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Probabilistic weather forecasts

weather forecasting is considered the ultimate problem in me-

teorology (Bjerknes 1904)

in current practice, medium-range weather forecasting is based on

numerical weather prediction (NWP) models that represent

the physics and chemistry of the atmosphere

however, there are major sources of uncertainty, including uncer-

tainty about initial conditions and model parameters

thus, attention has turned to probabilistic forecasts, taking the

form of probability distributions over future weather states

preferred approach to probabilistic weather prediction is based on

carefully designed ensembles of NWP model runs

a global medium-range ensemble prediction system has been

operational at the ECMWF since December 1992 (Buizza and

Palmer 1995; Molteni et al. 1996)



What is a good probabilistic forecast?

Gneiting, Balabdaoui and Raftery (2007) contend that the goal

of probabilistic forecasting is to maximize the sharpness of the

predictive distributions subject to calibration

calibration

refers to the statistical compatibility between the predictive

distributions and the verifying observations

• joint property of the forecasts and the observations

• in a nutshell, the observations ought to be indistinguishable

from samples drawn from the predictive distributions

• can be assessed via rank or probability integral transform

(PIT) histograms

sharpness

refers to the spread of the predictive distributions

• property of the probabilistic forecasts only



Proper scoring rules

proper scoring rules allow for the joint assessment of calibration

and sharpness

a scoring rule is a function

s(F, y)

that assigns a numerical score to each pair (F, y), where F is the

predictive distribution and y is the realizing observation

we consider scores to be negatively oriented penalties that fore-

casters aim to minimize

a proper scoring rule s satisfies the expectation inequality

EG s(G, Y ) ≤ EG s(F, Y ) for all F,G,

thereby encouraging honest and careful assessments (Gneiting

and Raftery 2007)



Continuous ranked probability score

in meteorological practice, the most popular proper score is the

continuous ranked probability score (CRPS),

s(F, y) =

∫ ∞

−∞
(F(x)− 1(x ≥ y))2 dx

= EF |X − y| −
1

2
EF |X −X ′|

where X and X ′ are independent random variables with cumulative

distribution function F (Matheson and Winkler 1976; Hersbach

2000; Gneiting and Raftery 2007)

• the CRPS is reported in the same unit as the observations

• in the case of a single-valued forecast, the CRPS reduces to

the absolute error

• thus, the CRPS provides a direct way of comparing single-

valued forecasts and probabilistic forecasts



Probabilistic Weather Forecasts

Statistical Post-Processing of NWP Ensembles:

EMOS/NR and BMA

Case Study

Accounting for Dependencies:

Empirical Copula based Techniques

Discussion:

Current Developments and Future Directions



Statistical Post-Processing of NWP Ensembles

despite their undisputed success, NWP ensembles are subject to

model biases and lack of calibration

• in typical experience, rank histograms are U-shaped, indicating

underdispersion for surface weather variables

thus, some form of statistical post-processing is required to

generate calibrated and sharp predictive distributions

• idea is to exploit structure in past forecast-observation pairs

to correct for systematic deficiencies in the model output

• approach depends on the availability of suitable training sets,

consisting of past forecast-observation pairs

• typically, a rolling training period is used to estimate statis-

tical parameters

• training sets can be usefully augmented by reforecast data

• simple bias correction doesn’t suffice — e.g., in the case of

precipitation, additive terms don’t work



EMOS/NR and BMA

two general approaches to the statistical post-processing of

NWP ensemble output have emerged, namely

• ensemble model output statistics (EMOS) or nonhomo-

geneous regression (NR), which fits a single, parametric

predictive distribution using summary statistics from the en-

semble (Gneiting et al. 2005)

y |x1, . . . , xM ∼ f( y |x1, . . . , xM)

• Bayesian model averaging (BMA), which fits a mixture den-

sity as predictive distribution, where each ensemble member is

associated with a kernel function (Raftery et al. 2005)

y |x1, . . . , xM ∼
M
∑

m=1

wm g(y |xm)

in our experience, the two approaches yield similar predictive per-

formance, with BMA being more flexible, and EMOS/NR being

more parsimonious



EMOS/NR and BMA for temperature

consider an ensemble forecast, x1, . . . , xM, for temperature, y,

at a given time and location

EMOS/NR employs a single Gaussian predictive density, in that

y |x1, . . . , xM ∼ N (a0 + a1x1 + · · ·+ aMxM , b0 + b1s
2)

