
C O M P U T E | S T O R E | A N A L Y Z E

Short Introduction to Tools
on the Cray XC systems

Assisting the port/debug/optimize cycle

4/11/2015
1

C O M P U T E | S T O R E | A N A L Y Z E

Modify

Debug Optimise

The Porting/Optimisation Cycle

2
Cray Inc.

ATP, STAT,

FTD,

Totalview,

DDT

Cray

Performance

Analysis Toolkit

(CrayPAT)

C O M P U T E | S T O R E | A N A L Y Z E

Introduction

3

● Cray develops several tools for XC and CS computers
● There is lot of effort going into the development

● Several of the tools are ‘stand-alone’ solutions, being
developed for a specific problem
● STAT, ATP

● IOBUF (includes serial IO monitoring)

● MPIIO profiling

● Other tools will work together in order to be more efficient or to
create new solution for a problem
● CCE providing ‘hooks’ for profiling on loop level

● Reveal using CCE listing information and CrayPat Profiling

C O M P U T E | S T O R E | A N A L Y Z E

Which tools does Cray develop

4

● It doesn’t make sense to develop tools where a good tool
already exists on the market
DDT and Totalview are good examples

● Cray’s tools are either
● Something new, like Reveal

● Concentrate on a solution to a specific issue, like STAT

● Are part of the development process, like MPIIO Stats

● Comes out of benchmarking, like IOBUF

● Cray also collaborate with different sites in developing the tools

C O M P U T E | S T O R E | A N A L Y Z E

CCE : Cray Compiler Environment

5

● The compiler is in general not considered a ‘tool’, but in fact it
is the most important piece of user software
● Compiles and Link the user application

● Feedback about the application
● Code errors

● How optimization was done/or not done (lst file)

● Providing ‘hooks’ into different levels of the application, to which other
tools can attach
● Functions

● Loops

● This makes CCE the ‘centerpiece’ in Cray’s Tools Strategies
● CCE can adapt rather quickly to user/tool needs

● All Cray tools will work with other Compilers, but there might be some
limitations
The goal is not to force a user to use CCE, but to provide extensions
where it makes sense

C O M P U T E | S T O R E | A N A L Y Z E

Overview : Tools infrastructure (selection)

Debugging
Get your code up and

running correctly.

Profiling
Locate performance

bottlenecks.

Light weight
At most relinking. Get a

first picture of a

performance or problems

during execution.

• ATP

• STAT

• CrayPAT-lite

• IOBUF

• MPIIO Stats

In-depth
Recompile/Relink. Provides

detailed information at user

routine level.

• lgdb with ccdb

• Fast track

• DDT

• Totalview

• Intel Inspector

• CrayPAT

• Apprentice2

• Reveal

• Intel Vtune

6

C O M P U T E | S T O R E | A N A L Y Z E

Abnormal Termination Processing
(ATP)

● For when things break unexpectedly…

● (Collecting back-trace information)

C O M P U T E | S T O R E | A N A L Y Z E

Debugging in production and scale

8

● Even with the most rigorous testing, bugs may occur

during development or production runs.

● It can be very difficult to recreate a crash without additional information

● Even worse, for production codes need to be efficient so usually have

debugging disabled

● The failing application may have been using tens of or

hundreds of thousands of processes

● If a crash occurs one, many, or all of the processes might issue a

signal.

● We don’t want the core files from every crashed process, they’re slow

and too big!

● We don’t want a backtrace from every processes, they’re difficult to

comprehend and analyze.

C O M P U T E | S T O R E | A N A L Y Z E

ATP Description

9

● Abnormal Termination Processing is a lightweight
monitoring framework that detects crashes and provides
more analysis
● Designed to be so light weight it can be used all the time with almost

no impact on performance.

● Almost completely transparent to the user
● Requires atp module loaded during compilation (usually included by

default)

● Output controlled by the ATP_ENABLED environment variable (set by
system).

