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We've been steering by looking in the rearview.
Advances (spurred by COVID) offer decision makers timely feedback to support more
agile and adaptive management of carbon emissions and natural sinks.
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Current status

Annual analysis of the global CO, budget by the Global Carbon Project
* Annual mean fluxes for year n-1
e Based on ocean and land models, only annual fossil emissions are given per country

RECCAP2 chapters
e Last two decades with process attribution of fluxes

Global CH, budget by GCP
* Decadal estimates
* Combination of multiple inversions and bottom-up inventories
e Last update to 2017, current update to extend to 2020

Global N,O budget by GCP

* Decadal estimates
* First publication in 2020
e Last update to 2018, current update to extend to 2020

UNFCCC submissions

* Latency of 1+ years for Annex 1 countries
* Latency of 10+ years for non Annex 1 countries



What are the applications of NRT budgets ?

* Quantify the impact of recent climate extremes ( fire, drought )

* Assess very recent changes of emissions & drivers

* Abnormal recent changes in the seasonal CO, and CH, growth rates
» Better learn about models differences through a living comparison
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What should be the minimum latency of ‘NRT’ ?

* Media ask for numbers in a week
* Quarterly emission budgets valuable with a month lag
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CO2 growth from the first week of
March to the first week of May (ppm)

Could NRT budgets be of lower quality than annual budgets ? Global i dilyCO;emissions Canadasdaiy e COemissios
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Existing capabilities for near real time GHG budgets

* NRT estimates of fossil emissions
* CH, fossil emissions GMW — Kayrros = 40% of fossil emissions updated each month
* CO, Carbon Monitor daily national budgets & emissions maps at 10 km updated each month

* NRT global inversions of CO, and CH, fluxes
* NRT in-situ concentration from NOAA, ICOS, RAMCES networks (subset of global data)
* Inversions need a spindown of = 4 months
* Satellite XCO, and XCH4 from OCO2 and GOSAT updated each year
* E.g. Copernicus CAMS results are already available for CO, updated each 4 month

* NRT land and ocean fluxes
* Land observations and models updated each 4 month [ pilot with 3 models |
®* Ocean observations and models



Comparing inversions with UNFCC inventories
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Comparing national greenhouse gas budgets reported in UNFCCC

inventories against atmospheric inversions :’"ex .

Zhu Deng!-*, Philippe Ciais>*, Zitely A. Tzompa-Sosa?, Marielle Saunois?, Chunjing Qiu?, Chang Tan', Non Annex One

Taochun Sun!, Piyu Ke!, Yanan Cui’, Katsumasa Tanaka?*, Xin LinZ, Rona L. Thompson®, Hanqin Tian®, - 27 ‘
Yuanzhi Yao®, Yuanyuan Huang’, Ronny Lauerwald?, Atul K. Jain®, Xiaoming Xu’, Ana Bastos'’,

Stephen Sitch!!, Paul I. Palmer'>'3, Thomas Lauvaux?, Alexandre d’Aspremont!#, Clément Giron!4,

Antoine Benoit!4, Benjamin Poulter'?, Jinfeng Chang!®, Ana Maria Roxana Petrescu!’, Steven J. Davis!8, 3

Zhu Liu!, Giacomo Grassi'®, Clément Albergel?’, and Frédéric Chevallier? No Deta

New methodologies are developed to

Global (managed land) sink from inventories =0.3
use atmospheric inversions FESU|tS and Global (managed land) sink from inventories * = 1.4
make them compa rable with UNFCCC Global (managed land) sink from inversions = 1.3
. . Global (all land) sink from inversions =14

reports and inventories GtC y-1

* Updated and gap filled by Grassi et al. 2022



Comparing inversions with UNFCC inventories

Land CO; flux (TgC yr ~1)

Land CO; flux (TgC yr ~1)
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Data processing pipeline is
operational — results until
2022

Inversion update from
OCO2 products is 4 month

From in-situ datais = 1
year



Available research datastreams allow:
=> Global & National assessments of emissions and sinks at 4 months intervals

Ciais et al. Nature, in review

2021 2022

Fossil CO,
(Carbon Monitor)

Existing, updated monthl/

Fossil CH,

(TROPOMI) Existing, updated weekly

At(nagg[-)zhiic;sci 00n§ Existing, updated annually Updated every 4 months

Atmospheric CH,

(inversion) Existing, updated every 4 years . Updated annually

Biomass change

(GEDI, ICESAT, VOD) Existing, updated every 4 months

Terrestrial carbon fluxes
[(o)(o)1/e-08 Updated every 4 months
(upscaled by machine learning, DGVMSs) ° B £ 4