with location parameters b0 and b1, . . . , bM, and spread parameters

c0 and c1, where s2 is the ensemble variance

BMA employs Gaussian kernels with a linearly bias-corrected mean,

i.e., the BMA predictive density is the Gaussian mixture

y |x1, . . . , xM ∼
M
∑

m = 1

wm N (c0m + c1mxm, σ
2
m)

with BMA weights w1, . . . , wM, bias parameters c01, . . . , c0M and

c11, . . . , c1M, and spread parameters σ2
1, . . . , σ

2
M

for ensembles with groups of exchangeable members, such as

the ECMWF’s ENS, member specific statistical parameters are

constrained to be equal; e.g., a1 = · · · = a50 or w1 = · · · = w50



Ensemble model output statistics (EMOS) or nonhomoge-
neous regression (NR)

Weather Quantity Range Distribution ( f)

Temperature y ∈ R Normal

Pressure y ∈ R Normal

Precipitation amount y1/2 ∈ R
+ Truncated logistic

y ∈ R
+ Generalized extreme value (GEV)

Wind components y ∈ R Normal

Wind speed y ∈ R
+ Truncated normal

Cloud cover y ∈ [0,1] Beta-Bernoulli mixture
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Bayesian model averaging (BMA)

Variable Range Kernel ( g) Mean Variance

Temperature y ∈ R Normal c0m + c1mxm σ2
m

Pressure y ∈ R Normal c0m + c1mxm σ2
m

Precipitation accumulation y1/3 ∈ R
+ Gamma c0m + c1mxm d0m + d1mxm

Wind components y ∈ R Normal c0m + c1mxm σ2
m

Wind speed y ∈ R
+ Gamma c0m + c1mxm d0m + d1mxm

Visibility y ∈ (0,1) Beta c0m + c1mx
1/2
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Bayesian model averaging (BMA)

Variable Range Kernel (f) Mean Variance

Precipitation accumulation y1/3 ∈ R
+ Gamma c0m + c1mxm d0m + d1mxm
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EMOS/NR and BMA: selected experience

EMOS/NR has been applied to calibrate ensemble forecasts of

surface temperature in Austria (Kann et al. 2009, 2011), China,

and Germany

Hagedorn (2008) and Hagedorn et al. (2008) report gains in lead

time of two to four days for predictions of surface temperature

with the ECMWF’s ENS, with the improvement being stronger

where the original forecast skill is low

Bogner et al. (2013) find gains of about four days for surface

temperature at Bergen, Vienna, Moscow, Nairobi and Tahiti Island

BMA has been applied to calibrate ensemble forecasts of surface

temperature in Canada (Wilson et al. 2007), Hungary (Baran et

al. 2013), and Iran (Soltanzadeh et al. 2011)

a real-time implementation for surface temperature and precip-

itation over the Pacific Northwest region of the United States is

available at www.probcast.com
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Case study

joint work at ECMWF and HITS

Hemri, S., Scheuerer, M., Pappenberger, F., Bogner, K. and Haiden, T. (2014).
Trends in the predictive performance of raw ensemble weather forecasts. Geo-

physical Research Letters, 41, 9197–9205.

statistical post-processing for the ECMWF’s operational 52-

member system system

comprising the high-resolution run (HRES), the corresponding

50-member ensemble (ENS), and the control run (CTRL)

Weather Quantity Acronym Range Distribution ( f)

Temperature T2M y ∈ R Normal

Precipitation amount PPT24 y ∈ [0,∞) Left-censored GEV

Wind speed V10 y1/2 ∈ R
+ Truncated normal

Cloud cover TCC y ∈ [0,1] Beta-Bernoulli mixture

forecasts with lead times from 1 to 10 days, initialized and valid

at 12 UTC, respectively



Training and verification

a rolling training period of 1-5 years is used to estimate the

EMOS/NR parameters
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EMOS/NR coefficients for HRES diminish with increasing lead time, as exemplified here for
temperature forecasts at Vienna, Austria at lead times of 1, 5, and 10 days

verification against thousands of globally distributed surface syn-

optic observations (SYNOP) data

test period from Jan 1, 2004 to March 20, 2014

generally, statistical post-processing yields tremendous improve-

ment in the predictive performance, as measured by the CRPS,

especially for T2M, V10, and TCC



CRPS: raw ensemble vs. post-processed
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Temperature: 3 days ahead

