
© ECMWF April 7, 2015

Introduction to Parallel 
Computing

George Mozdzynski

George.Mozdzynski@ecmwf.int



 Parallel computing?

Types of computer

 Parallel Computers today

 Challenges in parallel computing

 Parallel Programming Languages

 OpenMP/OpenACC and MPI

Introduction to Parallel Computing

Outline

2



Introduction to Parallel Computing

What is Parallel Computing?

The simultaneous use of more than 

one processor or computer to solve a 

problem 

3



 Serial computing is too slow

 Need for large amounts of memory not  

accessible by a single processor

Introduction to Parallel Computing

Why do we need Parallel Computing?

4



Operational performance requirement

0

100

200

300

400

500

600

700

0 10000 20000 30000 40000 50000 60000 70000

F
o

re
c
a

s
t 

D
a
y
s
 /

 D
a
y

# Cores

T2047 IFS global model (10 km) performance on CRAY XE6, 2012

Introduction to Parallel Computing

10 day forecast in 1 hour = 240 forecast days / day

5



 Wall Clock

 Floating point operations per second (FLOPS or FLOP/S)

 Peak (Hardware), Sustained (Application)

 SI prefixes

 Mega Mflops 10**6

 Giga Gflops 10**9 

 Tera Tflops 10**12 

 Peta Pflops 10**15 ECMWF: 2 * 1.79 Pflops peak (XC-30)   

 Exa, Zetta, Yotta

 Instructions per second, Mips, etc,

 Transactions per second (Databases)

Introduction to Parallel Computing

Measuring Performance

6



Computing at ECMWF

Introduction to Parallel Computing 7



Sustained Exaflop in 2033 ?

Introduction to Parallel Computing 8



Introduction to Parallel Computing

Types of Parallel Computer

P=Processor

M=Memory

S=Switch

Shared Memory Distributed Memory

P

M

P … P

M

P

M

S

…

9



IBM/CRAY Cluster 

(Distributed + Shared memory)

Introduction to Parallel Computing

P=Processor

M=Memory

S=Switch

…

S

P

M

P … P

M

P …

Node Node

10



CRAY XC-30 clusters at ECMWF

Introduction to Parallel Computing

One of the 

TWO 

identical 

XC-30 

clusters

11



…and one the world’s fastest (#4) and largest 

supercomputers – Fujitsu K computer

Introduction to Parallel Computing

705,024 Sparc64 

processor cores

12



• #1 in Nov 2012 Top500 list, and #2 today

• 7.5X peak perf. of ECMWF’s CRAY XC-30 
clusters (CCA+CCB=3.6 Petaflops peak)

• Gemini interconnect

• 3-D Torus 

• Globally addressable memory

• AMD Interlagos cores (16 cores per node)

• Accelerated node design using NVIDIA K20 
“Kepler” GPUs

• 600 TB DDR3 mem. + 88 TB GDDR5 mem

Introduction to Parallel Computing

ORNL’s “Titan” 

System

Titan Specs

Compute Nodes 18,688

Login & I/O Nodes 512

Memory per node
32 GB + 6 

GB

# of NVIDIA K20

“Kepler” processors
14,592

Total System Memory 688 TB

Total System Peak 

Performance
27 Petaflops

Source (edited): James J. Hack, Director, Oak Ridge National Laboratory

13



Types of Processor

Introduction to Parallel Computing

DO J=1,1000

A(J)=B(J) + C

ENDDO

LOAD   B(J)
FADD   C
STORE  A(J)
INCR   J
TEST

SCALAR 

PROCESSOR

VECTOR 

PROCESSOR

LOADV   B->V1
FADDV   V1,C->V2
STOREV  V2->A

Single instruction 

processes one 

element

Single instruction 

processes many 

elements

14



 started in 1993

 Top 500 sites reported

 Report produced twice a year

 EUROPE in JUNE (ISC15)

 USA in NOV (SC14)

 Performance based on LINPACK benchmark

 dominated by matrix multiply (DGEMM)

 High performance conjugate gradient (HPCG) benchmark 
announced at SC13

 http://www.top500.org/

Introduction to Parallel Computing

The TOP500 project

15



Introduction to Parallel Computing 16

Top500: SC14 top 6 systems



ECMWF in Top 500

Introduction to Parallel Computing

Rmax – Tflop/sec achieved with LINPACK Benchmark

Rpeak – Peak Hardware Tflop/sec (that will never be reached!)

