil water percolation. 144 

 145 

2.2 Land data assimilation 146 

The ECMWF LDAS is part of the ECMWF Integrated Forecasting System (IFS). It is 147 

coupled to the atmospheric four-dimensional variational (4-D-Var) data assimilation scheme 148 

(Rabier et al. 2000), both using a 12-hour assimilation window. The upper air and land 149 

surface analyses are running separately and used to initialise a coupled land-atmosphere 150 

short-term forecast, which provides the background for the next data assimilation window. 151 

The land data assimilation relies on advanced methods to optimally combine in situ and 152 

Accepted for publication in Journal of Hydrometeorology. DOI 10.1175/JHM-D-18-0086.1.



8 

 

satellite observations with model background information. A schematic diagram of the 153 

ECMWF LDAS is provided in Figure 2. 154 

 155 

Initial implementations of the ECMWF LDAS relied on simple assimilation methods for 156 

snow and soil moisture analyses (Drusch et al. 2004, Mahfouf et al. 2000), with air 157 

temperature and humidity measurements being the main input for the soil moisture analysis 158 

(Mahfouf et al. 2000, Drusch et al. 2007). The system has evolved in the past decade to use a 159 

more physically based approach and to combine satellite and in situ data in the soil analysis 160 

(de Rosnay et al. 2014, de Rosnay et al. 2013, Albergel et al. 2012). 161 

 162 

In the current LDAS, a simplified Extended Kalman Filter (SEKF) is used to analyse soil 163 

moisture. The approach combines analysed 2-metre air temperature and humidity with 164 

satellite measurements from the ASCAT (Advanced Scatterometer) sensor on board of 165 

MetOp, as described in de Rosnay et al. (2013) and Albergel et al (2012). For snow, a two-166 

dimensional optimal interpolation (OI) is used to analyse snow mass and snow density 167 

following the method described in Brasnett et al. (1999). In situ snow depth observations, 168 

available on the SYNOP network are used along with the 4km resolution snow cover product 169 

from the NOAA/NESDIS (National Environmental Satellite, Data, and Information Service) 170 

Interactive Multi-sensor Snow and Ice Mapping System (IMS) product (Helfrich et al. 2007). 171 

 172 

Even though it provides significant improvements to the atmospheric forecasts and 173 

independent situ snow depth measurements (de Rosnay et al. 2015), the current ECMWF 174 

snow data assimilation follows a relatively basic method. Operational NWP configurations 175 

generally rely on simple approaches, compared to research environment, that are based on 176 

more sophisticated snow assimilation methods using in situ and remotely sensed observations 177 
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(e.g. Helmert et al. 2018; De Lannoy et al. 2012; Pan and Wood 2006; Slater and Clark 178 

2006). 179 

 180 

The ECMWF LDAS and its performance is presented and discussed in de Rosnay et al. 181 

(2014), and de Rosnay et al. (2015). A full description of the technical implementation is 182 

provided in the IFS documentation (https://www.ecmwf.int/en/forecasts/documentation-and-183 

support/changes-ecmwf-model/ifs-documentation). The system used for this study is that 184 

used for the production of ERA5 (section 2.6), with IFS cycle 41r2 at a resolution of ~31 km. 185 

 186 

2.3 CaMa-Flood river-routing 187 

The Catchment-based Macro-scale Floodplain model (CaMa-Flood; Yamazaki et al. 2011) 188 

was applied in this study to simulate the hydrodynamics and produce river discharge from the 189 

HTESSEL runoff outputs. CaMa‐Flood is a distributed global river-routing model which uses 190 

a river network map and routes runoff to oceans or inland seas. The CaMa-Flood model was 191 

chosen for the routing component as it had already been used in several similar climatological 192 

research experiments such as Emerton et al. (2017). 193 

 194 

2.4 GloFAS 195 

GloFAS is one of the few global scale flood forecasting systems that currently exist (Emerton 196 

et al. 2016). It is part of the Copernicus Emergency Management Service (CEMS), developed 197 

by the Joint Research Centre of the European Commission (JRC) and ECMWF. The 198 

HTESSEL runoff output is coupled to the Lisflood hydrological model over a global river 199 

network to produce river discharge with a forecast horizon of 30 days across a global river 200 

network at 0.1 degree resolution (van der Knijff et al. 2010; Alfieri et al. 2013). As part of the 201 

GloFAS configuration, the real-time river discharge forecasts are compared with 202 
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climatological simulations (called reanalysis) to detect the likelihood of high flow situations. 203 

These real-time and climatological datasets also present a unique opportunity for 204 

experimental analysis (Emerton et al. 2017; Stephens et al. 2015). 205 

 206 

2.5 Offline land surface modelling 207 

The current GloFAS operational set-up uses a climatology based on the ERA-Interim/Land 208 

reanalysis of ECMWF (Balsamo et al., 2015). ERA-Interim/Land is an improved version of 209 

the ERA-Interim reanalysis (Dee et al. 2011) produced with an improved version of 210 

HTESSEL, run offline, using a rescaling of monthly precipitation totals with GPCP v2.2 211 

(Huffman et al. 2009; Balsamo et al. 2010). “Offline” HTESSEL simulations, such as the 212 

OFFLINE experiment in this study, are uncoupled from the atmosphere, without the LDAS 213 

and forced with near-surface meteorological input data such as temperature, specific 214 

humidity, wind speed, surface pressure, radiative fluxes and water fluxes. Offline land 215 

surface only simulations are an affordable way of achieving land surface improvements and 216 

this offline research methodology has been used in numerous studies with HTESSEL in the 217 

last few decades (e.g. Agusti-Panareda et al. 2010; Dutra et al. 2010; Dutra et al. 2011; 218 

Haddeland et al. 2011). 219 

 220 

2.6 ERA5 reanalysis 221 

The 5th generation global climate reanalysis (succeeding ERA-Interim) at ECMWF is ERA5 222 

(Hersbach and Dee 2016). ERA5 is a key contribution to the EU-funded Copernicus Climate 223 

Change Service (C3S). ERA5 will cover the period 1950-present and is in production with 224 

2008-2017 already officially released. The release of the remaining period is foreseen by end 225 

of 2018. ERA5 will then continue running in (non-quality assured mode) near-real time with 226 

only a few days delay. The data is open access and free to download for all uses 227 
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(https://climate.copernicus.eu/). 228 

 229 

ERA5 uses the IFS cycle 41r2 and it relies on land surface model and assimilation 230 

configuration that are consistent with those used for operational NWP with coupled land-231 

atmosphere simulations and the latest soil moisture and snow assimilation (see sections 2.1 232 

and 2.2 above). ERA5 has a high resolution component at ~31 km which is used in this study 233 