● Tested at scale (tens of thousands of processors)

● ATP rationalizes parallel debug information into three
easier to user forms:
1. A single stack trace of the first failing process to stderr

2. A visualization of every processes stack trace when it crashed

3. A selection of representative core files for analysis

C O M P U T E | S T O R E | A N A L Y Z E

ATP – Abnormal Termination Processing

10

Write

Modify

Port

App runs
(verification)

Compile

& Link

App runs
(production)

Optimize

Debug

Normal

Termination

ATP

Stacktrace
(atpMergedBT

.dot)

stat-view

Exit

Abnormal

Termination

ATP

stat-view

Exit

Abnormal

Termination

Stacktrace
(atpMergedBT

.dot)

C O M P U T E | S T O R E | A N A L Y Z E

ATP Components

11

● Application process signal handler
o triggers analysis

o controls its own core_pattern

● Back-end monitor
o collects backtraces via StackwalkerAPI

o forces core dumps as directed

● Front-end controller
o coordinates analysis via MRNet

o selects process set that is to dump core

● Once initial set up complete, all components comatose

C O M P U T E | S T O R E | A N A L Y Z E

ATP Communications Tree

12

FE

Front-end

Back-end

App

BE

App

BE

CP

App

BE

App

BE

App

BE

CP

App

BE

…

… …

C O M P U T E | S T O R E | A N A L Y Z E

Stack Trace Merge Example

13

C O M P U T E | S T O R E | A N A L Y Z E

Usage

14

Compilation – environment must have module loaded

module load atp

Execution (scripts must explicitly set these if not included
by default)

export ATP_ENABLED=1
ulimit –c unlimited

More information (while atp module loaded)

man atp

ATP respects ulimits on corefiles. So to see

corefiles the ulimit must change.

On crash ATP will produce a selection of

relevant cores files with unique, informative

names.

C O M P U T E | S T O R E | A N A L Y Z E

Viewing the results - stderr

15

Example output in stderr.

Core files being generated

Trace back of crashing process

C O M P U T E | S T O R E | A N A L Y Z E

Viewing the results – merged backtrace

16

module load stat
stat-view atpMergedBT.dot

C O M P U T E | S T O R E | A N A L Y Z E

Stack Trace Analysis Tool (STAT)

● For when nothing appears to be
happening…

C O M P U T E | S T O R E | A N A L Y Z E

STAT

18

● Stack Trace Analysis Tool (STAT) is a cross-platform tool
from the University of Wisconsin-Madison.

● ATP is based on the same technology as STAT. Both
gather and merge stack traces from a running
application’s parallel processes.

● It is very useful when application seems to
be stuck/hung

● Full information including use cases is
available at
http://www.paradyn.org/STAT/STAT.html

● Scales to many thousands of concurrent
process, only limited by number file
descriptors

C O M P U T E | S T O R E | A N A L Y Z E

Stack Trace Analysis Tool (STAT)

19

● Stack trace sampling and analysis for large scale
applications
● Reduce number of tasks to debug

● Discover equivalent process behavior

● Extreme scaling
● Jaguar – 216K processes

● BG/L – 208K processes

C O M P U T E | S T O R E | A N A L Y Z E

Merging Stack Traces

20

● Multiple traces over space or time

● Create call graph prefix tree
● Compressed representation

● Scalable visualization

● Scalable analysis

C O M P U T E | S T O R E | A N A L Y Z E

2D-Trace/Space Analysis

21

Appl

Appl

Appl

Appl

Appl

…

C O M P U T E | S T O R E | A N A L Y Z E

Merged Stack for Cray XT

22

C O M P U T E | S T O R E | A N A L Y Z E

Using STAT

23

Start an interactive job…

module load stat

<launch job script> &

Wait until application hangs:

stat-cl <pid of aprun>

Kill job

stat-view STAT_results/<exe>/<exe>.0000.dot

C O M P U T E | S T O R E | A N A L Y Z E

LGDB

● Diving in through the command line…

C O M P U T E | S T O R E | A N A L Y Z E

lgdb - Command line debugging

25

● LGDB is a line mode parallel debugger for Cray systems
● Available through cray-lgdb module

● Binaries should be compiled with debugging enabled, e.g. –g. (Or Fast-Track
Debugging see later).

● The recent 2.0 update has introduced new features. All previous syntax is deprecated

● It has many of the features of the standard GDB debugger, but includes
extensions for handling parallel processes.

It can launch jobs, or attach to existing jobs

1. To launch a new version of <exe>
1. Launch an interactive session

2. Run lgdb

3. Run launch $pset{nprocs} <exe>

2. To attach to an existing job
1. find the <apid> using apstat.

2. launch lgdb

3. run attach $<pset> <apid> from the lgdb shell.

