
C O M P U T E | S T O R E | A N A L Y Z E

Running applications on the Cray
XC30

4/12/2015
1

C O M P U T E | S T O R E | A N A L Y Z E

Running on compute nodes

2

By default, users do not log in and run applications on the
compute nodes directly.

Instead they launch jobs on compute nodes in one of three
available modes:

1. Extreme Scaling Mode (ESM Mode)
The default high performance MPP mode

2. Pre/Post Processing Mode
A throughput mode designed to allows efficient Multiple Applications
Multiple User (MAMU) access for smaller applications.

3. Cluster Compatibility Mode (CCM)
Emulation mode designed primarily to support 3rd ISV applications which
cannot be recompiled.

C O M P U T E | S T O R E | A N A L Y Z E

Extreme Scaling Mode (ESM)

3

ESM is a high performance mode designed to run larger
applications at scale. Important features are:

● Dedicated compute nodes for each user job

● No interference from other users sharing the node
● Minimum quanta of compute is 1 node.
● Nodes running with low-noise, low-overhead CNL OS

● Inter-node communication is via native Aries API.
● The best latency and bandwidth comms are available using ESM.
● Applications need to be linked with a Cray comms libraries (MPI,

Shmem etc) or compiled with Cray language support (UPC, Coarrays)

● The appropriate parallel runtime environment is
automatically set up between nodes

ESM is expected to be the default mode for the majority of
applications that require at least one node to run.

C O M P U T E | S T O R E | A N A L Y Z E

Requesting resources from a batch system

4

● As resources are dedicated to users in ESM mode, most
supercomputers share nodes via batch systems.

● ECMWF Cray XC30s use PBS Pro to schedule resources
● Users submit batch job scripts to a scheduler from a login node (e.g.

PBS) for execution at some point in the future.
Each job requests resources and predicts how long it will run.

● The scheduler (running on an external server) then chooses which
jobs to run and when, allocating appropriate resources at the start.

● The batch system will then execute a copy of the user’s job script on
an a one of the “MOM” nodes.

● The scheduler monitors the job throughout it lifetime. Reclaiming the
resources when job scripts finish or are killed for overrunning.

● Each user job scripts will contain two types of command
1. Serial commands that are executed by the MOM node, e.g.

● quick setup and post processing commands e.g. (rm, cd, mkdir etc)

2. Parallel launches to run on the allocated compute nodes.
1. Launched using the aprun command.

C O M P U T E | S T O R E | A N A L Y Z E

Example ECMWF batch script

5

#!/bin/ksh
#PBS -N xthi
#PBS -l EC_total_tasks=256
#PBS -l EC_threads_per_task=6
#PBS -j oe
#PBS -o ./output
#PBS -l walltime=00:05:00

export OMP_NUM_THREADS=$EC_threads_per_task

aprun -n $EC_total_tasks \
 -N $EC_tasks_per_node \
 -d $EC_threads_per_task ./a.out

Request

resources from

the batch system

Launch the

executable on

the compute

nodes in parallel

C O M P U T E | S T O R E | A N A L Y Z E

Lifecycle of an ECMWF batch script

6

esLogin

qsub run.sh

PBS

Queue

Manager

PBS

MOM

Node

Cray XE Compute Nodes

#!/bin/bash
#PBS -l EC_total_tasks=256,EC_threads_per_task=6

#PBS –l walltime=1:00:00

cd $WORKDIR
aprun –n 256 –d 6 simulation.exe
rm –r $WORKDIR/tmp

Example Batch Job Script – run.sh

Parallel

Serial

Requested

Resources

Serial

C O M P U T E | S T O R E | A N A L Y Z E

Submitting jobs to the batch system

7

● Job scripts are submitted to the batch system with qsub:
● qsub script.pbs

● Once a job is submitted is assigned a PBS Job ID, e.g.
● 1842232.sdb

● To view the state of all the currently queued and running
jobs run:
● qstat

● To limit to just jobs owned by a specific user
● qstat –u <username>

● To remove a job from the queue, or cancel a running job
● qdel <job id>

C O M P U T E | S T O R E | A N A L Y Z E

Requesting resources from PBS

8

Jobs provide a list of requirements as #PBS comments in
the headers of the submission script, e.g.
 #PBS –l walltime 12:00:00

These can be overriden or suplemented at submission by
adding to the qsub command line, e.g.
 > qsub –l walltime 11:59:59 run.pbs
Common options are:

Jobs must also describe how many compute nodes they will
need.

Option Description

-N <name> A name for job,

-q <queue> Submit job to a specific queues.

-o <output file> A file to write the job’s stdout stream in to.

-e <error file> A file to write the job’s stderr stream in to.