(hereafter called ERA5-HRES). In ERA5-HRES, variables (analysis and short range forecasts 234 

generated at 06 and 18 UTC) are available hourly. Variables that are valid for a period, e.g. 235 

precipitation or runoff with an accumulation time, are provided as hourly forecasts. 236 

 237 

At the time of writing approximately 28 years of ERA5-HRES data was available in the 238 

ECMWF MARS data archive in three separate periods: 1985-1987, 1989-1995 and 1999-239 

2016. The first years (1985, 1989 and 1999) were used as spin up years, so in total 25 years 240 

of daily river discharge and other surface data could be processed for the analysis (hereafter 241 

called ERA5-D25). 242 

 243 

2.7 Experimental set-up 244 

In the ONLINE experiment, the operational ERA5-HRES reanalysis data was used directly 245 

from all three ERA5-HRES periods for land surface variables, including runoff, produced by 246 

coupled land-atmosphere model with LDAS and an open water budget (figure 1). In the 247 

OFFLINE experiment, on the other hand, three standalone HTESSEL runs were set up, one 248 

for each of the periods, to reproduce the land surface variables in land surface only mode 249 

without the impact of coupling and LDAS, but with a closed water budget. As ERA5 has a 250 

recent model cycle (41r2), the same HTESSEL version could be used in the offline 251 

experiment as in the operational ERA5. 252 
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 253 

In the ECMWF NWP system, there is no option currently to run the land-atmosphere 254 

coupling and LDAS separately. Either both are active as in ONLINE, or neither of them as in 255 

OFFLINE. It would be interesting to separate the impact of these two contributing modelling 256 

options, but as they are too strongly interwoven the separation would require a very large 257 

effort, which is outside of the scope of this study. 258 

 259 

In the OFFLINE experiment, the offline HTESSEL model was forced with hourly ERA5-260 

HRES atmospheric data, wherever it was possible on the lowest model level, with an hourly 261 

model time step. The model was run on the original horizontal resolution of ERA5-HRES 262 

(~31 km). For precipitation, temperature, specific humidity, wind speed and surface pressure 263 

the hourly analysis fields were applied, while for radiation and precipitation fluxes the first 264 

12-hour period of the 06:00 and 18:00 UTC short-range forecasts were used to cover each 24-265 

hour periods. 266 

 267 

The river discharge was generated by routing the runoff using CaMa-Flood for both the 268 

ONLINE and OFFLINE datasets over the ~25 km river network. CaMa-Flood was run with a 269 

1-hour time step and a 24-hour output frequency to match the 24-hour reporting frequency of 270 

the river discharge observations.  271 

 272 

2.8 River discharge observations 273 

In this study, daily river discharge observations used in the GloFAS system are selected. 274 

These are mostly from the Global Runoff Data Centre (GRDC) archive, an international 275 

depository of river discharge observations and associated metadata. 276 

 277 
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The observations consist of a network of approximately 900 river gauging stations with 278 

upstream areas over 10,000 km2, selected from the catchments used in Zsoter et al. (2016). 279 

After visual inspection those catchments that showed a clear non-realistic behaviour and/or 280 

influence of dams were excluded. A minimum of 9 years, with at least 330 days in each of 281 

those calendar years, were selected as criteria for the stations to be included in the river 282 

discharge analysis. This is quite a short period, but due to the limited availability in more 283 

recent years, it was accepted as a compromise. In total 590 stations could be processed 284 

globally leaving large blank areas mostly in Asia and Africa (Figure 3). 285 

 286 

2.9 Annual peak river discharge 287 

For the river discharge verification, the annual peak river discharges from the two ERA5-288 

HRES simulations were determined in each calendar year as the highest value in the ±30-day 289 

window around the observed annual maximum river flow. The 30-day window was defined 290 

as a safeguard to avoid detecting high skill with similar peaks in observation and simulation 291 

of completely different flood waves at very different periods of the year. 292 

 293 

2.10 Water budget increments 294 

This study focuses on the impact of the water budget closure on river discharge. In order to 295 

analyse this the daily (00-00 UTC) water budget error term (dA) was computed as: 296 

 dA = P – E – R – dS (1) 

where P is precipitation, E is evapotranspiration, R is runoff, all taken as the sum of the 297 

hourly forecast values (24 in total) in the ONLINE experiment from the 00-00 UTC period 298 

and dS is the change in the storage term (water content in the soil including all four layers 299 

and also in the snow cover) computed as the difference between the two subsequent 00 UTC 300 

analysis values in ONLINE (representing the change in the water content during the 24-hour 301 
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period). Even though the water budget error is zero in OFFLINE (the water budget is closed), 302 

the contributing variables can help identifying the behaviour of the surface processes in both 303 

the ONLINE and OFFLINE simulations. 304 

 305 

The imbalance in the amount of water that is not accounted for in the ONLINE water budget 306 

effectively comes from the snow depth and soil moisture increments in LDAS which remove 307 

or add water in the system. The daily increments (valid for a 00-00 UTC 24-hour period) are 308 

computed as the sum of two increment values at 06 and 18 UTC (each day). Both of these 309 

increments are computed as the ERA5-HRES analysis value minus the corresponding 12-310 

hour ERA5-HRES forecast value (initialised 12 hours earlier). 311 

 312 

2.11 Daily 2-metre temperature and snow depth 313 

The in situ surface synoptic observations (SYNOP) were used to verify 2-metre temperature 314 

and snow depth for both the OFFLINE and ONLINE experiments. The observing stations 315 

were filtered according to the station altitude difference to the model orography and only 316 

those were used which had less than 150 metres discrepancy, as orography has control on 317 

both variables and large differences would make the comparison unreliable. This maximum 318 

orography difference value was chosen in accordance with the general practice at ECMWF, 319 

where 100 metres is used to filter stations in the 2-metre temperature verification. For our 320 

study, a less stringent compromise value was preferred in order to increase the sample size 321 

and still guarantee good match between model and real orography. 322 

 323 

2-metre temperature was verified for around local noon (Table 1), while for snow depth the 324 

first measurement of the calendar day was evaluated in case of sub-daily records. In total, 325 

observations from about 4000 stations for 2-metre temperature and 1500 stations for snow 326 
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depth were available for verification. For each catchment, a representative daily observation 327 

was also determined for both variables. For catchments with more than one SYNOP station 328 

available, these were calculated as the arithmetic average of the stations within the 329 

catchment. It has to be acknowledged that the observation network available was not dense 330 

enough to represent the full spatial variability of these surface variables, specially snow 331 

depth, which vary dramatically in space from one point to another (Molotch and Bales, 332 

2005). However, for a global study on the hydrological impacts it is expected to be sufficient. 333 

