TIGGE Implementation Meeting - Report

ECMWF 9-10 November 2005

Participants

- Richard Swinbank richard.swinbank@metoffice.gov.uk
- Simon Thompson <u>simon.thompson@metoffice.gov.uk</u>
- Tan Le <u>t.le@bom.gov.au</u>
- Peiliang Shi <u>shipl@cma.gov.cn</u>
- Jean Nicolau jean.nicolau@meteo.fr
- Waldenio Almeida gambi@cptec.inpe.br
- Yves Pelletier <u>yves.pelletier@ec.gc.ca</u>
- David Burridge <u>d.m.burridge@btinternet.com</u>
- Horst Boettger <u>horst.boettger@ecmwf.int</u>
- Baudouin Raoult <u>baudouin.raoult@ecmwf.int</u>
- Manuel Fuentes manuel.fuentes@ecmwf.int
- David Richardson david.richardson@ecmwf.int
- Walter Zwieflhofer <u>walter.zwieflhofer@ecmwf.int</u>
- Philippe Bougeault <u>philippe.bougeault@ecmwf.int</u>

Overview

- 1st TIGGE Workshop was held at ECMWF 1-3 March 2005 (report available from www.wmo.int/thorpex)
- Working Group on archiving (representatives from the three archive centres - CMA, ECMWF, NCAR) met at ECMWF 19-21 September 2005 (report and summary slides available from ECMWF)
- Implementation Meeting at ECMWF 9-10 November 2005 held to address technical issues raised by the two preceding meetings. Participants from archive centres and data providers
- These slides constitute the report of this implementation meeting

Definition of TIGGE database

List of products

- → Reviewed the list of products (parameters, levels, steps) from the March Workshop
- → Data Providers (those present) agreed that they would aim to supply these products to the Archive Centres. This would require changes in the post-processing by the Data Providers. Noting possible operational constraints, it was understood that there may be omissions from the list
- → No core dataset (compulsory list) was defined since enough overlap will exist between Data Providers

Definition of TIGGE database

• The following details were agreed:

- → All accumulations to start from the beginning of the forecast
- → Geopotential Height to be used rather than Geopotential
- → Temperature extremes (max/min) to be provided over 6 hour intervals
- → Specific humidity to be provided in the free atmosphere
- → "2 metre temperature" to be used to refer to near surface temperature parameters
- → All fields to use units as defined in GRIB Edition 2
- → Orography and Land-sea mask to be provided for the Control for each output time-step. CMC to check whether this meets the requirement for their system. Orography to be provided as geopotential height.

List of products: single level

Parameter	Level	Unit	Output frequency	Comment
Mean sea level pressure	MSL	Pa	6h	instantaneous
Surface Pressure	surface	Pa	6h	inst
10m U-velocity	10m	m s**-1	6h	inst
10m V-velocity	10m	m s**-1	6h	inst
2m temperature	2m	K	6h	inst
2m dew point temperature	2m	K	6h	inst
2m max temperature	2m	K	6h	6_h
2m min temperature	2m	K	6h	6_h
Total precipitation (liquid + frozen)	surface	m	6h	acc_st
Snow fall	surface	m of water equivalent	6h	acc_st
Snow depth	surface	m of water equivalent	6h	inst

- 6_h: accumulated over previous 6 hours
- acc_st: accumulated from start of forecast

List of products: single level fields

Parameter	Level	Unit	Output frequency	Comment
Total cloud cover	surface	0-100%	6h	instantaneous
Total column water	surface	kg m**-2	6h	inst
Surface latent heat flux	surface	W m**-2 s	6h	acc_st
Surface sensible heat flux	surface	W m**-2 s	6h	acc_st
Surface solar radiation	surface	W m**-2 s	6h	acc_st
Surface thermal radiation	surface	W m**-2 s	6h	acc_st
Sunshine duration	surface	S	6h	acc_st
Convective available potential energy	surface	J kg**-1	6h	inst
Orography (Geopotential height at the surface)	surface	m		inst
Land-sea mask	surface	0-1		inst

- acc_st: accumulated from start of forecast
- Orography and Land-sea mask to be provided for the Control for each output step

List of products: upper air fields

Parameter	Unit	Output frequency	Comments
Temperature	K	6h	instantaneous
Geopotential height	m	6h	inst
U-velocity	m s**-1	6h	inst
V-velocity	m s**-1	6h	inst
Specific Humidity	kg kg**-1	6h	inst

- 5 parameters on 9 pressure levels, i.e. 45 fields.
- The 9 levels are 1000, 925, 850, 700, 600, 500, 300, 250 and 200 hPa.