Ocean carbon fluxes D28 Updated every 4 months
(upscaled by machine learning)

Fire emissions
(GFED)

Existing, updated every x months

Deforestation emissions | Protolype Updated every 4 months

|

Global

Stocktake



Carbon Monitor near real time fossil CO, emissions until Dec 1st 2023
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Monitoring global carbon emissions
in 2021

Zhu Liu@'®2, Zhu Deng®', Steven J. Davis®?, Clement Giron® and Philippe Ciais*

Following record-level declines in 2020, near-real-time data indicate that global CO, emissions
rebounded by 4.8% in 2021, reaching 34.9 GtCO,. These 2021 emissions consumed 8.7% of the
remaining carbon budget for limiting anthropogenic warming to 1.5 °C, which if current
trajectories continue, might be used up in 9.5 years at 67% likelihood.

Monitoring global carbon
emissionsin2022

Zhu Liu, Zhu Deng, Steve Davis & Philippe Ciais

All data freely available
https://carbonmonitor.org



https://carbonmonitor.org/
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Reliance on fossil fuels increases during extreme
temperature events in the continental
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Near-real time daily carbon emission maps (Carbon Monitor)
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Near Real time attribution of global / national CO2 budgets

1.

Net land CO, fluxes
Intact

forests

Deforestation

Fossil fuel
Ocean emissions

Atmospheric Biomass C change
= (satellite data separated
into processes)

= Soil C change

inversions (mass balance)

(managed and unmanaged) 1 .

Inversions
Land CO, flux

¥

Correction of lateral fluxes
Land carbon stock change
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NRT biomass C change
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Observable biomass C losses in NRT
Fire emissions
Deforestation CO, emissions
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Remaining CO2 flux
Forest growth / regrowth sink
Soil C storage change



Better prior for inversions : NRT air-sea CO, fluxes

Based on M, surface in situ pCO2 and satellte observations of the ocean surface SST, CHI, SSS, MLD

ESTIMATING PCO, AND FLUXES FROM SATELLITES
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DL emulators of ocean models ( process
based and data driven )

[ \ r _________________ A
I Methodological steps | I Setup details I
« o e )
______________________________________________________ Patches
| [ 1
@ BASIC: year, month, latitude, longitude PatCheS
ENVIRONMENT: SST, ICE, CHL, MLD, CO2, SSS, SSH, SLP, Wind  RECALRLL ‘13/'
Clean and GOBM: cesm, cnrm, csiro, fesom, ipsl, mpi, noresm, planktom, (Xi. yi)"‘Dl
alien data princeton, recom TARGET 180*360 —) ~
& DATA PRODUCT: CMEMS-LSCE-FFNN, LDEO-HPD, Jena-MLS, OSETHZ- RMSE (yl ys)
N GRaCER, MPI-SOMFFN, UOEX-Watson, JMA-MLR, NIES-NN

131 137 131 131 L wly+ L | = Loss
Crop data to

18*18 18*18 18*18 18*18

. Mask 10%

|
: | |
|
| I | |
| ;| |
| P |
| |
: 18*18 patches : | | “
| | | | — \ Weak. — Lu
I @ | I I (xj ) NDHu ugmentations
| ;| 18 I
i N e I RMSEG, )
I CNN model I I
| : | 18 18 |
| || 1 | ® - T Pvod |
| | | Mask 30%
I 4 : | I} Feature X, labely Il FeatureX | o : Model structure :
| | | | Augmentations | 13 13 13/' 13 |
| Semi-supervised | | N~ / / /
| I | Supervised Loss Unsupervised Loss | (JC}) DH” I |
model | | |
: I : : || 1848 18418 1848 18418 |
| | |
IS v : | |
| |
| ;! | | |
: KFold and | : Model 1 Model 2 Model3 Model 4 Model 5 : : :
ensemble |
| o ' | | |
| average | | |
: g : | & | | |
| — | L. | | |
| Prediction : | Prediction I ' I
| | |



DL emulators of ocean models ( process
based and data driven )
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Better prior for inversions + attribution of C flux anomalies
NRT fluxes from DGVM (A Bastos, S Sitch et al. )
Example : the drought of 2022 in Europe, China ...

