
© ECMWF April 7, 2015

Introduction to Parallel
Computing

George Mozdzynski

George.Mozdzynski@ecmwf.int

 Parallel computing?

Types of computer

 Parallel Computers today

 Challenges in parallel computing

 Parallel Programming Languages

 OpenMP/OpenACC and MPI

Introduction to Parallel Computing

Outline

2

Introduction to Parallel Computing

What is Parallel Computing?

The simultaneous use of more than

one processor or computer to solve a

problem

3

 Serial computing is too slow

 Need for large amounts of memory not

accessible by a single processor

Introduction to Parallel Computing

Why do we need Parallel Computing?

4

Operational performance requirement

0

100

200

300

400

500

600

700

0 10000 20000 30000 40000 50000 60000 70000

F
o

re
c
a

s
t

D
a
y
s
 /

 D
a
y

Cores

T2047 IFS global model (10 km) performance on CRAY XE6, 2012

Introduction to Parallel Computing

10 day forecast in 1 hour = 240 forecast days / day

5

 Wall Clock

 Floating point operations per second (FLOPS or FLOP/S)

 Peak (Hardware), Sustained (Application)

 SI prefixes

 Mega Mflops 10**6

 Giga Gflops 10**9

 Tera Tflops 10**12

 Peta Pflops 10**15 ECMWF: 2 * 1.79 Pflops peak (XC-30)

 Exa, Zetta, Yotta

 Instructions per second, Mips, etc,

 Transactions per second (Databases)

Introduction to Parallel Computing

Measuring Performance

6

Computing at ECMWF

Introduction to Parallel Computing 7

Sustained Exaflop in 2033 ?

Introduction to Parallel Computing 8

Introduction to Parallel Computing

Types of Parallel Computer

P=Processor

M=Memory

S=Switch

Shared Memory Distributed Memory

P

M

P … P

M

P

M

S

…

9

IBM/CRAY Cluster

(Distributed + Shared memory)

Introduction to Parallel Computing

P=Processor

M=Memory

S=Switch

…

S

P

M

P … P

M

P …

Node Node

10

CRAY XC-30 clusters at ECMWF

Introduction to Parallel Computing

One of the

TWO

identical

XC-30

clusters

11

…and one the world’s fastest (#4) and largest

supercomputers – Fujitsu K computer

Introduction to Parallel Computing

705,024 Sparc64

processor cores

12

• #1 in Nov 2012 Top500 list, and #2 today

• 7.5X peak perf. of ECMWF’s CRAY XC-30
clusters (CCA+CCB=3.6 Petaflops peak)

• Gemini interconnect

• 3-D Torus

• Globally addressable memory

• AMD Interlagos cores (16 cores per node)

• Accelerated node design using NVIDIA K20
“Kepler” GPUs

• 600 TB DDR3 mem. + 88 TB GDDR5 mem

Introduction to Parallel Computing

ORNL’s “Titan”

System

Titan Specs

Compute Nodes 18,688

Login & I/O Nodes 512

Memory per node
32 GB + 6

GB

of NVIDIA K20

“Kepler” processors
14,592

Total System Memory 688 TB

Total System Peak

Performance
27 Petaflops

Source (edited): James J. Hack, Director, Oak Ridge National Laboratory

13

Types of Processor

Introduction to Parallel Computing

DO J=1,1000

A(J)=B(J) + C

ENDDO

LOAD B(J)
FADD C
STORE A(J)
INCR J
TEST

SCALAR

PROCESSOR

VECTOR

PROCESSOR

LOADV B->V1
FADDV V1,C->V2
STOREV V2->A

Single instruction

processes one

element

Single instruction

processes many

elements

14

 started in 1993

 Top 500 sites reported

 Report produced twice a year

 EUROPE in JUNE (ISC15)

 USA in NOV (SC14)

 Performance based on LINPACK benchmark

 dominated by matrix multiply (DGEMM)

 High performance conjugate gradient (HPCG) benchmark
announced at SC13

 http://www.top500.org/

Introduction to Parallel Computing

The TOP500 project

15

Introduction to Parallel Computing 16

Top500: SC14 top 6 systems

ECMWF in Top 500

Introduction to Parallel Computing

Rmax – Tflop/sec achieved with LINPACK Benchmark

Rpeak – Peak Hardware Tflop/sec (that will never be reached!)

