
ECMWF training course – 2015

I/O practicals darshan – cca

N O T E S:

1. Remember to login to HPC
2. See slides, man pages or online documentation.
3. Some job examples are available under:

https://software.ecmwf.int/wiki/display/UDOC/Batch+environment%3A++PBS

4. Create a subdirectory for this practical session, e.g.

% cd $SCRATCH

% tar xzvf ~trx/io-darshan/io-darshan-practicals.tar.gz

% cd io-darshan

BENCHMARK description

IOR can be used for testing performance of parallel file systems using various
interfaces and access patterns. IOR uses MPI for process synchronization.

* 3. RUNNING IOR *

Two ways to run IOR:

 * Command line with arguments -- executable followed by command line options.

 E.g., to execute: IOR -w -r -o filename

 This performs a write and a read to the file 'filename'.

 * Command line with scripts -- any arguments on the command line will

 establish the default for the test run, but a script may be used in

 conjunction with this for varying specific tests during an execution of the

 code.

 E.g., to execute: IOR -W -f script

 This defaults all tests in 'script' to use write data checking.

* 4. OPTIONS *

These options are to be used on the command line. E.g., 'IOR -a POSIX -b 4K'.

 -A N testNum -- test number for reference in some output

 -a S api -- API for I/O [POSIX|MPIIO|HDF5|NCMPI]

 -b N blockSize -- contiguous bytes to write per task (e.g.: 8, 4k, 2m, 1g)

 -B useO_DIRECT -- uses O_DIRECT for POSIX, bypassing I/O buffers

 -c collective -- collective I/O

 -C reorderTasks -- changes task ordering to n+1 ordering for readback

 -Q N taskPerNodeOffset for read tests use with -C & -Z options (-C constant N, -Z

at least N) [!HDF5]

 -Z reorderTasksRandom -- changes task ordering to random ordering for readback

 -X N reorderTasksRandomSeed -- random seed for -Z option

 -d N interTestDelay -- delay between reps in seconds

 -D N deadlineForStonewalling -- seconds before stopping write or read phase

 -Y fsyncPerWrite -- perform fsync after each POSIX write

 -e fsync -- perform fsync upon POSIX write close

 -E useExistingTestFile -- do not remove test file before write access

 -f S scriptFile -- test script name

 -F filePerProc -- file-per-process

https://software.ecmwf.int/wiki/display/UDOC/Batch+environment%3A++PBS

 -g intraTestBarriers -- use barriers between open, write/read, and close

 -G N setTimeStampSignature -- set value for time stamp signature

 -h showHelp -- displays options and help

 -H showHints -- show hints

 -i N repetitions -- number of repetitions of test

 -I individualDataSets -- datasets not shared by all procs [not working]

 -j N outlierThreshold -- warn on outlier N seconds from mean

 -J N setAlignment -- HDF5 alignment in bytes (e.g.: 8, 4k, 2m, 1g)

 -k keepFile -- don't remove the test file(s) on program exit

 -K keepFileWithError -- keep error-filled file(s) after data-checking

 -l storeFileOffset -- use file offset as stored signature

 -m multiFile -- use number of reps (-i) for multiple file count

 -n noFill -- no fill in HDF5 file creation

 -N N numTasks -- number of tasks that should participate in the test

 -o S testFile -- full name for test

 -O S string of IOR directives (e.g. -O checkRead=1,lustreStripeCount=32)

 -p preallocate -- preallocate file size

 -P useSharedFilePointer -- use shared file pointer [not working]

 -q quitOnError -- during file error-checking, abort on error

 -r readFile -- read existing file

 -R checkRead -- check read after read

 -s N segmentCount -- number of segments

 -S useStridedDatatype -- put strided access into datatype [not working]

 -t N transferSize -- size of transfer in bytes (e.g.: 8, 4k, 2m, 1g)

 -T N maxTimeDuration -- max time in minutes to run tests

 -u uniqueDir -- use unique directory name for each file-per-process

 -U S hintsFileName -- full name for hints file

 -v verbose -- output information (repeating flag increases level)

 -V useFileView -- use MPI_File_set_view

 -w writeFile -- write file

 -W checkWrite -- check read after write

 -x singleXferAttempt -- do not retry transfer if incomplete

 -z randomOffset -- access is to random, not sequential, offsets within a file

NOTES: * S is a string, N is an integer number.