EMOS - raw ensemble, lead time: 3d

improvement no significant change deterioration 



Temperature: 6 days ahead

EMOS - raw ensemble, lead time: 6d

improvement no significant change deterioration 



Temperature: 10 days ahead

EMOS - raw ensemble, lead time: 10d

improvement no significant change deterioration 



Precipitation: 3 days ahead

EMOS - raw ensemble, lag 3d

improvement no significant change deterioration 



Precipitation: 6 days ahead

EMOS - raw ensemble, lag 6d

improvement no significant change deterioration 



Precipitation: 10 days ahead

EMOS - raw ensemble, lag 10d

improvement no significant change deterioration 
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Accounting for dependencies

EMOS/NR and BMA apply to any single weather variable at

any single location and any single look-ahead time

however, individually post-processed distributions fail to account

for multivariate dependence structures

the most pressing need now is to develop post-processing tech-

niques that yield physically realistic probabilistic forecasts of

spatio-temporal weather trajectories for multiple weather vari-

ables at multiple locations and multiple look-ahead times

key applications include air traffic control, ship routeing, and

hydrologic predictions



Example

illustration: 24-hour ECMWF ENS forecast of surface temper-

ature and pressure at Berlin and Hamburg valid May 27, 2010

before and after BMA post-processing
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Sklar’s Theorem

EMOS/NR and BMA apply to any single weather variable at

any single location and any single look-ahead time

yielding a marginal predictive cumulative distribution function

(CDF), Fl, for any given univariate weather quantity, Yl

with each multi-index l = (i, j, k) referring to weather variable i,

location j, and look-ahead time k

we seek a physically realistic and consistent multivariate or joint

predictive CDF, F , with margin Fl for each l = 1, . . . , L

Sklar’s theorem (1959): every multivariate CDF F with margins

F1, . . . , FL can be written as

F(y1, . . . , yL) = C(F1(y1), . . . , FL(yL))

where C : [0,1]L → [0,1] is a copula, i.e., a multivariate CDF with

standard uniform margins



Copula approaches

in order to issue physically realistic and consistent probabilistic

forecasts of spatio-temporal weather trajectories

it remains to specify and fit a suitable copula C : [0,1]L → [0,1]

if L is small, or if specific structure can be exploited, parametric

families of copulas work well

• Gel et al. (2004), Berrocal et al. (2007), Pinson et al. (2009),

Schuhen et al. (2012) and Möller et al. (2013) use Gaussian

copulas

• parametric or semi-parametric alternatives include elliptical,

Archimedean, hierarchical Archimedean and pair copulas

if L is huge and no specific structure can be exploited, we need to

resort to non-parametric approaches, based on empirical copu-

las, with the Schaake shuffle (Clark et al. 2004) and ensemble

copula coupling (ECC) being particularly attractive options



Ensemble copula coupling (ECC; Schefzik et al. 2013)

given an NWP ensemble of size M for the weather variables Yl,

where l = 1, . . . , L, ECC proceeds in three steps

univariate post-processing: for each l = 1, . . . , L, apply EMOS/

NR or BMA to obtain a post-processed predictive CDF, Fl

quantization: for each l = 1, . . . , L, obtain a discrete sample of

size M from Fl, e.g., using

x̃m = F −1
l

(

m

M +1

)

, m = 1, . . . ,M

ensemble reordering: take the function C : [0,1]L → [0,1] in

Sklar’s theorem to be the empirical copula of the raw ensemble,

i.e., arrange the post-processed values in the same rank order as

the raw ensemble values



Ensemble copula coupling (ECC)

the method is implicit or explicit in scattered recent work, in-

cluding that of Bremnes (2007), Krzysztofowicz and Toth (2008),

Pinson (2011), Flowerdew (2012), Roulin and Vannitsem (2012)

and Schuhen, Thorarinsdottir and Gneiting (2012)

Flowerdew (2012, p. 15) explains colorfully:

The key to preserving spatial, temporal and inter-variable structure is
how this set of values is distributed between ensemble members. One
can always construct ensemble members by sampling from the cali-
brated PDF, but this alone would produce spatially noisy fields lacking
the correct correlations. Instead, the values are assigned to ensemble

members in the same order as the values from the raw ensemble: the

member with the locally highest rainfall remains locally highest, but

with a calibrated rainfall magnitude.