 334 

2.12 Climatologies 335 

Daily climatologies were used for river discharge and other surface variables in this work for 336 

both observations and the two simulations. These data sets were produced with all potentially 337 

available 25 years of data in ERA5-D25, always matching the number of available nearly 338 

complete calendar years (with minimum 330 river discharge observations) for all the 339 

catchments. For each day of the year a 21-day window, centred over the day, was used which 340 

provided a minimum of about 180 values in the climate sample (with the 9 years minimum 341 

criteria). The only exception are 2-metre temperature and snow depth, where a fixed shorter 342 

period of 2000-2007 was used without the criteria of nearly complete years. As the 2-metre 343 

temperature and snow depth observation availability is much better in more recent periods 344 

and also less prone to missing values than river discharge, a shorter fixed period (when 345 

ERA5-HRES was available) is sufficient. 346 

 347 

2.13 Verification statistics 348 

A number of statistics were applied to evaluate the overall performance of the two 349 

climatological simulations in ERA5-D25 (Table 2). Several scores were selected in order to 350 

give a more representative description of the general behavior including the differences 351 
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between the ONLINE and OFFLINE experiments. This is recommended e.g. by Legates and 352 

McCabe (1999) as different scores demonstrate different aspects of the model attributes 353 

ultimately providing a more complete picture. 354 

 355 

The climatological daily time series were compared to the observed data using mean error 356 

(ME), mean absolute error (MAE), Nash-Sutcliffe model efficiency (NSE; Nash and Sutcliffe 357 

1970) and also Pearson correlation coefficient (R; Pearson 1896) in order to measure the fit 358 

between model and observations. In addition, the mean and standard deviation of the 359 

observed and modelled values were analysed with four additional indices, the percentage 360 

sample mean error, the percentage sample mean absolute error, the percentage sample 361 

standard deviation error and the percentage sample standard deviation absolute error. 362 

 363 

Another very important aspect of hydrological model verification is the ability of the systems 364 

to correctly predict the extremes, as these events can cause the highest impact. To measure 365 

this, the timing and magnitude errors of the annual peaks were considered. Both the ME and 366 

MAE measures (mean of all years in the sample) were computed for the timing and for the 367 

percentage magnitude errors using the annual peaks over the 25 analysed years (for details on 368 

how the annual peaks were computed see Section 2.9). For the analysis of the data 369 

assimilation impact on 2-metre temperature and snow depth the ME and MAE scores were 370 

used. In this study verification was conducted on homogeneous samples across all compared 371 

scores for all the verified surface variables. 372 

 373 

3 Results 374 

The river discharge behaviour provides a useful indication of the hydrological differences 375 

between the ONLINE and OFFLINE simulations. However, in order to understand the 376 
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underlying processes better, the coupling and LDAS impact was also analysed globally and 377 

regionally based on the water budget and the related surface variables. 378 

 379 

3.1 Snow depth and 2-metre temperature impact 380 

The LDAS is designed to provide adequate initial surface conditions to the NWP forecasts. 381 

The impact on the hydrology could be demonstrated on two important surface variables: 2-382 

metre temperature and snow depth (at least in snow impacted areas) which are relatively well 383 

observed variables and can be used to analyse the impact of the land-atmosphere coupling 384 

and LDAS on the surface globally in the two experiments. For details on how the 385 

observations were used please see Section 2.11. 386 

 387 

The picture for 2-metre temperature is rather mixed geographically with an overall MAE 388 

improvement in ONLINE of around 0.3-0.4 °C as a global average up to 1-2 °C locally (not 389 

shown). This corresponds to about 20-30% decrease in MAE on average in ONLINE, with 390 

the impact of coupling and LDAS, compared to OFFLINE. 391 

 392 

The improvement in the snow depth, which has much larger direct impact on the hydrology, 393 

is more pronounced, based on the stations used in this study. The errors in ONLINE are 394 

significantly reduced with most stations showing below ±1-2 cm ME (not shown), and 395 

decrease of MAE by as much as 10-20 cm in some of the snow dominant locations in the 50-396 

70 latitude band (Figure 4). This is a very large improvement in ONLINE by removing 70-397 

80% (as global average) of the errors found in the OFFLINE experiment. Countries of 398 

Central America, including Mexico, Venezuela and Columbia, tend to provide snow 399 

information in their SYNOP observations. In these regions both the model and the in situ 400 

stations mostly indicate snow free conditions, leading to very low MAE as shown in Figure 4. 401 
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Although the improvements are large, this does not necessarily mean that the simulation is 402 

generally better. In situ snow observations are associated to potential representativeness 403 

issues, particularly in mountainous areas. When assimilating a non-representative dataset at a 404 

coarse special scale, the results can potentially degrade, even though the match to the actual 405 

observations is better (Molotch and Bales, 2015). As the 2-metre temperature and snow depth 406 

observations used in this study for verification were also assimilated in ERA5, the result will 407 

favour to some extent the ONLINE experiment. 408 

 409 

3.2 Global water budget analysis 410 

The water budget is closed in OFFLINE by design, while in ONLINE the LDAS increments 411 

can add or remove water, which could potentially lead to large errors in the budget over a 412 

long period. The first aspect that was important to check is the amount of water that is lost or 413 

gained in a day on average in the hydrological cycle. 414 

 415 

Figure 5 shows the average daily water budget errors (Figure 5a) and the related snow water 416 

equivalent (Figure 5b) and soil water content (Figure 5c) increments (for the definition of 417 

these terms please see Section 2.10). In Figure 5, negative values (red) indicate water 418 

removal by LDAS, while positive values (blue) show where water is added to the 419 

hydrological cycle. 420 

 421 

The three figures highlight significant biases in the ONLINE experiment as these water 422 

budget errors represent generally ±10-25% of the total precipitation with locally even higher 423 

ratios (not shown). In addition, at latitudes higher than 50 degrees North the dominant pattern 424 

is a negative water budget error (Figure 5a). The major contributing factor to the clearly 425 

negative errors in this area is the correction of snow pack with LDAS removing snow to 426 
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account for possible inaccuracies in the HTESSEL snow scheme (Figure 5b). On average 427 

snow water increments are negative almost everywhere where snow is present. The only 428 

notable exception is in Canada where some central areas have positive water budget errors 429 

which could possibly come from a negative precipitation bias that needs to be compensated 430 

by LDAS. 431 

 432 

Other areas of the world, the central USA, most of Amazonia, Africa, south Asia with India 433 

and also large parts of Australia show positive errors in Figure 5a, where extra water is added 434 

by LDAS. However, the positive errors are not exclusive as large parts of China, southeast 435 