C O M P U T E | S T O R E | A N A L Y Z E

LGDB process groups

26

Debugging commands are issued in parallel to all processes
in the “focus” group. By default this is $<pset>, all the
processors in the application.

Output from commands is grouped into common sets, e.g.
backtraces (bt) will be prepended with groups, e.g.

bt

all[0..15]: #0 0x00000000004009cf in main at /tdsnfs1/y02/y02/ted/xthi.c:55

Or

bt

all[0,2..31]: #0 0x0000000000400979 in main at /tdsnfs1/y02/y02/ted/xthi.c:47

all[1]: #0 0x0000000000400984 in main at /tdsnfs1/y02/y02/ted/xthi.c:48

C O M P U T E | S T O R E | A N A L Y Z E

LGDB process groups

27

New groups can be created

defset $<newgrp> $<pset>{rank1},$<pset>{rank37}

Changing focus can be changed with

focus $<newgrp>

Changing focus can be changed with

focus $<newgrp>

C O M P U T E | S T O R E | A N A L Y Z E

Fast Track Debugging

● For getting to the problem more quickly…

C O M P U T E | S T O R E | A N A L Y Z E

The Problem

29

● Debug compilations eliminate optimizations
● Today's machines really need optimizations

● Slows down execution

● Problem might disappear

● Compile such that both debug and non-debug (optimized)
versions of each routine are created.

● Use –Gfast instead of –g with the Cray compiler.

● Linkage such that optimized versions are used by default

● Debugger overrides default linkage when setting
breakpoints and stepping into functions

● Supported by DDT

C O M P U T E | S T O R E | A N A L Y Z E

A Closer Look at How FTD Works

30

subrountine difuze(…)

call difuze(…)

call interf(…)

subrountine interf(…)

source code
difuze()

call difuze(…)

call interf(…)

interf()

optimized binary code

dbg$difuze()

dbg$interf()

call difuze(…)

call interf(…)

debug code

Jmp inserted as part of breakpoint planting

Breakpoint requested in interf(),

placed in interf_debug()

C O M P U T E | S T O R E | A N A L Y Z E

Tera TF Execution Time

31

–Gfast is 320% faster than –g

0

100

200

300

400

500

600

700

800

 -O3 -Gfast -g

C O M P U T E | S T O R E | A N A L Y Z E

Cost of Fast Track Debugging

32

● Compiles are slower

● Executable uses more disk space

● Inlining turned off
● 1.7% average slow down of all SPEC2007MPI tests

● Range of slight speedup to 19.5% slow down

● Uses more memory
● 4% larger at start up

● 0.0001% larger after computation

C O M P U T E | S T O R E | A N A L Y Z E

ccdb: Comparative debugger

4/11/2015
33

● ccdb is a tool to allow comparison of two runs

● You can define expressions to be compared between runs

Usage:

● Launch both applications with lgdb

● Declare a decomposition scheme (for example 1d on 4
processes block distributed) to be used for comparisons

● Create comparisons by tying together variables at source
locations using this scheme.

● Then run the programs – they will stop when the
comparison fails

● See S-0042-22

http://docs.cray.com/cgi-bin/craydoc.cgi?mode=View;id=S-0042-22;idx=books_search;this_sort=title;q=0042;type=books;title=Using the lgdb Comparative Debugging Feature
http://docs.cray.com/cgi-bin/craydoc.cgi?mode=View;id=S-0042-22;idx=books_search;this_sort=title;q=0042;type=books;title=Using the lgdb Comparative Debugging Feature
http://docs.cray.com/cgi-bin/craydoc.cgi?mode=View;id=S-0042-22;idx=books_search;this_sort=title;q=0042;type=books;title=Using the lgdb Comparative Debugging Feature
http://docs.cray.com/cgi-bin/craydoc.cgi?mode=View;id=S-0042-22;idx=books_search;this_sort=title;q=0042;type=books;title=Using the lgdb Comparative Debugging Feature
http://docs.cray.com/cgi-bin/craydoc.cgi?mode=View;id=S-0042-22;idx=books_search;this_sort=title;q=0042;type=books;title=Using the lgdb Comparative Debugging Feature

C O M P U T E | S T O R E | A N A L Y Z E

Debugging Tools Recap

4/11/2015
34

A range of tools are provided to help with debugging

● ATP

● STAT

● lgdb

● Ccdb

● use when appropriate