Ensemble copula coupling (ECC)

illustration: 24-hour ECMWF ENS forecast of surface temper-

ature and pressure at Berlin and Hamburg valid May 27, 2010

before and after post-processing with BMA
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Ensemble copula coupling (ECC)

illustration: 24-hour ECMWF ENS forecast of surface temper-

ature and pressure at Berlin and Hamburg valid May 27, 2010

before and after post-processing with BMA + ECC
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Ensemble copula coupling (ECC; Schefzik et al. 2013)

given an NWP ensemble of size M for the weather variables Yl,

where l = 1, . . . , L, ECC proceeds in three steps

univariate post-processing: for each l = 1, . . . , L, apply EMOS/

NR or BMA to obtain a post-processed predictive CDF, Fl

quantization: for each l = 1, . . . , L, obtain a discrete sample of

size M from Fl, e.g., using

x̃m = F −1
l

(

m

M +1

)

, m = 1, . . . ,M

ensemble reordering: take the function C : [0,1]L → [0,1] in

Sklar’s theorem to be the empirical copula of the raw ensemble,

i.e., arrange the post-processed values in the same rank order as

the raw ensemble values



Schaake shuffle (Clark et al. 2004)

given an NWP ensemble of size M for the weather variables Yl,

where l = 1, . . . , L, the Schaake shuffle proceeds in three steps

univariate post-processing: for each l = 1, . . . , L, apply EMOS/

NR or BMA to obtain a post-processed predictive CDF, Fl

quantization: for each l = 1, . . . , L, obtain a discrete sample of

size N from Fl, e.g., using

x̃n = F −1
l

(

n

N +1

)

, n = 1, . . . , N

ensemble reordering: take the function C : [0,1]L → [0,1] in

Sklar’s theorem to be the empirical copula of a relevant historical

weather record of size N , i.e., arrange the post-processed values

in the same rank order as the weather record
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Current developments

the basic idea of statistical post-processing is to exploit struc-

ture in past forecast-observation pairs to correct for probabilistic

biases in NWP model output

for the ECMWF ensemble, ensemble model output statistics

(EMOS/NR) or Bayesian model averaging (BMA) yield gains

in lead time of several days for forecasts of surface weather

with the improvement being strongest where the original forecast skill
is low, such as in regions with complex terrain

however, as raw ensembles continue to improve, a natural hy-

pothesis is that the gap in skill between raw ensembles and

statistically post-processed forecasts narrows

to investigate this, Hemri et al. (2014) study the evolution of the skill
gap between 2004 and 2014



Trends in predictive performance

Hemri et al. (2014) study the evolution of the skill gap between

the ECMWF raw ensemble and EMOS/NR post-processed fore-

casts, as measured by monthly ∆CRPS
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Trends in predictive performance

percentage of stations with a negative, no significant, or a positive

trend in monthly ∆CRPS

Lead Trend T2M PPT24

3 days negative 32% 18%
not significant 44% 77%
positive 24% 5%

6 days negative 29% 13%
not significant 48% 82%
positive 23% 5%

10 days negative 26% 11%
not significant 54% 82%
positive 20% 7%

the skill gap tends to remain constant over time, suggesting that

post-processing will keep adding value in the foreseeable future



Future directions

statistical parameters need to be estimated from training data,

which can be usefully augmented by using reforecast data

however, it is not obvious how to optimally design an operational
reforecast system (Hagedorn 2008; Hamill et al. 2008) and adapt
estimation strategies (Roulin and Vannitsem 2012)

handling of extreme events in statistical post-processing ought

to be studied further

we rely on the NWP model’s ability to signal pending extreme events

generalized extreme value (GEV) distributions have been employed in
EMOS/NGR approaches for peak wind and precipitation (Friederichs
and Thorarinsdottir 2012; Scheuerer 2014)

a related approach employs GEV distributions only if the ensemble
median is above a high threshold (Lerch and Thorarinsdottir 2013)

there is a pronounced need for further methodological development
and comparative studies (e.g., Williams et al. 2014)



Future directions

much current research and development focuses on post-processing

techniques for multiple weather variables at multiple locations

and multiple look-ahead times simultaneously

with the goal of generating calibrated and sharp ensemble forecasts of
spatio-temporal weather scenarios

empirical copula based approaches such as ensemble copula

coupling (ECC) or the Schaake shuffle show promise

ECC adopts the rank dependence structure from the ensemble fore-
cast: a purely model based approach

depending on the details of the quantization step, we distin-
guish ECC-Q, ECC-R, and ECC-T (Schefzik et al. 2013)

the Schaake shuffle adopts the rank dependence structure from a his-
torical weather record: a purely data based approach

it is not obvious how to select historical weather observations
that are relevant to the ensemble forecast at hand

there is a pronounced need for further methodological development
and comparative studies (e.g., Wilks 2014)
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