TFlops

17

Top500: Performance Development

Introduction to Parallel Computing 18

Top500: Projected Performance Development

Introduction to Parallel Computing 19

Why is Matrix-Matrix Multiply (DGEMM) so efficient?

Introduction to Parallel Computing

VL

1

VL is vector

register length

VL FMA’s

(VL + 1) LD’s

VECTOR SCALAR / CACHE

n

m

(m * n) + (m + n)

< # registers

m * n FMA’s

m + n LD’s

FMA’s ~= LD’s FMA’s >> LD’s

20

Introduction to Parallel Computing 21

 GPU – Graphics Processing Unit

 High performance, low power, but ‘challenging’ to program for

large applications, separate memory, GPU/CPU interface (PCIx

8GB/sec)

 Expect GPU technology to be more easily useable on future HPCs

 http://gpgpu.org/developer

 GPU hardware today mainly supplied by NVIDIA

 INTEL (Xeon Phi, aka “MIC”)

 “Knights Corner” requires CPU host (via PCIx connector)

 “Knights Landing” available 2016, does not require CPU host

Introduction to Parallel Computing

Accelerators

22

http://gpgpu.org/developer

Introduction to Parallel Computing

Key Architectural Features of a Supercomputer

CPU

Performance

MEMORY

Latency / Bandwidth

Interconnect

Latency / Bandwidth

Parallel File-system

Performance

“a balancing act to achieve good sustained performance”

23

 Parallel Computers

 Have ever increasing processors, memory, performance, but

 Need more space (new computer halls = $)

 Need more power (MWs = $)

 Parallel computers require/produce a lot of data (I/O)

 Require parallel file systems (GPFS, Lustre) + archive store

 Applications need to scale to increasing numbers of processors,
problems areas are

 Load imbalance, Serial sections, Global Communications

 Debugging parallel applications (totalview, ddt)

 We are going to be using more processors in the future!

 More cores per socket, little/no clock speed improvements

Introduction to Parallel Computing

Challenges in parallel computing

24

 OpenMP

 directive based (www.openmp.org)

 support for Fortran and C/C++

 shared memory programming only

 OpenACC

 directive based (www.openacc.org)

 support for Fortran and C

 GPU programming (e.g. NVIDIA)

 PGAS (Partitioned Global Address Space)

 UPC, Fortran 2008 Coarrays

 One programming model for inter and intra node parallelism

 One-sided communication

Introduction to Parallel Computing

Parallel Programming Languages

25

Introduction to Parallel Computing

OpenMP example

!$OMP PARALLEL DO SCHEDULE(STATIC,1)&

!$OMP& PRIVATE(JMLOCF,IM,ISTA,IEND)

DO JMLOCF=NPTRMF(MYSETN),NPTRMF(MYSETN+1)-1

IM=MYMS(JMLOCF)

ISTA=NSPSTAF(IM)

IEND=ISTA+2*(NSMAX+1-IM)-1

CALL SPCSI(CDCONF,IM,ISTA,IEND,LLONEM,ISPEC2V,&

&ZSPVORG,ZSPDIVG,ZSPTG,ZSPSPG)

ENDDO

!$OMP END PARALLEL DO

26

Why OpenMP? Ans: For performance and memory

Introduction to Parallel Computing 27

Testing combinations 9216Tx1t, 4608Tx2t, 3072Tx3t, 1536Tx6t, 768Tx12t, 384Tx24t and 192Tx48t

