
Further MPI Programming

Paul Burton

April 2015

Further MPI Programming © ECMWF 2015

 Blocking communication

- Call to MPI “sending” routine does not return until the “send”

buffer (array) is safe to use again

 This does not necessarily mean the data has been sent and

received by the remote task

- Call to MPI “receiving” routine does not return until the “receive”

buffer has received all the data in the incoming message

 Non-blocking communication

- Call to MPI routine returns immediately

- Further MPI calls are required to check the progress of the

communication

- Allows other work to be done during communication

 Cray’s MPI_SEND can sometimes be blocking and

sometimes non-blocking!

Further MPI Programming © ECMWF 2015

Blocking v Non-blocking communication

MPI_SEND : Eager protocol

Further MPI Programming © ECMWF 2015

MPI_SEND(array…)

array

MPI

MPI “mailbox”

MPI

MPI “mailbox”

array

me dest

MPI_SEND completes when “array” is copied into “mailbox”

on the sending task

 The MPI layer has copied the data elsewhere

- using internal buffer/mailbox space on the sending task

 MPI_SEND returns as soon as the message has been

copied

- The message is then “in transit” but not necessarily in the

receivers array

 Used for short messages

- By default “short” is 8192 bytes (8Kb) on the Cray

- Can be modified by envioronment vairable

 $ export MPICH_GNI_MAX_EAGER_MSG_SIZE=X (bytes)

 Maximum permitted value 131072 bytes (128Kb)

 No need to worry if the remote task has done an
“MPI_RECEIVE”

Further MPI Programming © ECMWF 2015

MPI_SEND : Eager protocol

MPI_SEND : Rendezvous protocol

Further MPI Programming © ECMWF 2015

MPI_SEND(array…)

array

MPI

MPI “mailbox”

MPI

MPI “mailbox”

array

me dest

MPI_SEND completes when “array” is copied into “array” on

the receiving task

MPI_RECEIVE(array…)

 MPI_SEND does not return until the message has been

successfully received by the remote task

 Used for long messages

- By default “long” is >8192 bytes on the Cray

 Need to ensure that remote task is doing an
“MPI_RECEIVE” otherwise we may deadlock…

- Easily done!

- eg. ping-pong example – 2 tasks exchanging messages…

Further MPI Programming © ECMWF 2015

MPI_SEND : Rendezvous protocol

if(me .eq.0) then

 other=1

else

 other=0

endif

call MPI_SEND(sbuff,n,MPI_REAL8,other,tag,MPI_COMM_WORLD,ierror)

call MPI_RECV(rbuff,n,MPI_REAL8,other,tag,MPI_COMM_WORLD,stat,ierror)

 My advice – avoid MPI_SEND/MPI_RECV!

- Behaviour is implementation dependent – code may work, but

then stop working when message size changes or move to

another platform

 Pair up sends and receives (next slide shows how…)

- But this is not very efficient

 use MPI_SENDRECV

- Hopefully more efficient

 use a buffered send (like the eager protocol, but user
space buffering)

- MPI_BSEND

 use asynchronous sends/receives

- MPI_ISEND/MPI_IRECV

Further MPI Programming © ECMWF 2015

Solutions to Send/Send deadlocks

 More complex code, and close synchronisation

 Less efficient

- task 1 has to wait until it has received message from task 0

before it can send its message

Further MPI Programming © ECMWF 2015

Paired Sends and Receives

if (me .eq. 0) then

 other=1

 call MPI_SEND(sbuff,n,MPI_REAL8,other,tag,MPI_COMM_WORLD,ierror)

 call MPI_RECV(rbuff,n,MPI_REAL8,other,tag,MPI_COMM_WORLD,stat,ierror)

else

 other=0

 call MPI_RECV(rbuff,n,MPI_REAL8,other,tag,MPI_COMM_WORLD,stat,ierror)

 call MPI_SEND(sbuff,n,MPI_REAL8,other,tag,MPI_COMM_WORLD,ierror)

endif

task0

task1

1

2

3

4

5

1

3 4

2 5

5

time

 Simpler to code & hopefully more efficient

 Still implies close synchronisation

Further MPI Programming © ECMWF 2015

MPI_SENDRECV

call MPI_SENDRECV(sbuff,n,MPI_REAL8,other,1, &

 rbuff,n,MPI_REAL8,other,1, &

 MPI_COMM_WORLD,stat,ierror)

1

2

1

1

time

2

2

task0

task1

 This performs a send using an additional buffer

- the buffer is allocated by the program via MPI_BUFFER_ATTACH

- done once as part of the program initialisation

- MPI_BSEND completes as soon as message is copied into buffer

 Typically quick to implement

- add the MPI_BUFFER_ATTACH call

 how big to make the buffer?

- change MPI_SEND to MPI_BSEND everywhere

 But introduces additional memory copy

- extra overhead

- not recommended for production codes

- One day your buffer won’t be big enough!

Further MPI Programming © ECMWF 2015

MPI_BSEND

 Uses Non Blocking Communications

 “I” stands for immediate

- the call returns immediately

 Routines return without completing the operation

- the operations run asynchronously (in the background)

- Must NOT reuse the buffer (send/receive array) until safe to do so

 Later test that the operation completed

- via an integer identification handle passed to MPI_WAIT

 Alternatively could have used MPI_ISEND and MPI_RECV

Further MPI Programming © ECMWF 2015

MPI_IRECV / MPI_ISEND

call MPI_IRECV(rbuff,n,MPI_REAL8,other,1,MPI_COMM_WORLD,request,ierror)

call MPI_SEND (sbuff,n,MPI_REAL8,other,1,MPI_COMM_WORLD,ierror)

call MPI_WAIT(request,stat,ierr)

 Routines include

- MPI_ISEND

- MPI_IRECV

- MPI_WAIT

- MPI_WAITALL

 Waits for a number of outstanding communications to

complete

Further MPI Programming © ECMWF 2015

Non Blocking Communications

 exercise2

 A simple model

 See the README for details

 See copies of MPI standard for details of arguments
required for various MPI routines you might want to use.

 Ask if you need help or don’t understand anything!

Further MPI Programming © ECMWF 2015

Final Practical