US and areas in central South-America experience negative water budget errors in these 436 

mostly warm climatic conditions. Most of these increments come from the soil moisture 437 

assimilation impact (Figure 5c). The soil moisture assimilation can generally compensate for 438 

precipitation or 2-metre temperature biases. For example, if the 2-metre temperature is too 439 

low, the assimilation will remove water, therefore reducing evaporative cooling which 440 

subsequently increase the temperature in general. 441 

 442 

3.3 Catchment-level process examination 443 

To demonstrate how HTESSEL handles the land surface processes with and without coupling 444 

and LDAS, an in-depth case study analysis of the annual water budget cycle was performed 445 

for an example catchment on the Amur river in east Russia (see Figure 6, catchment no.13). 446 

This catchment is heavily snow impacted during winter and can demonstrate nicely the 447 

important aspects of the hydrological cycle behaviour with the LDAS in action. 448 

 449 

In the HTESSEL hydrological cycle representation the input precipitation combined with the 450 

melted part of the snowpack (snowmelt) is distributed into evapotranspiration, runoff (as sum 451 
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of surface and sub-surface runoffs), snow water storage (falling snow part of the 452 

precipitation) and soil water storage (soil moisture in the four soil layers). The daily water 453 

budget error, computed as in Eq. 1 (without the snowmelt separated), is zero in OFFLINE, 454 

while ONLINE can show errors due to the increments adding or removing water. Figure 7 455 

summarises the annual cycle of all the water budget contributing variables. 456 

 457 

The displayed variables are daily climatological means calculated as described in Section 458 

2.12. The following variables are shown in Figure 7: simulated precipitation (same for both 459 

experiments), evapotranspiration, runoff, soil water and snow water storage terms (in Eq. 1) 460 

for both ONLINE and OFFLINE; snow and soil water content increments for ONLINE; 461 

simulated snowmelt, snow depth and river discharge for both the ONLINE and OFFLINE 462 

experiments, and finally the corresponding river discharge and snow depth observations. 463 

 464 

Figure 7 shows that for the Amur the ONLINE simulation significantly improves the 465 

representation of snow depth, but as consequence, by the snow assimilation removing a lot of 466 

snow, it drastically reduces the river discharge peak seen during the snowmelt season. The 467 

explanation of this conclusion with detailed analysis of the evolution of the different surface 468 

variables in the different seasons is given in the following: 469 

 470 

 Winter: During December to February there is relatively little activity. The little 471 

amount of precipitation falls mostly as snow, building the snowpack. Some snow is 472 

removed by the assimilation through the small negative snow increments. Water 473 

leaves the bottom of the soil as sub-surface runoff with hardly any surface runoff. The 474 

OFFLINE simulation is generally similar to ONLINE, but snow depth bias shows 475 

increasingly positive values in OFFLINE due to the extra amount of water going into 476 
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the snowpack in the OFFLINE experiment from snowfall (especially during first half 477 

of the winter). 478 

 479 

 Spring: From March, there is a pronounced snowmelt period in the model, peaking at 480 

the end of April, lasting until middle of June (with virtually zero snowpack in 481 

catchment average after middle of May). The increased precipitation in this spring 482 

period with the large amount of snowmelt increases the soil water content and also 483 

results in larger surface runoff output in both experiments. However, the snowmelt is 484 

much smaller in ONLINE during April-May as a direct consequence of the large 485 

negative snow increments (peaking early April) removing snow in the ONLINE 486 

experiment. Similarly, due to the smaller amount of available water in ONLINE, the 487 

surface runoff is also significantly smaller mainly in April/May. The snow depth 488 

errors peak in middle of March by about 5 cm in OFFLINE with no errors in 489 

ONLINE (as catchment average). The data assimilation rightly corrects this 490 

substantial positive snow bias, however, the removed snow will be missing from the 491 

water cycle as is highlighted by the unnoticeable spring peak river flow, which is 492 

higher in the OFFLINE simulation mainly due to the extra snowmelt. 493 

 494 

 Snowmelt problem: This behaviour of HTESSEL with LDAS is rather surprising and 495 

at first it might sound as a contradiction. How can the correct snow conditions lead to 496 

such poor river discharge in the ONLINE experiment? A possible explanation could 497 

be the representativeness issue of some of the snow observations, which can 498 

potentially cause local degradation in some of the catchments. It can also be explained 499 

by the HTESSEL tendency to melt the snow too slowly (Dutra et al. 2012). In its 500 

simple, single layer snow scheme, too much snow accumulates into the snow pack 501 
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and then that snow melts too slowly. For example, during a 20 mm mixed snow/rain 502 

forecast event (10 mm liquid and 10 mm solid) the snow scheme will accumulate 503 

most of the 10 mm solid (snow) part of the precipitation into the snowpack regardless 504 

of the temperature conditions and melt only a little of this 10 mm. However, in reality 505 

a lot of that rain, sleet or wet snow would not accumulate on the ground, and instead 506 

most of it would melt straightaway. It seems the OFFLINE simulation gets the river 507 

discharge right mainly for the wrong reasons. Although the snowpack is clearly more 508 

poorly represented, the better timing with the delayed snowmelt (through the too slow 509 

melting) and the extra water in the snowpack, the OFFLINE experiment gets the 510 

runoff peak more correct. 511 

 512 

 Summer: The water budget is balanced between precipitation and evapotranspiration 513 

with some soil water increments. During early summer water is taken out of the soil to 514 

cover the higher evapotranspiration. In OFFLINE more water leaves the soil which 515 

increases the runoff and also evapotranspiration. By August, however, the excess 516 

water from precipitation over evapotranspiration goes again into the soil which is 517 

more pronounced in ONLINE where the soil is drier. The end of summer river 518 

discharge peak is present in both simulations with the OFFLINE showing a better 519 

peak due to more water in the soil and subsequently higher surface and sub-surface 520 

runoff during all summer. The OFFLINE river discharge exceeds the ONLINE values 521 

all summer and the two will level out by September, when the runoffs become similar 522 

in the two experiments. 523 

 524 

 Autumn: From the middle of September there is another smaller snowmelt period 525 

starting with the falling temperatures and bringing some negative snow increments in 526 
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the ONLINE simulation. The snow accumulates into the snowpack in both 527 

experiments, but again with a higher rate in OFFLINE, and also with larger snowmelt 528 

amounts in OFFLINE. 529 

 530 

3.4 Regionally representative catchments 531 

In the previous section the LDAS response was highlighted for an important weakness of 532 