2022 in perspective: NBP ( net C flux anomaly)
3 DGVM models are run with a 4-mon update

Jan | Feb | Mar | Apr | May | Jun m Oct | Nov | Dec

Submission

Forcing GCB Simulations GCB GCB

GCB cycle
Events of interest can

4mon updates sl bk NRT simulations
(52, no LUC)
Update to Update to Update to Sep YR with

Figure 1 Timeline for fast-track simulations by DGVMs each year (Yr) and interactions with the GCB cycle.



Global NRT monitoring of biomass C changes with satellites

www.kayrros.com/biomass-watch/ SMOS and SMAP satellites

a Total live biomass changes [MgC ha™! yr.1]
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http://www.kayrros.com/biomass-watch/

Observable losses : NRT monitoring of fire C emissions

Global emission of carbon monoxide with the PYVAR SACS assimilation system
Applied to assess the emission anomaly in 2021 due to boreal and arctic fires
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NRT carbon accounting model

Accounting IPCC Inventory Guide Emission factor x Activity data=Emissions
method of
anthropogenic A
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carbon i ‘ UNFCCC National Greenhouse Gas Inventory ———
emission v v
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_________ .I______________________.I__________________________________J
v

Near-real-time carbon emission quantitative model and multi-source data system

. Intelligent instrument (hourly power generation), industry statistics SSSss
Multi-source data (industrial production) -
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Conclusion
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Near real time global CH4 and CO2 budgets are
now possible

Coverage and separation of managed /
unmanaged land

Understand extreme events and evaluate
emerging carbon feedbacks

Impacts of extreme weather events and
economic shocks on fossil CO2 and CH4
emissions



Sentinel-5P near-real time monitoring of CH,

emissions for ultra-emitters

Major gas
pipelines

Emission rate:
10 tons/h
500 tons/h

Global coverage
Ultra emitters > 20 tCH, per hour with TROPOMI
Represents 5 to 80% of national emissions from inventories

RESEARCH

GREENHOUSE GASES

Global assessment of oil and gas
methane ultra-emitters

T. Lauvaux™, C. Giron?, M. Mazzolini?, A. d’Aspremont?, R. Duren*®, D. Cusworth®,
D. Shindell”®®, P. Ciais**°

Methane emissions from oil and gas (O&G) production and transmission represent a considerable
contribution to climate change. These emissions comprise sporadic releases of large amounts of
methane during maintenance operations or equipment failures not accounted for in current inventory
estimates. We collected and analyzed hundreds of very large releases from atmospheric methane
images sampled by the TROPOspheric Monitoring Instrument (TROPOMI) between 2019 and 2020.
Ultra-emitters are primarily detected over the largest 0&G basins throughout the world. With a total
contribution equivalent to 8 to 12% (~8 million metric tons of methane per year) of the global

0&G production methane emissions, mitigation of ultra-emitters is largely achievable at low costs
and would lead to robust net benefits in billions of US dollars for the six major 0&G-producing
countries when considering societal costs of methane.

LSCE

Lower detection of leaks > 5 tCH, per hour using PRSMA, Sentinel-2, Gaofeng ...




Near real time estimates of fossil CH, regional emissions for
major extraction basins ( represents = 35% of fossil CH4
emissions )

Tropomi + high resolution atm inverse models
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Figure 2. Emissions of CH, (blue) from the Permian shale oil and gas basin in the US and well
completion rates (red).

Coverage : seven major oil, gas, coal basins
representing 25% of global fossil CH4 emissions
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CH, Annual Increase (ppb)

Global methane emissions anomaly in 2020 and 2021

Global emissions of methane with the LMDZ INCA PYVAR data assimilation system
Applied to understand the acceleration of atmospheric methane growth in 2020 and 2021

Annual Global Increase of CHs
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Thank you for your attention



Transitioning from research to operational
(atmospheric CO2 inversions)

e Copernicus leading the way (as demonstrated in previous slides)

e OCO-2 MIP benefits from global participation across countries adds modeling teams from seven countries:
Australia, Canada, China, France, Japan, India, USA .
a. Not operational, can we move towards annual updates

® Increasing contribution of inverse modelling groups to both OCO MIP and GCP (CAMS, CMS-Flux, CarbonTracker,
etc)



From Pep:

During the discussion, | think it is important to also discuss what it all means for the current budget activities:
e What would be the distinctive niche and contributions between current global budget activities and the
operational and NRT budgets.
e |If distinct, how the products and work can help each other, or are we seeing more of an evolution that ultimate
one should replace the other.

e How can a broad GCP support the scientific community to align better with the products that stakeholders
need, both policy and science.



