
Slide 1 © ECMWF

Submitting batch jobs
Slurm on ecgate

Xavi Abellan

xavier.abellan@ecmwf.int
User Support Section

Slide 2 © ECMWF

● Interactive mode versus Batch mode

● Overview of the Slurm batch system on ecgate

● Batch basic concepts

● Creating a batch job

● Basic job management

● Checking the batch system status

● Accessing the Slurm Accounting database

● Trouble-shooting

● Bonus: migration from LoadLeveler

Outline

Slide 3 © ECMWF

Interactive vs Batch

● When you login, the default shell on ecgate is either the Korn-

shell (ksh), Bash or the C-shell (csh).

● To run a script or a program interactively, enter the executable

name and any necessary arguments at the system prompt.

● You can also run your job in background so that other commands

can be executed at the same time…

$> ./your-program arg1 arg2
$> ./your-program arg1 arg2 &

Slide 4 © ECMWF

Interactive vs Batch

● But… Background is not batch
● The program is still running interactively on the login node

– You share the node with the rest of the users

● The limits for interactive sessions still apply:

– CPU time limit of 30 min per process

● Interactive sessions should be limited to development tasks,

editing files, compilation or very small tests

$> ulimit -a

Slide 5 © ECMWF

Interactive vs Batch

Login node

Computing (batch) nodes

Slide 6 © ECMWF

Interactive vs Batch

Login node

Computing (batch) nodes

Slide 7 © ECMWF

Batch on ecgate

●We used LoadLeveler in the previous ecgate

● The batch system used on the current is Slurm:

● Cluster workload manager:

– Framework to execute and monitor batch work

– Resource allocation (where?)

– Scheduling (when?)

●Batch job: shell script that will run unattended, with some special

directives describing the job itself

Slide 8 © ECMWF

How does it work?

Login node

Computing (batch) nodes

Slurm

Node info

 Job info

Job submission

Check status

Cluster utilisation

Queues and priorities

Limits

Slide 9 © ECMWF

Quality of service (queues)

● In Slurm, QoS (Quality of Service) = queue

● The queues have an associated priority and have certain limits

● Standard queues available to all users

QoS Description Priority Wall Time Limit Total Jobs User Jobs

express Suitable for short jobs 400 3 hours 128 12

normal Suitable for most of the work.
This is the default 300 1 day 128 12

long Suitable for long jobs 200 7 days 32 4

● Special queues with the access restricted to meet certain conditions

QoS Description Priority Wall Time Limit Total Jobs User Jobs

timecrit1 Automatically set by EcAccess
for Time Critical Option 1 jobs 500 8 hours 96 16

timecrit2 Only for jobs belonging to Time
Critical Option 2 suites 600 3 hours 32 16

Slide 10 © ECMWF

Batch job script

#!/bin/bash
The job name
#SBATCH --job-name=helloworld
Set the error and output files
#SBATCH --output=hello-%J.out
#SBATCH --error=hello-%J.out
Set the initial working directory
#SBATCH --workdir=/scratch/us/usxa
Choose the queue
#SBATCH -–qos=express
Wall clock time limit
#SBATCH --time=00:05:00
Send an email on failure
#SBATCH –mail-type=FAIL

This is the job
echo “Hello World!”
sleep 30

● A job is a shell script

● bash/ksh/csh

● Directives are shell comments:

● starting with #SBATCH

● Lowercase only

● No spaces in between

● No variable expansion

● All directives are optional

– System defaults in place

Slide 11 © ECMWF

Job directives

Directive Description Default

--job-name=... A descriptive name for the job Script name

--output=... Path to the file where standard output is redirected. Special
placeholders for job id (%j) and the execution node (%N) slurm-%j.out

--error=... Path to the file where standard error is redirected. Special
placeholders for job id (%j) and the execution node (%N) output value

--workdir=... Working directory of the job. The output and error files can be
defined relative to this directory. submitting dir

--qos=... Quality of service (queue) where the job is to be submitted normal*

--time=... Wall clock limit of the job (not cpu time limit!)
Format: m, m:s, h:m:s, d-h, d-h:m or d-h:m:s qos default

--mail-type=... Notify user by email when certain event types occur. Valid
type values are BEGIN, END, FAIL, REQUEUE, and ALL disabled