HTESSEL with significant consequences on river discharge. In the following, the land-533 

atmosphere coupling and LDAS impact is now demonstrated with a simplified representation 534 

of the annual water cycle in different geographical areas and also various climatic conditions 535 

for a selection of the world’s catchments in Figure 8. The displayed variables are simulated 536 

snowmelt, evapotranspiration and river discharge in both the ONLINE and OFFLINE 537 

experiments, the snow and soil water increments for ONLINE and finally the river discharge 538 

observations. All values are daily climatological mean values as in Figure 7. The location of 539 

the catchments is provided in Figure 6. 540 

 541 

In Figure 8, twelve catchments are selected to represent all main areas of the world where 542 

river discharge observations are available. Many of them are very large rivers, some of the 543 

catchments are dominated with mixed snow and soil moisture influence from the Northern 544 

Hemisphere while others, mainly in the tropics, are only soil moisture impacted. In table 3, 545 

the main catchment details are provided, complemented with the NSE and the percentage 546 

peak magnitude ME and MAE values for the catchments. The scores favouring the ONLINE 547 

experiment are displayed with bold numbers. 548 

 549 

Figure 8 suggests that the decreased snowmelt is a general feature in ONLINE across the 550 

Northern Hemisphere as predicted already by Figure 5b. All displayed catchments have 551 
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generally lower river discharge in ONLINE, either concentrated over the high river discharge 552 

season (e.g. Ob (no. 1) and Yukon (no. 2)), or elongated over most of the year (e.g. Danube 553 

(no. 3) and Rhine (no. 4)). The snowmelt is universally smaller in the ONLINE simulation, 554 

with the LDAS removing snow at different periods of the year, which seems to be the driving 555 

force behind the river discharge differences. 556 

 557 

The decreased amount of water has a mixed river discharge skill impact. For some 558 

catchments (Ob (no. 1), Yukon (no. 2), Columbia (no. 6), and the case study catchment on the 559 

Amur (no. 13)) the change during the high river discharge season is disadvantageous in 560 

ONLINE, confirmed by mostly negatively impacted scores, such as the NSE and the 561 

percentage peak magnitude MAE values in Table 3. On the other hand, for the Mississippi 562 

(no. 5), Danube (no. 3) and Rhine (no. 4) it is rather beneficial as the daily climatological 563 

mean river discharge is closer to the corresponding observations during the high season, 564 

accompanied with mainly positive skill changes in the ONLINE experiment as both NSE and 565 

percentage peak magnitude MAE improves (Table 3), except the Rhine catchment (no. 4) 566 

where the percentage peak magnitude MAE deteriorates. 567 

 568 

In the warm climate, however, where soil water dominates the land surface processes (Xingu, 569 

Amazon, Hadejia, Ubangi, Zambesi and Flinders (no. 7-12)), the land-atmosphere coupling 570 

and LDAS impact on river discharge seems to be smaller than for the snow influenced 571 

catchments, and on evapotranspiration it tends to be larger. There are large biases over five of 572 

the six highlighted tropical catchments (the only exception of the Flinders river in Australia), 573 

where both the ONLINE and OFFLINE experiments show significant mismatch with the 574 

observed values for the total river discharge volume and also for the annual peaks. For 575 

example, as displayed in Table 3, on the Hadejia river in Nigeria the percentage peak 576 
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magnitude ME is 297% (the simulation is almost three time higher than the observation) in 577 

ONLINE which is significantly better than OFFLINE (the improvement is 139% in the 578 

percentage peak magnitude MAE). This points to the fact that even though the river discharge 579 

differences are smaller in relative terms, it can still lead to noticeable change in the scores for 580 

some of these highlighted catchments (Table 3).  581 

 582 

Even though there is no clear systematic difference between the exclusively soil moisture and 583 

the mixed (snow and soil moisture) catchments in terms of river discharge skill impact, the 584 

snow clearly looks to carry a more direct influence on the river discharge volume and also on 585 

the river discharge skill. 586 

 587 

3.5 Global river discharge analysis 588 

In the previous sections it could be shown that the water budget is out of balance in the 589 

ONLINE simulation over large parts of the world leading to significant impact on the river 590 

discharge for the analysed list of catchments. As an extreme example, it was demonstrated 591 

that the snowmelt driven spring river discharge peak was almost completely missed in a large 592 

catchment in east Russia in ONLINE. After the individual catchment examples, a systematic 593 

analysis of the river discharge quality in the ONLINE and OFFLINE experiments is provided 594 

based on all available catchments globally. 595 

 596 

Although a large number of scores were computed in this study, this section will focus only 597 

on the annual peak flow scores. The timing and magnitude of the high river discharges are 598 

both crucial aspects of river discharge simulations in any flood prediction system such as 599 

GloFAS. The accurate simulation of the river discharge peaks is essential to get the best 600 

possible guidance for the potentially most damaging floods. The analysed performance of the 601 

Accepted for publication in Journal of Hydrometeorology. DOI 10.1175/JHM-D-18-0086.1.



26 

 

annual peak river flows should give a good indication on the general ability of the two 602 

experiments to predict peaks. 603 

 604 

Figure 9a highlights a large systematic percentage peak magnitude ME in the ONLINE 605 

simulation. Many catchments show over 50% error (either positive or negative) of the annual 606 

river discharge peaks on average. The majority of the Northern Hemispheric higher latitudes 607 

is overwhelmingly under predicted, while Amazonia, western USA and also many 608 

catchments in Africa are over predicted in the ONLINE experiment. The geographical pattern 609 

in Figure 9a is rather similar to the one seen in Figure 5a. Most of the catchments with 610 

significant negative values over the Northern Hemisphere and positive ones mainly in lower 611 

latitudes, do resemble well the water budget error pattern seen in Figure 5a. 612 

 613 

The water budget imbalance, caused by the increments in LDAS, is only one of the many 614 

potential contributing factors to peak river flow errors (and in fact to general river discharge 615 

errors); atmospheric forcing biases, imperfect river routing and observation errors could also 616 

lead to large inaccuracies (Zhao et al. 2017). 617 

 618 

The impact of the land-atmosphere coupling and LDAS seems to decrease the amount of 619 

water overwhelmingly in the rivers (decreased sample mean river discharge, not shown). The 620 

sample average river discharge increased only in the southern half of Brazil, in the central 621 

part of Canada and one or two catchments in Africa, East Asia and South Australia (not 622 

shown). It is expected that the decreased average river discharge in ONLINE should 623 

generally also result in lower annual peak river flows over most of the globe. Figure 9b 624 

shows that this decreasing tendency of the annual peaks in the ONLINE experiment coincides 625 

with widespread, quite large deterioration in the percentage peak magnitude MAE score 626 
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(increase of the annual peak magnitude errors) especially in Asia and Europe and the north 627 

western part of North America, where the majority of the catchments show significant 628 

negative bias in Figure 9a. On the other hand, quite a few catchments seem to benefit from 629 

the coupling and LDAS as the annual peak errors decrease especially in the western parts in 630 