Introduction to Parallel Computing

OpenACC example

!$acc parallel loop copyin(dt,rmass), &

!$acc private(i,j), present(pos,vel,f,a,np,nd)

do i = 1,np

do j = 1,nd

pos(j,i) = pos(j,i) + vel(j,i)*dt + 0.5*dt*dt*a(j,i)

vel(j,i) = vel(j,i) + 0.5*dt*(f(j,i)*rmass + a(j,i))

a(j,i) = f(j,i)*rmass

enddo

enddo

!$acc end parallel loop

28

http://www.ecmwf.int/sites/default/files/HPC-WS-Mozdzynski.pdf

Link includes results of a port of IFS spectral transform kernel to GPU using OpenACC

http://www.ecmwf.int/sites/default/files/HPC-WS-Mozdzynski.pdf

Fortran2008 coarray (PGAS) example

!$OMP PARALLEL DO SCHEDULE(DYNAMIC,1) PRIVATE(JM,IM,JW,IPE,ILEN,ILENS,IOFFS,IOFFR)

DO JM=1,D%NUMP

IM = D%MYMS(JM)

CALL LTINV(IM,JM,KF_OUT_LT,KF_UV,KF_SCALARS,KF_SCDERS,ILEI2,IDIM1,&

& PSPVOR,PSPDIV,PSPSCALAR ,&

& PSPSC3A,PSPSC3B,PSPSC2 , &

& KFLDPTRUV,KFLDPTRSC,FSPGL_PROC)

DO JW=1,NPRTRW

CALL SET2PE(IPE,0,0,JW,MYSETV)

ILEN = D%NLEN_M(JW,1,JM)*IFIELD

IF(ILEN > 0)THEN

IOFFS = (D%NSTAGT0B(JW)+D%NOFF_M(JW,1,JM))*IFIELD

IOFFR = (D%NSTAGT0BW(JW,MYSETW)+D%NOFF_M(JW,1,JM))*IFIELD

FOUBUF_C(IOFFR+1:IOFFR+ILEN)[IPE]=FOUBUF_IN(IOFFS+1:IOFFS+ILEN)

ENDIF

ILENS = D%NLEN_M(JW,2,JM)*IFIELD

IF(ILENS > 0)THEN

IOFFS = (D%NSTAGT0B(JW)+D%NOFF_M(JW,2,JM))*IFIELD

IOFFR = (D%NSTAGT0BW(JW,MYSETW)+D%NOFF_M(JW,2,JM))*IFIELD

FOUBUF_C(IOFFR+1:IOFFR+ILENS)[IPE]=FOUBUF_IN(IOFFS+1:IOFFS+ILENS)

ENDIF

ENDDO

ENDDO

!$OMP END PARALLEL DO

SYNC IMAGES(D%NMYSETW)

FOUBUF(1:IBLEN)=FOUBUF_C(1:IBLEN)[MYPROC]

Introduction to Parallel Computing 29

 MPI

 Most widely used since mid-90’s (www.mpi-forum.org)

 MPI-3.0 standard is 852 pages!

 MPI-2.2 is the default MPI on most systems

 Most users will use a small subset of MPI facilities

 Use collectives (e.g. MPI_alltoallv) and non-blocking calls for

performance

 MPI-only application scaling issues?

 GASPI/GPI

 PGAS one-sided programming (www.gpi-site.com/gpi2)

 Interoperable with MPI

Introduction to Parallel Computing

Parallel Programming Libraries

30

http://www.mpi-forum.org/

 Fortran, C/C++ with MPI for communicating between tasks

 works for applications running on shared and distributed

memory systems

 Fortran, C/C++ with OpenMP

 For applications that need performance that is satisfied by a

single node (shared memory)

 Hybrid combination of MPI/OpenMP

 ECMWF’s IFS uses this approach (over 15 years now)

 Hybrid combination of MPI/OpenACC (for GPU)

 Meteo-Swiss have ported COSMO to NVIDIA GPU

 Early years for DAGs (e.g. MPI + OmpSs)

Introduction to Parallel Computing

Parallel Programmers use…

31

DAG example: Cholesky Inversion

Source: Stan Tomov, ICL, University of Tennessee, Knoxville

DAG = Directed Acyclic Graph

Can IFS use this technology?