Definition of TIGGE database: remaining issues to be addressed by GIFS/TIGGE WG

- Products defining the initial conditions to evaluate the various perturbation systems (more levels).
 This may eventually require additional data out to 48 hours
- Requirement for 3-hourly post-processing for a limited number of parameters for e.g. hydrological studies. Operational constraints may make this difficult to implement, especially for the full range of the forecast
- Investigation of the requirements for additional seaice, land snow/ice and soil parameters

Definition of TIGGE database (homogeneity)

- Common terminology: naming of products
 - → Agree to use the same names (implications for existing applications)
 - → To be used for cataloguing and searching and requesting data
 - → Aliases to be used to accommodate differences in local naming conventions

Definition of TIGGE database (homogeneity)

Common data format

- → Agree to use the same format: GRIB Edition 2
- → Preserve native grids and resolutions
- → Data Providers to supply interpolation routines for conversion to regular lat-lon grids and for point extraction
- → Archive Centres to specify interfaces for interpolation routines
- → Archive Centres may endeavour to return data in regular grids using these interpolation routines

Technical aspects of data exchange

Data flow

- → NCAR to complete study of IDD/LDM, including security requirements. IDD/LDM has all the tools that are required for TIGGE, ie, statistics, monitoring, re-transmission, network checksum
- → BoM noted different costs for pushing vs pulling.

Data formats: GRIB2 issues

- Proposals to WMO expert team on codes:
 - → Missing TIGGE parameters
 - → Support for checksum
 - → New production status of data: THORPEX or TIGGE
 - Some Centres may require additions for encoding their native grids
- If GRIB2 cannot accommodate all TIGGE requirements, eg checksum, a TIGGE local extension (section 2) understood by all partners may be needed.

Data Formats: GRIB2 issues

- Noted the need for a version of the data for testing purposes (0001 for production data)
- Guidelines on GRIB 2 usage (best practise) to ensure common coding will be drafted and circulated for comments

File structure

- Agreed on the proposed file structure and naming convention
- Archive Centres will use the file structure to validate the contents of the file
- Propose to WMO expert group to change the extension to .grib2 instead of .bin

Organisation of data exchange

Completeness of data

- → Missing data is unavoidable. Dummy fields will not be archived instead.
- → Data will be considered late after 24 hours (timeliness).
 Archive Centres will take action to investigate missing data.

Procedures and control mechanisms

- → Agreed that Archive Centres are technical coordinators
- → ECMWF offered to host a Website and mailing lists
- → All TIGGE Data Providers and Archive Centres to nominate contact points

User access: Registration

- Data Providers to supply their products to the Archive Centres under an agreed set of rules, which will include re-distribution rights
- Access to be provided for Research & Education through a simple electronic registration process, with valid e-mail address and acknowledgment of conditions of supply
- Under the simple registration process, access to be given with a delay (48 hours) after initial time of the forecast (reference time of data in GRIB2)
- Registration for real-time access to be handled via the THORPEX IPO

User access: Data retrieval

- It is unavoidable that in Phase 1 each Archive Centre will provide data through a different user interface
- Feedback is required to check if the field order proposed is sufficient to meet most user requirements

Implementation plan: Data transport

- Test transfer rates between Archive Centres: NCAR, ECMWF and CMA. Find best buffer sizes.
- Investigate other candidates for data transport: IDD/LDM, AFD, sftp
- Test transfer rates between Data Providers (e.g. CMC) and Archive Centres: NCAR, ECMWF and CMA.
- Results of these tests to be provided on the TIGGE Website

Implementation plan: GRIB2

- ECMWF to consult with NAEFS and WMO Expert Team on Data Representation and Codes (ET-DRC) to make sure that there is agreement on the proper encoding of the fields in GRIB2
- ECMWF to provide sample model output to the Data Providers
- ECMWF to provide a series of example programs to create these files
 - → These tools may have to be adapted by Data Providers in order to handle their own data and metadata mapping

Implementation plan

- Establish archive management communications:
 - → Mailing lists, web sites and collaborative tools
 - → Collect list of contact points from Data Providers and Archive Centres
- Start filling the TIGGE database with data from participating Data Providers after initiating the data exchange through the THORPEX IPO