North America, where there is a large cluster of catchments with noticeably smaller 631 

percentage peak magnitude MAE.  632 

 633 

The river discharge peak timing bias in the ONLINE simulation is dominantly positive (peaks 634 

are too late) in the Northern Hemisphere and mainly negative (peaks too early) in the Tropics 635 

(not shown). However, the coupling and LDAS do not seem to have any systematic impact 636 

on this aspect of the peak river flows. There are noticeable differences but they have no 637 

distinguishable geographical pattern (not shown). It seems the short time series (9-25 annual 638 

values only) were not sufficient to extract any representative timing differences between the 639 

two experiments. 640 

 641 

In addition to the analysis of the annual river discharge peak performance, the general fit 642 

between modelled and observed daily river discharge time series is also extensively measured 643 

by several scores. Table 4 shows a global summary giving an indication on the overall 644 

performance of the two experiments. The scores are calculated as global averages weighted 645 

by the square root of the catchment area size. This way a more representative picture can be 646 

provided by giving more emphasis on the larger catchments. 647 

 648 

The generally decreasing amount of water leads to larger differences for most of the volume 649 

related bias scores. The percentage sample ME, the percentage sample standard deviation 650 

error and also the percentage peak magnitude ME scores all decrease significantly in the 651 
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ONLINE simulation, bringing the global biases closer to zero. The only exception is the 652 

discharge ME score which changes from a positive value to a negative one with similar 653 

magnitude. The better biases, however, do not necessarily help improving the river discharge 654 

skill globally; the scores presented in Table 4 provide a mixed picture, with some favouring 655 

the ONLINE while others the OFFLINE simulation. This agrees with the mixed scores shown 656 

in Table 3 for the regional example catchments. In general, the MAE, R, the percentage 657 

sample MAE and the percentage peak magnitude MAE values are all slightly better for 658 

OFFLINE, while the NSE and percentage sample standard deviation absolute error show 659 

improvement for ONLINE. And finally, the peak timing ME is slightly better for the 660 

OFFLINE experiment, while there is no difference in the global average peak timing MAE. 661 

 662 

4 Discussion 663 

In Section 3, the land-atmosphere coupling and LDAS impact on hydrology, including river 664 

discharge and the related water budget variables was analysed. The river discharge scores 665 

showed a mixed picture between the ONLINE and OFFLINE simulations with relatively 666 

similar global performance. Larger differences could be highlighted in certain regions, such 667 

as many of the snow dominant catchments in the Northern Hemisphere, where over many 668 

areas a large amount of water is missing from the hydrological cycle and causing downstream 669 

issues in river discharge especially during the snowmelt season in ONLINE. 670 

 671 

The general decrease in the volume of water in the ONLINE experiment, mainly coming 672 

from the snow dominated areas where the assimilation removes snow, seems to be the 673 

primary impact on the hydrology. In soil moisture dominated areas the river discharge seems 674 

to be less impacted by the increments and the evapotranspiration rate holds a more important 675 

role. 676 
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 677 

Data assimilation is a very important component of any NWP system with a lot of effort and 678 

research concentrated on the use of observations to correct for random (day-to-day) errors. 679 

Data assimilation systems are not there to correct for systematic biases. The fact that LDAS 680 

produces consistent negative increments in snow covered areas in this study is pointing 681 

towards an apparent snow model bias. In contrast, a model affected by random errors only, 682 

would lead to data assimilation increments of both signs with close to zero annual mean 683 

values. 684 

 685 

Other studies have also highlighted significant snow assimilation impacts on the water 686 

balance. For example, De Lennoy et al. (2012) showed that on a small catchment in Colorado 687 

(USA) the season averaged snowpack water content is largely decreased by the snow water 688 

equivalent assimilation in the Noah land surface model, and could only be overcome by 689 

scaling applied (to anomalies) to the observations prior to assimilation. Similarly, Arsenault 690 

et al. (2013) found that assimilating MODIS snow cover fraction observations into the CLM 691 

land surface model by a simple rule-based direct insertion and the one-dimensional ensemble 692 

Kalman filter methods, lead to substantial snowpack removal (without melting, thus causing 693 

negative bias in runoff), by both methods in Colorado and Washington. 694 

 695 

In the ECMWF system, the snow increments are correcting for the systematic overestimation 696 

of the current HTESSEL snow scheme which melts the snow too slowly. Dutra et al. (2012) 697 

highlighted that although the current snow scheme provides a significant improvement over 698 

the previous one, it does not yet improve on the short-duration melting events during late 699 

winter and spring. They argued that the experimental multi-layer snow scheme was able to 700 
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reproduce, at least partially, those snowmelt episodes thanks to the top snow layer having a 701 

reduced thermal inertia. 702 

 703 

The findings in this work are specific to the NWP configuration at ECMWF with the 704 

HTESSEL land surface model and the processes within. However, any LSM’s ability to 705 

support hydrological simulations can be limited by inadequate handling of the processes, 706 

potentially causing a similar problem downstream in the hydrology. The areas highlighted 707 

here for ECMWF’s HTESSEL in supporting the flood forecasting activities can be improved 708 

by some potential developments in the future. Some of the areas where substantial 709 

improvements could be achieved are described in the following below: 710 

 711 

 A new multi-layer snow scheme is currently being tested at ECMWF which is similar 712 

to the one evaluated in Dutra et al. (2012). This improved snow scheme is expected to 713 

represent better the snow melt processes and therefore reduce the snow increments 714 

that currently remove a significant amount of water from the hydrological cycle. The 715 

hydrological context developed in this study will be used to aid this development of 716 

the new scheme. 717 

 718 

 Another potential way of improving HTESSEL performance for hydrological 719 

applications would be to modify the LDAS by special handling of the snow 720 

increments in order to retain the water in the hydrological cycle during the data 721 

assimilation. For example, Zaitchik and Rodell (2009) proposed an interesting 722 

approach using near-future, snow-covered area observations to adjust the air 723 

temperature and precipitation forcing data in order to preserve the local hydrological 724 

balance. In another study, Pan and Wood (2006) developed a constrained ensemble 725 
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Kalman filter method to assure closure of the water balance when assimilating 726 

hydrological observations. These types of studies rely on uncoupled systems and they 727 

would be difficult to implement in operational, real-time environment. However, they 728 

provide some insight on water budget closure in data assimilation, and they should be 729 

further investigated and adapted to coupled land-atmosphere NWP systems. On the 730 

longer term, further coupling between NWP and hydrological forecasting systems will 731 

be considered, opening thereby the possibility for coupled land-hydrology data 732 

assimilation. In this context, joint assimilation of land surface and river discharge 733 

observations will consistently correct the different components of the Earth System. 734 

