

MC-KPP: Efficient, flexible and accurate air-sea coupling

Nick Klingaman NCAS-Climate, University of Reading

Prescribe SSTs and sea ice

- Pro: Computationally inexpensive, requires only an atmospheric model, get the "right" mean SSTs and ice
- Con: No response of SST or ice to atmospheric variability

Couple to a slab ocean

- **Pro:** Computationally inexpensive, ocean responds thermodynamically to atmosphere, get the "right" mean SSTs
- Con: Muted SST response to atmosphere, no dynamical response, must impose heat transports, sketchy representation of ice

Couple to a dynamical ocean

- **Pro:** Thermodynamic and dynamic response of ocean to atmosphere, no need to prescribe heat transports
- Con: Computationally expensive, large mean-state errors in ocean and ice, muted SST response to atmosphere

Observations

Instantaneous linear (shading) regressions and (contours) correlations between 31-day running means of gridpoint SST and precipitation, using anomalies from the seasonal cycle.

Coupling tries to stop the atmosphere from chucking it down over warm SSTs.

Met Office coupled model

Met Office atmosphere-only model

MetUM-GOML modelling framework

Hadley Centre atmospheric model

OASIS coupler 3 hourly exchanges

MC-KPP ID ocean model (vertically resolved)

Key advantages:

- Cheap: < 5% of the cost of the atmosphere, allowing high (I metre) ocean vertical resolution.
- Controllable: Easily constrainable to any desired ocean state (small SST biases).

Flexible: Air-sea coupling can be applied selectively in space and time to explore the role of coupling in a range of phenomena.

 Adaptable: Works easily with any GCM grid.

Climatological, seasonally varying heat and salt tendencies are applied at every ocean point (x,y,z) to represent

- (a) the mean advection in the ocean
- (b) corrections for biases in atmospheric surface fluxes

Hirons et al. (2015, Geosci. Model Dev.)

MetUM-GOML modelling framework

By using climatological heat and salt corrections, MetUM-GOMLI produces much smaller mean SST biases than a fully coupled GCM.

MetUM-GOML framework

- Because the KPP columns do not communicate, there is complete flexibility in where the atmosphere and ocean are coupled (except over sea ice)
- SSTs and sea ice are prescribed outside the coupling region.

The Madden—Julian oscillation

- The leading cause of weekly-monthly rainfall variations throughout the tropics.
- Controls "active" and "break" phases of the Indian, Australian, southeast Asian and African monsoons (more than two billion people).
- Triggers El Niño events via westerly wind bursts in the West Pacific.
- Controls tropical cyclogenesis in the Indian, Pacific and Atlantic Oceans.
- Affects the position of the extra-tropical jet streams in both hemispheres.

 Precipitation anomaly composite for Observations at day = -20

- At default entrainment and detrainment rates, coupling somewhat improves
 MJO propagation and amplitude.
- At higher entrainment and detrainment rates, coupling considerably improves MJO propagation.

Klingaman and Woolnough (2014b, QJRMS)

A-ENT-K_{WP}

140

Lagging 20

Lag (days)

<-- Leading

-20

40

60

80

100

Longitude (degrees east)

120

15

10

- Better propagation in K_{WP}-ENT-OBS is largely from coupling itself, not impact of coupling on the mean SST.
- Coupling in both the Indian Ocean and the West Pacific is crucial for MJO propagation

Evaluating the role of coupled-model systematic errors with a coupled framework.

Applications to other models

Applications to other models

JJA precipitation difference SPCAM-KPP minus SPCCSM

Preference for off-equatorial convection in SPCAM-KPP, due to changes in SST gradient?

DJF precipitation difference SPCAM-KPP minus SPCCSM

Summary and Conclusions

- Coupling to a one-dimensional ocean model allows ...
 - The ocean mean state to be easily controlled, either to observations or to a fully coupled model.
 - Sensitivity tests of the effects of global or regional air-sea coupling, without changing the ocean mean state.
 - Multi-model comparisons of the effects of air-sea coupling, under similar ocean mean states.
- The MC-KPP ocean model will be implemented within the OpenIFS as part of my NERC Independent Research Fellowship on the role of air-sea coupling in sub-seasonal variability (2015-2020).
 - MJO, monsoon onsets, extra-tropical blocking
 - Comparisons of MetUM, OpenIFS and SPCAM