TFlops

17



Top500: Performance Development

Introduction to Parallel Computing 18



Top500: Projected Performance Development

Introduction to Parallel Computing 19



Why is Matrix-Matrix Multiply (DGEMM) so efficient?

Introduction to Parallel Computing

VL

1

VL   is vector 

register length

VL FMA’s

(VL + 1)  LD’s

VECTOR SCALAR / CACHE

n

m

(m * n) + (m + n)

< # registers

m * n  FMA’s

m + n  LD’s

FMA’s  ~=  LD’s FMA’s  >> LD’s

20



Introduction to Parallel Computing 21



 GPU – Graphics Processing Unit

 High performance, low power, but ‘challenging’ to program for 

large applications, separate memory, GPU/CPU interface (PCIx

8GB/sec)

 Expect GPU technology to be more easily useable on future HPCs 

 http://gpgpu.org/developer

 GPU hardware today mainly supplied by NVIDIA

 INTEL  (Xeon Phi, aka “MIC”)

 “Knights Corner”  requires CPU host (via PCIx connector)

 “Knights Landing” available 2016, does not require CPU host

Introduction to Parallel Computing

Accelerators

22

http://gpgpu.org/developer


Introduction to Parallel Computing

Key Architectural Features of a Supercomputer

CPU 

Performance

MEMORY 

Latency / Bandwidth

Interconnect

Latency / Bandwidth

Parallel File-system 

Performance

“a balancing act to achieve good sustained performance”

23



 Parallel Computers

 Have ever increasing processors, memory, performance, but

 Need more space (new computer halls = $)

 Need more power (MWs = $)

 Parallel computers require/produce a lot of data (I/O)

 Require parallel file systems (GPFS, Lustre) + archive store

 Applications need to scale to increasing numbers of processors, 
problems areas are

 Load imbalance, Serial sections, Global Communications

 Debugging parallel applications (totalview, ddt)

 We are going to be using more processors in the future!

 More cores per socket, little/no clock speed improvements

Introduction to Parallel Computing

Challenges in parallel computing

24



 OpenMP

 directive based (www.openmp.org)

 support for Fortran and C/C++

 shared memory programming only

 OpenACC

 directive based (www.openacc.org)

 support for Fortran and C

 GPU programming (e.g. NVIDIA)

 PGAS (Partitioned Global Address Space)

 UPC, Fortran 2008 Coarrays

 One programming model for inter and intra node parallelism

 One-sided communication

Introduction to Parallel Computing

Parallel Programming Languages

25



Introduction to Parallel Computing

OpenMP example

!$OMP PARALLEL DO SCHEDULE(STATIC,1)&

!$OMP& PRIVATE(JMLOCF,IM,ISTA,IEND)

DO JMLOCF=NPTRMF(MYSETN),NPTRMF(MYSETN+1)-1

IM=MYMS(JMLOCF)

ISTA=NSPSTAF(IM)

IEND=ISTA+2*(NSMAX+1-IM)-1

CALL SPCSI(CDCONF,IM,ISTA,IEND,LLONEM,ISPEC2V,&

&ZSPVORG,ZSPDIVG,ZSPTG,ZSPSPG)

ENDDO

!$OMP END PARALLEL DO

26



Why OpenMP? Ans: For performance and memory

Introduction to Parallel Computing 27

Testing combinations 9216Tx1t, 4608Tx2t, 3072Tx3t, 1536Tx6t, 768Tx12t, 384Tx24t and 192Tx48t