 735 

 In addition, the land surface development methodology including data assimilation 736 

techniques and process representation is continuously improved at ECMWF. The 737 

future inclusion of the LDAS scheme in the offline HTESSEL is in development. It 738 

will create an environment where the offline research work, including the reanalysis 739 

improvements (e.g. ERA5), could be done in a consistent way with the real-time 740 

forecast generation. In parallel to these developments, addressing the water budget 741 

closure in land-atmosphere data assimilation systems should be a priority in the future 742 

to ensure consistent high quality coupled NWP and hydrological forecasts.  743 

 744 

GloFAS is one of the few existing flood forecasting systems that utilises an LSM 745 

(HTESSEL) for representing the hydrology (Emerton et al. 2016). Although we acknowledge 746 

that in some cases a simple routing model, initialised from observed upstream river levels 747 

(either from river gauges or satellite measurements), could be a simpler alternative to 748 

simulate downstream discharge on large rivers a few days in advance, e.g. in Hossain et al. 749 

(2014); in other cases where forecasts are required further in advance or where observations 750 
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are unavailable or of too low quality, a more complex modelling configuration, which 751 

represents hydrological fluxes, becomes essential. Regardless of some limitations (e.g. the 752 

one highlighted in the ECMWF NWP configuration), these complex models play crucial 753 

roles in harnessing the available predictability in the land-atmosphere system. 754 

 755 

5 Conclusions 756 

Understanding the impacts of both the data assimilation and land surface process 757 

representation in land surface models on simulated hydrological variables is very important, 758 

not only for improving the weather and climate forecasts, but specifically for supporting 759 

flood forecasting and other hydrological applications such as drought forecasting, and also 760 

for giving feedback about the Earth System. In this paper, the influence of land-atmosphere 761 

coupling and land data assimilation on global hydrological simulations from LSMs was 762 

evaluated. Two river discharge simulations from two climatological reanalyses (based on 763 

ERA5) were compared: one operational set which includes land-atmosphere coupling and 764 

LDAS with an open water budget, and also an offline HTESSEL set with a closed water 765 

budget and no LDAS.  766 

 767 

It was found that while the ONLINE version of the model largely improves the 2-metre 768 

temperature and snow depth conditions, it is causing poor representation of peak river flow in 769 

snowmelt-dominated areas, particularly in the high latitudes. However, there are localised 770 

improvements to peak river flow, such as in the western United States. The LDAS increments 771 

remove or add water even on an annual average scale which inevitably leads to systematic 772 

water budget errors and subsequently contribute to significant errors in river discharge during 773 

times of peak flow downstream, something that is critical during times of flooding. 774 

 775 
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Implications for hydrological forecasting: This study has highlighted the impact of using 776 

land data assimilation in reanalysis products. Where data assimilation is adjusting snowpack 777 

in forecasting mode then there will also be important implications for hydrological 778 

predictions. Future studies should address how far ahead the impact of data assimilation 779 

propagates in hydrological forecasts. In addition, hydrological forecasting systems often use 780 

initial river conditions derived from climatology. In these circumstances using climatological 781 

products derived using data assimilation methodologies could lead to issues with the 782 

hydrological forecasts. There are also related issues for forecasting systems such as GloFAS 783 

which compare model output to climatology to provide early awareness of extreme events – 784 

consistency between operational and climatological configurations goes some way to bypass 785 

this problem, and this conclusion has directly influenced the design of the new GloFAS-786 

seasonal system (Emerton et al. 2018). 787 

 788 

Implications for land surface modelling and data assimilation: Data assimilation is 789 

designed to compensate for noise errors and not systematic bias. In the case of the current 790 

HTESSEL snow assimilation scheme it is doing the latter; compensating for system 791 

deficiencies such as the slow snowmelt process. This paper has discussed potential ways of 792 

addressing water budget deficiencies in land surface approaches, for example including 793 

multiple layers within the HTESSEL snow scheme or moving towards data assimilation that 794 

conserves the water budget. 795 

 796 

Without addressing such issues there will never be confidence in using LSMs for 797 

hydrological forecasting applications across the globe. This type of analysis should be used to 798 

diagnose where improvements need to be made; considering the whole Earth System in data 799 
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assimilation and coupling developments is critical for moving towards the goal of holistic 800 

Earth System approaches. 801 
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Longitude 

band 

30W - 60E 60-150E 150-180E 120-180W 30-120W 

~ local noon 12 6 00 00 18 

Table 1. Criteria for selecting daytime 2-metre temperature 1039 

 1040 

 1041 

Score Description Used for 

ME Mean error Daily river discharge, snow depth 

and 2-metre temperature 

MAE Mean absolute error Daily river discharge, snow depth 

and 2-metre temperature 

NSE Nash-Sutcliffe efficiency Daily river discharge time series 

R Pearson correlation coefficient Daily river discharge time series 

PMnE Percentage sample mean error Whole river discharge sample 

PMnAe Percentage sample mean absolute 

error 

Whole river discharge sample 

PStE Percentage sample standard 

deviation error 

Whole river discharge sample 

PStAe Percentage sample standard 

deviation absolute error 

Whole river discharge sample 

PkTiMe Peak timing mean error Annual river discharge peaks 
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PkTiMae Peak timing mean absolute error Annual river discharge peaks 

PPkMgMe Percentage peak magnitude mean 

error 

Annual river discharge peaks 

PPkMgMae Percentage peak magnitude mean 

absolute error 

Annual river discharge peaks 

 1042 

Table 2. List of verification scores used in the analysis with a short description and also the 1043 

areas where they were applied. 1044 

 1045 

No. Station River 

Area 

(*1000 

km2) 

NSE PPkMgMe (%) PPkMgMae (%) 

ONLINE OFFLINE ONLINE OFFLINE ONLINE OFFLINE 

1. Salekhard Ob 2541 0.40 0.52 -55.0 -40.7 55.0 40.7 

2. Pilot station Yukon 865 0.31 0.64 -64.7 -50.7 64.7 50.7 

3. Boogojevo Danube 257 0.47 -0.43 -3.5 29.1 19.8 32.4 

4. Lobith Rhine 163 0.45 0.05 -39.1 -14.8 39.1 18.5 

5. Viicksburg Mississippi 2963 -0.02 -2.69 1.6 31.4 17.7 43.5 

6. Quincy Columbia 663 0.25 0.54 -24.0 -7.6 27.5 20.2 

7. Boa Sorte Xingu 207 -1.53 -0.85 159.0 147.9 159.0 147.9 

8. Obidos-Linigrafo Amazon 4664 -0.17 -0.21 26.6 26.9 26.6 26.9 

9. Hadejia Hadejia 22 -9.01 -11.85 297.1 436.1 297.1 436.1 

10. Bangui Ubangi 496 -5.72 -6.17 162.8 159.1 162.8 159.1 

11. Katima Mulilo Zambesi 331 -7.97 -6.70 196.6 183.0 196.6 183.0 
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12. Walkers bend Flinders 106 0.66 0.62 -24.5 -11.4 46.9 45.9 