--mail-user=... Email address to send the email submit user

--hold Submit the job in held state. It won’t run until released with
scontrol release <jobid> not used

Slide 12 © ECMWF

Submitting a job: sbatch

● sbatch: Submits a job to the system. Job is configured:

● including the directives in the job script

● using the same directives as command line options

● The job to be submitted can be specified:

● As an argument of sbatch

● If no script is passed as an argument, sbatch will read the job from standard

input

 $> sbatch hello.sh
Submitted batch job 1250968
$> cat hello-1250968.out
Hello world!
$>

● The corresponding job id will be

returned if successful, or an error if

the job could not be submitted

Slide 13 © ECMWF

Submitting a job from cron

● Slurm jobs take the environment from the submission session

● Submitting from cron will cause the jobs to run with a very limited

environment and will most likely fail

● Use a crontab line similar to:

● Where the script cronrun is:

 #!/bin/ksh
cronrun script
. ~/.profile
. ~/.kshrc
$@

$> 05 12 * * * $HOME/cronrun sbatch $HOME/cronjob

#!/bin/bash
cronrun script
. ~/.bash_profile
$@

#!/bin/csh
cronrun script
. ~/.login
$@

Slide 14 © ECMWF

Checking the queue: squeue

● squeue: displays some information about the jobs currently running or waiting

● By default it shows all jobs from all users, but some filtering options are

possible:

● -u <comma separated list of users>

● -q <comma separated list of QoSs>

● -n <comma separated list of job names>

● -j <comma separated list of job ids>

● -t <comma separated list of job states>

$> squeue -u $USER
 JOBID NAME USER QOS STATE TIME TIMELIMIT NODELIST(REASON)
1250968 helloworld usxa express RUNNING 0:08 5:00 ecgb07

Slide 15 © ECMWF

Canceling a job: scancel

● scancel: Cancels the specified job(s)

$> sbatch hello.sh
Submitted batch job 1250968
$> scancel 1250968
$> scancel 1250968
scancel: error: Kill job error on job id 1250968: Invalid job id specified
$> sbatch hello.sh
Submitted batch job 1250969
$> scancel -in hello.sh
Cancel job_id= 1250969 name=hello.sh partition=batch [y/n]? y
$> sbatch hello.sh
Submitted batch job 1250970
$> scancel -i –v 1250970
scancel: auth plugin for Munge (http://code.google.com/p/munge/) loaded
Cancel job_id=1250970 name=hello.sh partition=batch [y/n]? y
scancel: Terminating job 1250970

● A job can be cancelled either if it is running or still waiting on the queue

● A running job will be killed, and message will be appended on the error file:

 slurmd[ecgb07]: *** JOB 1250968 CANCELLED AT 2014-02-28T17:08:29 ***

Slide 16 © ECMWF

Canceling a job: scancel options

Option Description

-n <jobname> Cancel all the jobs with the specified job name

-t <state> Cancel all the jobs that are in the specified state (PENDING/RUNNING)

-q <qos> Cancel only jobs on the specified QoS

-u $USER Cancel ALL the jobs of the current user. Use carefully!

-i Interactive option: ask for confirmation before cancelling jobs

-v Verbose option. It will show what is being done

● The most common usage of scancel is:
$> scancel <jobid1> <jobid2> <jobid3>

● More advanced options:

Note: An ordinary user can only cancel their own jobs

Slide 17 © ECMWF

Practical 1: Basic job submission

● Practicals must be run on ecgate, so make sure you log in there first!
$> ssh ecgate
$> cd $SCRATCH
$> tar xvzf ~trx/intro/batch_ecgate_practicals.tar.gz
$> cd batch_ecgate_practicals/basic

1. Have a look at the script “env.sh”

2. Submit the job and check whether it is running

● What QoS is it using? What is the time limit of the job?

3. Where did the output of the job go? Have a look at the output

4. Submit the job again and then once it starts cancel it

5. Check the output

Slide 18 © ECMWF

Practical 1: Basic job setup

● Can you modify the previous job so it…

1. … runs in the express QoS, with a wall clock limit of 5 minutes?

2. … uses the subdirectory work/ as the working directory?

3. … sends the…

a) … output to the file work/env_out_<jobid>.out ?

b) … error to work/env_out_<jobid>.err?