-j oe Join stderr stream in to stdout stream as a single file

-l walltime <HH:MM:SS> Maximum wall time job will occupy

C O M P U T E | S T O R E | A N A L Y Z E

Glossary of terms

9

To understand how many compute nodes a job needs, we need to
understand how parallel jobs are described by Cray.

PE/Processing Element
● A discrete software process with an individual address space. One PE is

equivalent to:
1 MPI Rank, 1 Coarray Image, 1 UPC Thread, or 1 SHMEM PE

Threads
● A logically separate stream of execution inside a parent PE that shares the

same address space

CPU
● The minimum piece of hardware capable of running a PE. It may share

some or all of its hardware resources with other CPUs
Equivalent to a single “Intel Hyperthread”

Compute Unit
● The individual unit of hardware for processing, may be seen described as a

“core”. May provide one or more CPUs.

C O M P U T E | S T O R E | A N A L Y Z EHardware implementation

Programming Model

Parallel Application

23 2 0 1

Implementing the Parallel Programming Model
on hardware

10

…

0 1 2 23

…

Node 1 Node 0

1 Software Thread

is bound to

1 Hardware CPU

1

0

0 1

0 1 0

1

0 1

2

0 1

3

0 1

23

0 1

12

0 1

1 0 0 1

… …

Processing

Element
Threads

Linux Process

C O M P U T E | S T O R E | A N A L Y Z E

Launching ESM Parallel applications

11

● ALPS : Application Level Placement Scheduler
● aprun is the ALPS application launcher

● It must be used to run application on the XC compute nodes in
ESM mode, (either interactively or as a batch job)

● If aprun is not used, the application will be run on the MOM node
(and will most likely fail).

● aprun launches sets of PEs on the compute nodes.

● aprun man page contains several useful examples

● The 4 most important parameters to set are:

Description Option

Total Number of PEs used by the application -n

Number of PEs per compute node -N

Number of threads per PE
(More precise, the “stride” between 2 PEs on a node)

-d

Number of to CPUs to use per Compute Unit -j

C O M P U T E | S T O R E | A N A L Y Z E

Running applications on the Cray XC30:
Some basic examples

12

Assuming XC30 nodes with 2x12 core Ivybridge processors
● Each node has: 48 CPUs/Hyperthreads and 24 Compute Units/cores

● Launching an MPI application on all CPUs of 64 nodes:
● Using 1 CPU per Compute Unit means a maximum of 24 PEs per node.
● 64 nodes x 24 ranks/node = 1536 ranks

 $ aprun –n 1536 –N 24 –j1 ./model-mpi.exe

● Launch the same MPI application on 64 nodes but with half
as many ranks per node
● Still using 1 CPU per Compute Unit, but limiting to 12 Compute Units.

 $ aprun –n 768 –N 12 –j1 ./model-mpi.exe
● Doubles the available memory for each PE on the node

● To use all availble CPUs on 64 nodes.

● Using 2 CPUs per Compute unit, so 48 PEs per node)

 $ aprun –n 3072 –N 48 –j2 ./model-mpi.exe

C O M P U T E | S T O R E | A N A L Y Z E

Some examples of hybrid invocation

13

● To launch a Hybrid MPI/OpenMP application on 64 nodes
● 256 total ranks, using 1 CPU per Compute Unit (Max 24 Threads)

● Use 4 PEs per node and 6 Threads per PE

● Threads set by exporting OMP_NUM_THREADS
 $ export OMP_NUM_THREADS=6
 $ aprun –n 256 –N 4 –d $OMP_NUM_THREADS –j1 ./model-hybrid.exe

● Launch the same hybrid application with 2 CPUs per CU
● Still 256 total ranks, using 2 CPU per Compute Unit (Max 48 Threads)

● Use 4 PEs per node and 12 Threads per PE
 $ export OMP_NUM_THREADS=12
 $ aprun –n 256 –N 4 –d $OMP_NUM_THREADS –j2 ./model-hybrid.exe

Much more detail in later session on advance placement and binding.

C O M P U T E | S T O R E | A N A L Y Z E

ECMWF PBS Job Directives

14

● ECMWF have created a bespoke set of job directives for
PBS that can be used to define the job.

● The ECMWF job directives provide a direct map between
aprun options and PBS jobs.

Description Aprun Option EC Job Directive

Total PEs -n <n> #PBS –l EC_total_tasks=<n>

PEs per node -N <N> #PBS –l EC_tasks_per_node=<N>

Threads per PE -d <d> #PBS –l EC_threads per_task=<d>

CPUs per CU -j <j> #PBS –l EC_hyperthreads=<j>

C O M P U T E | S T O R E | A N A L Y Z E

A Note on the mppwidth, mppnppn, mppdepth
and select notation

15

Casual examination of older Cray documentation or internet
searches may suggest the alternatives, mppwidth, mppnppn
and mppdepth for requesting resources.