13. Komsomolsk Amur 1846 0.43 0.68 -33.5 -18.7 33.5 18.7 

 1046 

Table 3. Details of the 13 catchments analysed in Figure 7 (no. 13) and Figure 8 (no. 1-12) 1047 

with the NSE, PPkMgMe (percentage peak magnitude ME) and PPkMgMae (percentage peak 1048 

magnitude MAE) score values for the ONLINE and OFFLINE experiments based on the 1049 

ERA5-D25 dataset. Bold scores denote better performance. For further details on the scores 1050 

see Section 2.13. 1051 

 1052 

Score 

ME 

(m3/s) 

MAE 

(m3/s) 
NSE R 

PMnE      

(%) 

PMnAe    

(%) 

PStE         

(%) 

PStAe      

(%) 

PkTiMe 

(day) 

PkTiMae 

(day) 

PPkMgMe 

(%) 

PPkMgMae 

(%) 

ONLINE -264 3017 -0.29 0.67 -2.6 29.0 9.6 48.3 -0.95 11.8 6.3 61.3 

OFFLINE 236 2954 -0.53 0.70 16.9 27.2 34.2 52.1 -0.81 11.8 27.3 59.2 

 1053 

Table 4. List of global average scores for the ONLINE and OFFLINE experiments based on 1054 

the ERA5-D25 dataset. Each value is a mean of scores from 590 catchments (where 1055 

minimum of 9 years of river discharge observations was available) weighted by the square 1056 

root of the catchment area sizes. For further details on the scores see Section 2.13. Bold 1057 

numbers denote the better score of ONLINE and OFFLINE. The following scores are 1058 

displayed: ME, MAE, NSE, R, Percentage sample mean error (PMnE), Percentage sample 1059 

mean absolute error (PMnAe), Percentage sample standard deviation error (PStE), Percentage 1060 

sample standard deviation absolute error (PStAe), Peak timing ME (PkTiMe), Peak timing 1061 

MAE (PkTiMae), Percentage peak magnitude ME (PPkMgMe), Percentage peak magnitude 1062 

MAE (PPkMgMae).  1063 
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 1064 

 1065 

Figure 1. Schematic of the ONLINE and OFFLINE experiments that were carried out to 1066 

produce the ERA5-D25 dataset. The years in brackets for the discharge indicate the first spin-1067 

up year in each period that were excluded from the analysis. 1068 

 1069 

 1070 

Figure 2. Schematic diagram of the land data assimilation system at ECMWF. 1071 

 1072 
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 1073 

Figure 3. Geographical distribution of river discharge observations with sufficient record 1074 

length selected for the analysis. Colours indicate the length of the available data in years 1075 

(from 9 to 25). 1076 

 1077 

 1078 

Figure 4. Difference in the snow depth mean absolute errors between ONLINE and 1079 

OFFLINE for January based on observations in 2000-2007 (in cm). Points are shown where 1080 

observations are available. Blue colours indicate lower errors in the ONLINE experiment. 1081 

 1082 

Accepted for publication in Journal of Hydrometeorology. DOI 10.1175/JHM-D-18-0086.1.



49 

 

 1083 

Figure 5. Average daily water budget analysis (mm/day) of the ONLINE experiment based 1084 

on the ERA5-D25 dataset for (a) the total 24-hour water budget errors, (b) the 24-hour snow 1085 

water equivalent increments and (c) the 24-hour soil water content increments. Negative 1086 

values (red) indicate water removal by LDAS, while positive values (blue) show where water 1087 

is added to the hydrological cycle. 1088 

 1089 
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 1090 

Figure 6. Map of the catchments analysed in Section 3.3 (Figure 7), where the catchment-1091 

level process is examined over the Amur river (blue area, no. 13), and in Section 3.4 (Figure 1092 

8), where the simplified representation of the annual water cycle is shown for some selected 1093 

regional catchments of the world (red areas, no. 1-12). The catchment details are provided in 1094 

Table 3. 1095 

 1096 
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Figure 7. Average daily water budget cycle for a catchment on the Amur river in Russia at 1098 

Komsomolsk. It includes the following parameters: precipitation (red line), snow (green line 1099 

with markers) and soil (mustard line with markers) water content increments for the ONLINE 1100 

simulation; surface runoff (light green), subsurface runoff (grey), evapotranspiration 1101 

(magenta), snowmelt (cyan) and soil (mustard) and snow (green) water storage daily changes 1102 

for both ONLINE (solid lines) and OFFLINE (dashed lines); snow depth (blue) and also river 1103 

discharge (black) for the ONLINE (solid lines) and OFFLINE (dashed lines) experiments and 1104 

also observations (lines with markers). The snow depth values are based on 2000-2007 while 1105 

all other displayed daily climatological means are based on the ERA5-D25 dataset (for more 1106 

detail on the computation of these values see Section 2.11 and 2.12).  1107 

 1108 
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 1109 

Figure 8. The annual cycle of water budget variables for a selection of catchments worldwide 1110 

numbered from 1 to 12 (see Figure 6). The displayed variables are the snowmelt (cyan), 1111 

evapotranspiration (magenta) and river discharge (blue) for both the ONLINE (solid lines) 1112 

and OFFLINE (dashed lines) experiments, the snow (green) and soil (mustard) increments for 1113 

ONLINE and the river discharge observations (black line). All values are daily climatological 1114 

averages based on the ERA5-D25 dataset (for details on the computation of these values see 1115 

Section 2.12). The river names, the gauge coordinates and the upstream area values are 1116 
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displayed in the subplot titles. The catchment descriptions with the main verification score 1117 

values for the ONLINE and OFFLINE simulations are provided in Table 3. In addition, the 1118 

catchment area contours are provided in Figure 6. The evapotranspiration scale is provided on 1119 

the secondary vertical axis while the scale for all other parameters is shown on the main 1120 

vertical axis. 1121 

 1122 

 1123 

Figure 9. River discharge percentage peak magnitude (a) ME (in %) of the ONLINE 1124 

experiment and (b) change in the percentage peak magnitude MAE (in %) between ONLINE 1125 

and OFFLINE based on the ERA5-D25 dataset. Positive error differences in b) indicate 1126 
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deterioration (blue) while negative changes show improvement (red) in the ONLINE 1127 

simulation compared with OFFLINE. The catchments are displayed with different marker 1128 

sizes representing the size of the catchment area. Near zero differences are shown by black 1129 

crosses, while all other categories are displayed by circles. 1130 
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