4. … sends you an email when the job starts?

● Try your job after the modifications and check if they are correct

● You can do the modifications one by one or all at once…

Slide 19 © ECMWF

Why doesn’t my job start?

● Check the last column of the squeue output for a hint…

$> squeue -j 1261265
 JOBID NAME USER QOS STATE TIME TIMELIMIT NODELIST(REASON)
1261265 sbatch usxa long PENDING 0:00 7-00:00:00 (QOSResourceLimit)

Reason Description

Priority There are other jobs with more priority

Resources No free resources are available

JobUserHeld The job is held. Release with scontrol release <jobid>

QOSResourceLimit You have reached a limit in the number of jobs you can submit to a QoS

● My job is PENDING because of a QOSResourceLimit. How do I check my limits?

Slide 20 © ECMWF

Checking limits and general usage: sqos

$> sqos
 QoS Prio Max Wall Total Jobs User Jobs Max CPUS Max Mem
---------- ---- ---------- ---------- --------- -------- --------
 express 400 03:00:00 11 / 128 7 / 12 1 10000 MB
 normal 300 1-00:00:00 23 / 128 4 / 12 1 10000 MB
 long 200 7-00:00:00 7 / 32 4 / 4 1 10000 MB
 large 200 08:00:00 0 / 8 0 / 4 1 10000 MB
 timecrit1 500 08:00:00 0 / 96 0 / 16 1 10000 MB

Total: 43 Jobs, 41 RUNNING, 2 PENDING

 Account Def QoS Running Jobs Submitted Jobs
---------- ---------- --------------- ---------------
 *ectrain normal 15 / 36 17 / 1000

User trx: 17 Jobs, 15 RUNNING, 2 PENDING

● sqos: Utility to have an overview of the different QoSs where the user have access,

including usage and limits

● This utility is ECMWF specific (not part of a standard Slurm installation)

Slide 21 © ECMWF

More details on current jobs and nodes

● sinfo: View information about node status

 scontrol: view and modify Slurm jobs and node configuration

$> sinfo
PARTITION AVAIL TIMELIMIT NODES STATE NODELIST
batch* up infinite 1 drain ecgb11
batch* up infinite 6 alloc ecgb[04-05,07-10]
test up infinite 1 idle ecgb06

$> scontrol show job 24789
JobId=24789 Name=test_slurm_csh
 UserId=us2(1666) GroupId=gb(3070)
 Priority=3000 Account=ecus QOS=normal
 JobState=COMPLETED Reason=None Dependency=(null)
 Requeue=0 Restarts=0 BatchFlag=1 ExitCode=0:0
 RunTime=00:01:25 TimeLimit=00:10:00 TimeMin=N/A
 SubmitTime=2013-05-09T08:55:34 EligibleTime=2013-05-09T08:55:34
 StartTime=2013-05-09T08:55:34 EndTime=2013-05-09T08:56:59
 PreemptTime=None SuspendTime=None SecsPreSuspend=0
 Partition=batch AllocNode:Sid=ecgb05:36790
 ReqNodeList=(null) ExcNodeList=(null)
 NodeList=ecgb05
 BatchHost=ecgb05
 NumNodes=1 NumCPUs=1 CPUs/Task=1 ReqS:C:T=*:*:*
 MinCPUsNode=1 MinMemoryCPU=1900M MinTmpDiskNode=0
 Features=(null) Gres=(null) Reservation=(null)
 Shared=1 Contiguous=0 Licenses=(null) Network=(null)
 Command=/home/ms/gb/us2/slurm_csh.job
 WorkDir=/scratch/ms/gb/us2/csh
 Comment=Output=/scratch/ms/gb/us2/csh/slurm_24789.out;Error=/scratch/ms/gb/us2/csh/slurm_24789.out;

