
 1

Framework for Member State time critical
activities - “simple jobs”

1.1 Events

A database of events has been added to ECaccess. Events will be assigned a number

and a name. A comment can describe the event. A command called ecevent is

available to manipulate events. They will first be created. They can be restricted

for use. Events will be triggered; they can be reset or deleted. Here follow more

details on the command ecevent:

Usage: ecevent [-create |-send|-clear|-delete|-grant|-update] <MyNotification> \

 [-comment "Comment for my notification (shown to the users)"] \

 [-title "Comment for notification (shown to the operators)"] \

 [-public] [-env “variables to pass "] [-seq <number>] \

 [-notify|-subsrcribe] [-users "list_of_users"] \

 [-at <date>| -delay <arg>] [-format <arg>] [-ecport <arg>]

 -create <MyNotification>: to create a new event, called MyNotification.

 -comment “Comment”: adds a comment describing the event

 newly created

 -public: the new event created can be subscribed

 to by any user. By default, only the

 owner of the event can subscribe to it.

 -title “Comment”: adds a title describing the event newly

 created. This title will be displayed in

 the monitoring interface for the

 operators. It is compulsory when this

 event is to be monitored.

 -metadata “data”: allows one to position the event in the

 monitoring interface available to the operators. This option is

 only available to UID emos. The main page of the monitoring

 interface shows all the events linked to the operational suite.

 We have subdivided this page into different areas. Firstly, we

 have defined 4 groups, one for the two main cycles at 00Z and

 at 12Z, one for the BC runs and one for the other runs. These

 groups will occupy one column on the monitoring page.

 Within these groups, we have defined families. For example

 for the runs at 00Z, one family defines the deterministic

 forecast run and another family defines the Ensemble

 Prediction system. Finally, within each family, one can define

 tasks. The tasks within one family should be ordered

 according to the schedule when the corresponding event will

 be started. The position parameters and descriptors to use

 are:

 groupOrder=NN

 2

 groupName=<name>

 familyOrder=MM

 familyName=<name>

 taskOrder=PP

 taskName=<name>

 For example:

 -metadata “groupName=00Z_runs; groupOrder=10;

 familyName=/od/mc/msjobs/00; familyOrder=10;

 taskName=ms240; taskOrder=70”

 Hint: use ecels to check the metadata for existing events and

 check the layout of the monitoring page under

 http://ecgate.ecmwf.int:9080/do/events/

 -send <MyNotification>: to send a signal to the event called

 <MyNotification>

 -env "variables to pass ": pass the environment variables listed to

 the jobs subscribing to this event. The

 list should be of the format:

 “VAR1=val1; VAR2=val2; …”

 -seq < number>: specifies the sequence number to notify the

 given event. This option is compulsory when

 sending and the number should be unique and

 increasing. The same event cannot be notified

 twice with the same number. For example, the

 date and time could be used as sequence

 number.

 -at <date>: defines the date and time when the monitoring

 interface will cycle through, ready for the next

 notification of the event. <date> should be given using

 the format YYYYMMDDhhmmss. This format can be

 changed with the -format option. By default, there is

 no cycling on the monitoring interface; the status for

 an event will be updated when the next notification for

 this event is sent.

 -format <arg>: defines the date format, as used with the -at

 option, The default format is like

 YYYYMMDDhhmmss.

-delay <arg>: defines the delay - starting from the

notification of an event - after which

the monitoring interface will cycle

through, ready for the next notification

of the event. By default, there is no

cycling on the monitoring interface; the

status for an event will be updated

 3

when the next notification for this event

is sent. The delay can be given in weeks

(w), days (d), hours (h), minutes (m) or

seconds (s), e.g. -delay 18h.

 -grant <MyNotification>: to add or change the access for some users to

 the event called MyNotification

 -users “list_of_users”: grant or change access to an event to

 the given list of users. Commas should

 separate the UIDs. If a list of users

 is given without a “-subscribe” or

 “-notify”, the access to the event for the

 given users will be removed.

 -subscribe: to authorise the given users to subscribe

 to the event.

 -notify: to authorise the given users to send

 notifications to the event.

 -clear <MyNotification>: to reset the sequence numbers of notification

 of the event called MyNotification and remove

 all jobs subscribing to the event. When an

 event is cleared, those users having jobs

 subscribed to the event will be notified by

 email.

 -update <MyNotification>: to update the settings of the event called

 MyNotification. This option can be used with

 the options -comment, -title, -metadata and

 -public which are described above.

 -name <newName>: to rename the event.

 -delete <MyNotification>: to remove the event called MyNotification and

 remove all jobs subscribing to the event. When

 an event is deleted, those users having jobs

 subscribed to the event will be notified by

 email.

 [-ecport <arg>]: allows one to select the operational or test

 environment. <arg> is equal to 644 for the operational

 environment and equal to 9644 for the test

 environment. The default is 644.

As one can see, the ecevent command already includes the necessary features for

anybody to define their own events and possibly to generate simple dependencies

between various tasks. Access to subscribe to or to send a notification to an event can

also be granted to other users.

 4

In the context of the current system of simple MS jobs via SMS, emos would, only

once, create all the events corresponding to the different msjobs tasks defined in the

operational suite. For example for the event an00h000:

 % ecevent -create an00h000 -comment “At this stage, the operational \

 analysis at 00UTC is complete.” -public -title “/od/o/msjobs/00/ms000”

And in the jobs msjobs, the call to msj_submit would be replace with a call to

ecevent, to notify ECaccess and the jobs waiting for the event. For the event

an00h000, the notification could happen with:

 % ecevent -send an00h000 -env “MSJ_BASETIME=$MSJ_BASETIME;…” \

 -seq MSJ_YEARMSJ_MONTHMSJ_DAYMSJ_BASETIME -delay 15h

Note that some obsolete variables currently passed will not be available any longer,

like MSJ_USER, MSJ_COUNTRY or MSJ_PATH. Only one user uses the

MSJ_PATH variable to find out which event the job is related to. In order to allow the

user to find this out, we suggest passing a variable defining the event, e.g.

MSJ_EVENT=MSJ_DIR. We suggest that the variable MSJ_DIR in the operational

suite is redefined to MSJ_EVENT.

Note also that the sequence number is unique for this event. If the operators would

rerun a task msjob and if the command ecevent had succeeded in the first run, the

second run would fail. The event should only be sent once. Only when the msjob

tasks fail to complete the ecevent command should they then be rerun.

