Further MP| Programming

Paul Burton
April 2015

Further MPI Programming © ECMWF 2015



Blocking v Non-blocking communication

e Blocking communication

- Call to MPI “sending” routine does not return until the “send”
buffer (array) is safe to use again

This does not necessarily mean the data has been sent and
received by the remote task

- Call to MPI “receiving” routine does not return until the “receive”
buffer has received all the data in the incoming message

e Non-blocking communication
- Call to MPI routine returns immediately

- Further MPI calls are required to check the progress of the
communication

- Allows other work to be done during communication

e Cray’s MPI_SEND can sometimes be blocking and
sometimes non-blocking!

=~ ECMWF Further MPI Programming © ECMWF 2015



MP| _SEND : Eager protocol

MPI SEND (array..)

me dest

MPI MPI1

MPI_SEND completes when “array” is copied into “mailbox”
on the sending task

=~ ECMWF Further MPI Programming © ECMWF 2015



MP| _SEND : Eager protocol

e The MPI layer has copied the data elsewhere
- using internal buffer/mailbox space on the sending task

e MPI SEND returns as soon as the message has been
copied

- The message is then “in transit” but not necessarily in the
receivers array

e Used for short messages
- By default “short” is 8192 bytes (8Kb) on the Cray

- Can be modified by envioronment vairable
$ export MPICH GNI MAX EAGER MSG SIZE=X (bytes)
Maximum permitted value 131072 bytes (128Kb)

e No need to worry if the remote task has done an
“MPI_RECEIVE”

=~ ECMWF Further MPI Programming © ECMWF 2015



MPI| _SEND : Rendezvous protocol

MPI_SEND (array...) MPI_RECEIVE (array...)
me dest

s

MPI MPI1

MPI SEND completes when “array” is copied into “array” on
the receiving task

=~ ECMWF Further MPI Programming © ECMWF 2015




MP| _SEND : Rendezvous protocol

e MPI_ SEND does not return until the message has been
successfully received by the remote task

e Used for long messages
- By default “long” is >8192 bytes on the Cray

e Need to ensure that remote task is doing an
“MPI_RECEIVE” otherwise we may deadlock...

- Easily done!

- eg. ping-pong example — 2 tasks exchanging messages...
if(me .eqg.0) then
other=1
else
other=0
endif

call MPI SEND(sbuff,n,MPI REALS8,other,tag,MPI COMM WORLD, ierror)
call MPI RECV (rbuff,n,MPI REALS8,other,tag,MPI COMM WORLD, stat, ierror)

=~ ECMWF Further MPI Programming © ECMWF 2015



Solutions to Send/Send deadlocks

e My advice — avoid MPI_SEND/MPI_RECV!

- Behaviour is implementation dependent — code may work, but
then stop working when message size changes or move to
another platform

e Pair up sends and receives (next slide shows how...)
- But this is not very efficient

® use MPI SENDRECV
- Hopefully more efficient

e use a buffered send (like the eager protocol, but user
space buffering)

- MPI BSEND

e use asynchronous sends/receives
- MPI_ISEND/MPI_IRECV

=~ ECMWF Further MPI Programming © ECMWF 2015



Paired Sends and Receives

e More complex code, and close synchronisation
e Less efficient

- task 1 has to wait until it has received message from task 0
before it can send its message

if (me .eq. 0) then

other=1

call MPI SEND (sbuff,n,MPI REALS,other,tag,MPI COMM WORLD, ierror)

call MPI RECV(rbuff,n,MPI REALS8,other,tag,MPI COMM WORLD, stat, ierror)
else

other=0

call MPI RECV(rbuff,n,MPI REALS8,other,tag,MPI COMM WORLD, stat, ierror)

call MPI SEND (sbuff,n,MPI REALS,other,tag,MPI COMM WORLD, ierror)
endif

time

Further MPI Programming © ECMWF 2015




MPI_SENDRECV

e Simpler to code & hopefully more efficient
e Still implies close synchronisation

'call MPI SENDRECV (sbuff,n,MPI REALS,other,1, &
rbuff,n,MPI REALS8,other,1, &

MPI COMM WORLD, stat,ierror)

task0
time

\’

task1

Further MPI Programming © ECMWF 2015



MPI_BSEND

e This performs a send using an additional buffer
- the buffer is allocated by the program via MPI_BUFFER ATTACH
- done once as part of the program initialisation

- MPI_BSEND completes as soon as message is copied into buffer

e Typically quick to implement
- add the MPI_BUFFER_ATTACH call

how big to make the buffer?
- change MPI_SEND to MPI_BSEND everywhere
e But introduces additional memory copy
- extra overhead
- not recommended for production codes

- One day your buffer won’t be big enough!

=~ ECMWF Further MPI Programming © ECMWF 2015



MPI_IRECV / MPI_ISEND

e Uses Non Blocking Communications
e “I” stands for immediate

- the call returns immediately

¢ Routines return without completing the operation
- the operations run asynchronously (in the background)
- Must NOT reuse the buffer (send/receive array) until safe to do so

e Later test that the operation completed
- via an integer identification handle passed to MPI_WAIT

call MPI IRECV (rbuff,n,MPI REALS8,other,1,MPI COMM WORLD, request, ierror)
call MPI SEND (sbuff,n,MPI REALS8,other,1,MPI COMM WORLD,ierror)
call MPI WAIT (request,stat,ierr)

e Alternatively could have used MPI_ISEND and MPI_RECV

=~ ECMWF Further MPI Programming © ECMWF 2015



Non Blocking Communications

e Routines include

- MPI_ISEND
- MPI_IRECV
- MPI_WAIT

- MPI_WAITALL

= Waits for a number of outstanding communications to
complete

Further MPI Programming © ECMWF 2015




Final Practical

® exercise2

e A simple model

e See the README for details

e See copies of MPI standard for details of arguments
required for various MPI routines you might want to use.

e Ask if you need help or don’t understand anything!

Further MPI Programming © ECMWF 2015