Slide 22 © ECMWF

More details on current jobs and nodes

 sview: GUI to see the queue and node status

Slide 23 © ECMWF

Access to the Slurm accounting DB: sacct

● sacct: View present and past job information
$> sacct -X
 JobID JobName QOS State ExitCode Elapsed NodeList
------------ ---------------- --------- ---------- -------- ---------- --------
24804 test.sh normal COMPLETED 0:0 00:00:13 ecgb04
24805 test.sh normal COMPLETED 0:0 00:01:10 ecgb04
24806 test.sh normal COMPLETED 0:0 00:00:47 ecgb04
24807 test.sh normal COMPLETED 0:0 00:01:32 ecgb04
24808 test.sh normal COMPLETED 0:0 00:02:19 ecgb04
24809 test.sh normal COMPLETED 0:0 00:00:45 ecgb04
24972 test.sh normal RUNNING 0:0 00:02:35 ecgb04
24973 test.sh normal RUNNING 0:0 00:02:35 ecgb04
24974 test.sh normal CANCELLED+ 0:0 00:01:24 ecgb04
24975 test.sh normal RUNNING 0:0 00:02:35 ecgb04
24976 test.sh normal COMPLETED 0:0 00:00:40 ecgb04
24977 test.sh normal RUNNING 0:0 00:02:35 ecgb04
24978 test.sh normal COMPLETED 0:0 00:00:40 ecgb04
24979 test.sh normal RUNNING 0:0 00:02:33 ecgb04
24981 helloworld normal FAILED 1:0 00:00:01 ecgb04
24983 test.sh normal CANCELLED+ 0:0 00:00:33 ecgb04
24984 test.sh normal RUNNING 0:0 00:01:39 ecgb04
24985 test.sh express RUNNING 0:0 00:01:23 ecgb04
24986 test.sh express RUNNING 0:0 00:01:23 ecgb04
24987 test.sh long RUNNING 0:0 00:01:19 ecgb04

Slide 24 © ECMWF

Access to the Slurm accounting DB: sacct options

Option Description

-j <jobid> Show the job with that jobid

-u <user> Show jobs for the specified user. Use option –a for all users

-E <endtime> Show jobs eligible before that date and time

-S <starttime> Show jobs eligible after that date and time

-s <statelist>
Show jobs on the states (comma-separated) given during the time period.
Valids states are: CANCELLED, COMPLETED, FAILED, NODE_FAIL,
RUNNING, PENDING, TIMEOUT

-q <qos> Show jobs only for the qos selected

-o <outformat> Format option. Comma-separated names of fields to display

-e Show the different columns to be used for the –o option

-X Hide the job step information, showing the allocation only

● By default, sacct will return information about your jobs that started today

Slide 25 © ECMWF

What happened to my job: job_forensics

● job_forensics: Custom ECMWF utility to dump forensic information about a job
$> job_forensics 1261917
DB Information:

Job:
 JobID:1261917
 JobName:sbatch
 User:trx
 UID:414
 Group:ectrain
 GID:1400
 Account:ectrain
 QOS:long
 Priority:2000
 Partition:batch
 NCPUS:32
 NNodes:1
 NodeList:ecgb09
 State:COMPLETED
 Timelimit:7-00:00:00
 Submit:2014-03-01T16:19:06
 Eligible:2014-03-01T16:19:06
 Start:2014-03-01T16:19:06
 End:2014-03-01T16:20:07
 Elapsed:00:01:01
 CPUTime:00:32:32
 UserCPU:00:00.005
 SystemCPU:00:00.004
 TotalCPU:00:00.010
 DerivedExitCode:0:0
 ExitCode:0:0
 Output:/home/ectrain/trx/slurm-1261917.out
 Error:/home/ectrain/trx/slurm-1261917.out

...

...

Main step:
 JobID:1261917.batch
 JobName:batch
 NCPUS:1
 CPUTime:00:01:01
 AveRSS:1796K
 MaxRSS:1796K
 MaxRSSNode:ecgb09
 MaxRSSTask:0

Controller Logs:

[2014-03-01T16:19:06+00:00]
_slurm_rpc_submit_batch_job JobId=1261917
usec=4494
...

ecgb09 log (main):

[2014-03-01T16:19:07+00:00] Launching batch job
1261917 for UID 414
[2014-03-01T16:20:07+00:00] [1261917] sending
REQUEST_COMPLETE_BATCH_SCRIPT, error:0
[2014-03-01T16:20:07+00:00] [1261917] done with
job

...

Slide 26 © ECMWF

Practical 2: reviewing past runs

● How would you…

● retrieve the list of jobs that you ran today?

● retrieve the list of all the jobs that were cancelled today by user trx?