Introduction to Parallel Computing 32

Topics in Parallel Computing …

Introduction to Parallel Computing

Cache, Cache line

Domain decomposition

Halo, halo exchange

Load imbalance

Synchronization

Barrier

33

Cache

Introduction to Parallel Computing

P

M

C

P=Processor

C=Cache

M=Memory

M

P

C1 C1

C2

P

34

 Processors are 100’s of cycles away from Memory

 Cache is a small (and fast) memory closer to processor

 Cache line typically 128 bytes

 Good for cache performance

- Single stride access is always the best

- Over inner loop leftmost index (fortran)

Introduction to Parallel Computing

Cache on scalar systems

BETTER

DO J=1,N

DO I=1,M

A(I,J)= . . .

ENDDO

ENDDO

WORSE

DO J=1,N

DO I=1,M

A(J,I)= . . .

ENDDO

ENDDO

35

Introduction to Parallel Computing

DO J=1, NGPTOT, NPROMA

CALL GP_CALCS

ENDDO

U(NGPTOT,NLEV)

NGPTOT = NLAT * NLON

NLEV = vertical levels

NLON

NLAT

SUB GP_CALCS

DO I=1,NPROMA

ENDDO

END

NLAT

Scalar

Vector

Lots of work

Independent for each J

36

IFS Grid-Point Calculations (cache blocking example)

Grid point space blocking for Cache

Introduction to Parallel Computing

RAPS9 FC T799L91

192 tasks x 4 threads

200

250

300

350

400

450

500

550

1 10 100 1000

Grid Space blocking (NPROMA)

S
E

C
O

N
D

S

Optimal use of cache /

subroutine call overhead

Introduction to Parallel Computing

T799 FC 192x4 (10 runs)

226

228

230

232

234

236

238

240

242

244

246

20 25 30 35 40 45 50 55 60

NPROMA

S
E

C
O

N
D

S

38

Introduction to Parallel Computing

TL799 1024 tasks 2D partitioning (used in past)

2D partitioning results in
non-optimal Semi-Lagrangian
comms requirement at poles
and equator!

Square shaped partitions are
better than rectangular
shaped partitions.

 

 



 

 
x

arrival

departure

mid-point

MPI task

partition

x

39

Introduction to Parallel Computing

eq_regions partitioning algorithm (used in IFS)

40

 Computation of a trajectory from each grid-point
backwards in time, and

 Interpolation of various quantities at the departure
and at the mid-point of the trajectory

Introduction to Parallel Computing

Halo example : IFS Semi-Lagrangian Transport

 

 



 

 

x

arrival

departure

mid-point

MPI task partition

x

41

Halo’s in IFS (T799 model, 256 tasks, showing task 11)

Introduction to Parallel Computing

Black – grid points

owned by task 11

Blue – halo grid points ,

max wind x time-step

Red – grid points in halo

actually used by task 11

Bottom two graphics

LH – using MPI

RH – using Fortran2008

coarrays (PGAS)

42

5 km IFS model scaling on TITAN (Fortran2008 coarrays)

Introduction to Parallel Computing 43

 Computation

- High computational intensity

- Little use of memory bandwidth

 Memory

- Locality of reference

- Registers or first level cache

 Communication

- Infrequent nearest neighbour or no communication

 Input/Output

- Relatively low volume, or

- Parallel implementation (in dedicated nodes)

Introduction to Parallel Computing

Characteristics of codes that will perform well on all

parallel computers

44

Introduction to Parallel Computing 45