These methods, while still functional, are Cray specific
extensions to PBS Pro which have been deprecated by
Altair.

More recent versions of PBS Pro support “select” syntax
which is in use at other Cray sites.

Support for select has been discontinued at ECMWF in
favour of a customised schema.

C O M P U T E | S T O R E | A N A L Y Z E

Watching a launched job on the Cray XE

16

● xtnodestat
● Shows how XE nodes are allocated and corresponding aprun

commands

● apstat
● Shows aprun processes status

● apstat overview

● apstat –a[apid] info about all the applications or a specific one

● apstat –n info about the status of the nodes

● Batch qstat command

● shows batch jobs

C O M P U T E | S T O R E | A N A L Y Z E

Example qstat output

17

Job id Name User Time Use S Queue
---------------- ---------------- ---------------- -------- - -----
123557.sdb g1ma:t_wconstA rdx 0 Q of
123610.sdb test.sh syi 0 Q of
123654.sdb getini_1 emos 00:00:09 R os
123656.sdb getini_1 emos 00:00:00 R os
123675.sdb getini_1 emos 00:00:00 R os
123677.sdb getini_1 emos 00:00:00 R os
123680.sdb getini_1 emos 00:00:09 R os
123682.sdb getini_1 emos 00:00:02 R os
123686.sdb job_nf co5 0 Q of
123694.sdb job_nf co5 0 Q of
123739.sdb job_nf co5 0 Q nf

C O M P U T E | S T O R E | A N A L Y Z E

Example xtnodestat output (cct)

18

Current Allocation Status at Thu Feb 06 15:16:14 2014

 C0-0
 n3 --S---------;
 n2 SSS--S----------
 n1 SSS--S----------
c0n0 SSS----------
 s0123456789abcdef

Legend:
 nonexistent node S service node
; free interactive compute node - free batch compute node
A allocated (idle) compute or ccm node ? suspect compute node
W waiting or non-running job X down compute node
Y down or admindown service node Z admindown compute node

Available compute nodes: 1 interactive, 45 batch

C O M P U T E | S T O R E | A N A L Y Z E

Pre/Post Processing Mode

19

This is a new mode for the Cray XC30.

● Designed to allow multi-user jobs to share compute nodes
● More efficient for apps running on less than one node

● Possible interference from other users on the node

● Uses the same fully featured OS as service nodes

● Multiple use cases, applications can be:
● entirely serial

● embarrassingly parallel e.g. fork/exec, spawn + barrier.

● shared memory using OpenMP or other threading model.

● MPI (limited to intra-node MPI only*)

● Scheduling and launching handled by PBS
● Similar to any normal PBS cluster deployment.

C O M P U T E | S T O R E | A N A L Y Z E

Understanding Module Targets

20

● The wrappers, cc, CC and ftn are cross compilation
environments that by default target the compute nodes.
● This means compilers will build binaries explicitly targeting the CPU

architecture in the compute nodes

● It will also link distributed memory libraries by default.

● Binaries built using the default settings will probably not work on serial
nodes or pre/post processing nodes.

● Users many need to switch the CPU target and/or opt to
remove network dependencies.
● For example when compiling serial applications for use on esLogin or

pre/post processing nodes.

● Targets are changed by adding/removing appropriate
modules

C O M P U T E | S T O R E | A N A L Y Z E

Cray XC30 Target modules

21

● For MAMU nodes use “mpiexec” from module
cray-smplauncher instead of “aprun” if you want support
for MPI

CPU Architecture Targets Network Targets

• craype-ivybridge (default)

Tell compiler and system libraries to

target Intel Ivybridge processors

• craype-sandybridge

Tell compiler and system libraries to

build binaries targeting Intel

Sandybridge processors

• craype-network-aries (default)

Link network libraries into binary

(ESM mode).

• craype-target-local_host

Do not link network libraries into the

binary (serial apps non-ESM mode).

C O M P U T E | S T O R E | A N A L Y Z E

Cluster Compatibility Mode (CCM)

22

● CCM creates small TCP/IP connected clusters of compute
nodes.

● It was designed to support legacy ISV applications which
could not be recompiled to use ESM mode.

● There is a small cost in performance due to the overhead
of using TCP/IP rather than native Aries calls.

● Users also are also responsible for initialising the
application on all the participating nodes, including any
daemon processes.

● Still exclusive use of each node by a single users, so only
recommended when recompilation unavailable.