 * For transfer and block sizes, the case-insensitive K, M, and G

 suffices are recognized. I.e., '4k' or '4K' is accepted as 4096.

EXERCISE 0
To compile IOR, you have to follow these steps:

cd src/IOR

module unload atp

#be sure that PrgEnv-cray/5.2.14 is loaded

make mpiio

cp src/C/IOR ../../bin/

EXERCISE 1

In this exercise we are profiling the I/O of some POSIX ways to read/write a single
file or several files with Darshan.

Comparison between 96 tasks writing one file vs. 96 tasks writing 96 files
This exercise will help to check the difference between write/read a single file and
write/read 1 file per task.
Go to run/single-multiple folder. You have to complete the job-posix.pbs script
with the correct values (search for #TODO). (We have created the two darshan logs
in darshan-logs directory to prevent waiting in the queue and the execution. Once
running the job lasts about 10 minutes).
These are the IOR options that you should use:

Command line used: IOR -C -t 2m -b 500m -i 1 -a POSIX -w -r

Summary:

 api = POSIX

 test filename = testFile

 access = single-shared-file

 ordering in a file = sequential offsets

 ordering inter file=constant task offsets = 1

 clients = 96 (48 per node)

 repetitions = 1

 xfersize = 2 MiB

 blocksize = 500 MiB

 aggregate filesize = 46.88 GiB

Command line used: IOR -F -C -t 2m -b 500m -i 1 -a POSIX -w -r

Summary:

 api = POSIX

 test filename = testFile

 access = file-per-process

 ordering in a file = sequential offsets

 ordering inter file=constant task offsets = 1

 clients = 96 (48 per node)

 repetitions = 1

 xfersize = 2 MiB

 blocksize = 500 MiB

 aggregate filesize = 46.88 GiB

HINT: To compare both summaries, we suggest you to use tkdiff command.
Generate two different text files to compare redirecting stdout:

module load darshan

IOsummary.py user_xxxx_t2b500_IOR_xxx.darshan.gz > single-

shared

IOsummary.py user_xxxx_t2b500F_IOR_xxx.darshan.gz > file-per-

process

xxdiff single-shared file-per-process

(You can also use IOsummary.py –s)

Fill in the table:

 single-shared-file file-per-process

Read time per task

Write Time per task

Number of different files

What is the best way to achieve the best performance? Why?

EXERCISE 2
Comparison of 96 tasks writing a single file using MPI-IO with and without
stripe
In this exercise you are writing a single file of 46.88 GB in a folder that does not have
stripe and then in a folder with stripe.

Go to run/mpiio folder. You have to complete job-mpiio.pbs.
Inside the job, you have to create two different directories. First you have to create
two different folders called:

1. MPIIO
mkdir MPIIO

2. MPIIO-stripe
mkdir MPIIO_stripe

Then set the stripe to MPIIO-stripe. Use this command:
lfs setstripe -S 2097152 -c 4 MPIIO_stripe

This will set a stripe of 2MB per OST with a count of 4 OSTs per file. Allowing MPI-
IO to enhance the read/write. You can try different stripe configurations and see the
behavior.

Then the job will submit two aprun commands, one in the MPIIO directory and the
other on MPIIO-stripe. Both will use MPI-IO to write a single-shared-file of 46.88GiB
in chunks of 500Mb, one per process. Then you can compare the effect of the stripe
and MPI-IO.
This job takes around 15 minutes. You can use the logs in darshan-logs directory.

 No-stripe stripe

Read time per task

Write Time per task

Meta Time per task

Can you try different stripe sizes (4MB, 8MB) and different transfersize (-t)
parameters?