● ask for the submit, start and end times for a job of your choice?

● find out the output an error paths for a job of your choice?

$> sacct …

$> sacct …

$> sacct …

$> sacct …

Slide 27 © ECMWF

Practical 3: Fixing broken jobs

● What is wrong in job1? Can you fix it?

● What is wrong in job2? Can you fix it?

● What is wrong in job3? Can you fix it?

$> cd $SCRATCH/batch_ecgate_practicals/broken

Slide 28 © ECMWF

Bonus: Migrating from LoadLeveler

● You can submit a LL job to Slurm, but the LL directives will be ignored!

● Translation required: manually or using ll2slurm

 $> ll2slurm -h usage: ll2slurm [-h] [-i INSCRIPT] [-o OUTSCRIPT] [-q] [-f]

Job translator from LoadLeveler to Slurm

optional arguments:
 -h, --help show this help message and exit
 -i INSCRIPT, --inscript INSCRIPT
 Input script. By default reads stdin
 -o OUTSCRIPT, --outscript OUTSCRIPT
 Output translated script. By default writes to stdout
 -q, --quiet Do not produce warning or error messages on stderr
 -f, --force Overwrite the output file if it exists

● Not all the LoadLeveler keywords can be translated.

● Some manual additions might be required! You may play with the example:

$SCRATCH/batch_ecgate_practicals/loadleveler

Slide 29 © ECMWF

Migration cheatsheet (I)

User Commands LoadLeveler SLURM

Job submission llsubmit [script] sbatch [script]

Job cancel llcancel [job_id] scancel [job_id]

Job status llq [-j job_id] squeue [job_id]

Queue list llq squeue

Environment
Variables

LoadLeveler SLURM

Job ID $LOADL_STEP_ID $SLURM_JOBID

Working Dir $LOADL_STEP_INITDIR pwd command

Node List $LOADL_PROCESSOR_LIST $SLURM_JOB_NODELIST

Slide 30 © ECMWF

Migration cheatsheet (II)

Job Configuration LoadLeveler SLURM

Script directive #@ #SBATCH

Job Name job_name=[name] --job-name=[name]

Queue class=[queue] --qos=[queue]

Wall Clock Limit wall_clock_limit=[hh:mm:ss] --time=[min]
--time=[days-hh:mm:ss]

Std Output File output=[file] --output=[file]

Std Error File error=[file] --error=[file]

Working Directory initialdir=[dir_name] --workdir=[dir_name]

Copy Environment environment=COPY_ALL --export=[ALL | NONE]
--export=[variables]

Email Notification notification=… --mail-type=[events]

Email Address notify_user=[address] --mail-user=[address]

Slide 31 © ECMWF

Additional Info

● Ecgate job examples:
● http://www.ecmwf.int/services/computing/job_examples/ecgb/index.html

● SLURM website and documentation:
● http://www.schedmd.com/
● http://www.schedmd.com/slurmdocs/documentation.html
● http://www.schedmd.com/slurmdocs/tutorials.html

Questions?

http://www.ecmwf.int/services/computing/job_examples/ecgb/index.html
http://www.schedmd.com/
http://www.schedmd.com/slurmdocs/documentation.html
http://www.schedmd.com/slurmdocs/tutorials.html

	Submitting batch jobs�Slurm on ecgate
	Slide Number 2
	Interactive vs Batch
	Interactive vs Batch
	Interactive vs Batch
	Interactive vs Batch
	Batch on ecgate
	How does it work?
	Quality of service (queues)
	Batch job script
	Job directives
	Submitting a job: sbatch
	Submitting a job from cron
	Checking the queue: squeue
	Canceling a job: scancel
	Canceling a job: scancel options
	Practical 1: Basic job submission
	Practical 1: Basic job setup
	Why doesn’t my job start?
	Checking limits and general usage: sqos
	More details on current jobs and nodes
	More details on current jobs and nodes
	Access to the Slurm accounting DB: sacct
	Access to the Slurm accounting DB: sacct options
	What happened to my job: job_forensics
	Practical 2: reviewing past runs
	Practical 3: Fixing broken jobs
	Bonus: Migrating from LoadLeveler
	Migration cheatsheet (I)
	Migration cheatsheet (II)
	Additional Info