Introduction to Parallel Computing

OpenACC example

!$acc parallel loop copyin(dt,rmass), &

!$acc private(i,j), present(pos,vel,f,a,np,nd)

do i = 1,np

do j = 1,nd

pos(j,i) = pos(j,i) + vel(j,i)*dt + 0.5*dt*dt*a(j,i)

vel(j,i) = vel(j,i) + 0.5*dt*(f(j,i)*rmass + a(j,i))

a(j,i) = f(j,i)*rmass

enddo

enddo

!$acc end parallel loop

28

http://www.ecmwf.int/sites/default/files/HPC-WS-Mozdzynski.pdf

Link includes results of a port of IFS spectral transform kernel to GPU using OpenACC

http://www.ecmwf.int/sites/default/files/HPC-WS-Mozdzynski.pdf


Fortran2008 coarray (PGAS) example

!$OMP PARALLEL DO SCHEDULE(DYNAMIC,1) PRIVATE(JM,IM,JW,IPE,ILEN,ILENS,IOFFS,IOFFR)

DO JM=1,D%NUMP

IM = D%MYMS(JM)

CALL LTINV(IM,JM,KF_OUT_LT,KF_UV,KF_SCALARS,KF_SCDERS,ILEI2,IDIM1,&

& PSPVOR,PSPDIV,PSPSCALAR ,&

& PSPSC3A,PSPSC3B,PSPSC2 , &

& KFLDPTRUV,KFLDPTRSC,FSPGL_PROC)

DO JW=1,NPRTRW

CALL SET2PE(IPE,0,0,JW,MYSETV)

ILEN = D%NLEN_M(JW,1,JM)*IFIELD

IF( ILEN > 0 )THEN

IOFFS = (D%NSTAGT0B(JW)+D%NOFF_M(JW,1,JM))*IFIELD

IOFFR = (D%NSTAGT0BW(JW,MYSETW)+D%NOFF_M(JW,1,JM))*IFIELD

FOUBUF_C(IOFFR+1:IOFFR+ILEN)[IPE]=FOUBUF_IN(IOFFS+1:IOFFS+ILEN)

ENDIF

ILENS = D%NLEN_M(JW,2,JM)*IFIELD

IF( ILENS > 0 )THEN

IOFFS = (D%NSTAGT0B(JW)+D%NOFF_M(JW,2,JM))*IFIELD

IOFFR = (D%NSTAGT0BW(JW,MYSETW)+D%NOFF_M(JW,2,JM))*IFIELD

FOUBUF_C(IOFFR+1:IOFFR+ILENS)[IPE]=FOUBUF_IN(IOFFS+1:IOFFS+ILENS)

ENDIF

ENDDO

ENDDO

!$OMP END PARALLEL DO

SYNC IMAGES(D%NMYSETW)

FOUBUF(1:IBLEN)=FOUBUF_C(1:IBLEN)[MYPROC]

Introduction to Parallel Computing 29



 MPI 

 Most widely used since mid-90’s (www.mpi-forum.org)

 MPI-3.0 standard is 852 pages!

 MPI-2.2 is the default MPI on most systems

 Most users will use a small subset of MPI facilities

 Use collectives (e.g. MPI_alltoallv) and non-blocking calls for 

performance

 MPI-only application scaling issues?

 GASPI/GPI

 PGAS one-sided programming (www.gpi-site.com/gpi2)

 Interoperable with MPI

Introduction to Parallel Computing

Parallel Programming Libraries

30

http://www.mpi-forum.org/


 Fortran, C/C++ with MPI for communicating between tasks

 works for applications running on shared and distributed 

memory systems

 Fortran, C/C++ with OpenMP

 For applications that need performance that is satisfied by a 

single node (shared memory)

 Hybrid combination of MPI/OpenMP

 ECMWF’s IFS uses this approach (over 15 years now)

 Hybrid combination of MPI/OpenACC (for GPU)

 Meteo-Swiss have ported COSMO to NVIDIA GPU

 Early years for DAGs (e.g. MPI + OmpSs)

Introduction to Parallel Computing

Parallel Programmers use…

31



DAG example: Cholesky Inversion

Source:  Stan Tomov, ICL, University of Tennessee, Knoxville

DAG = Directed Acyclic Graph

Can IFS use this technology?

Introduction to Parallel Computing 32



Topics in Parallel Computing …

Introduction to Parallel Computing

Cache, Cache line

Domain decomposition

Halo, halo exchange

Load imbalance

Synchronization

Barrier

33



Cache

Introduction to Parallel Computing

P

M

C

P=Processor

C=Cache

M=Memory

M

P

C1 C1

C2

P

34



 Processors are 100’s of cycles away from Memory

 Cache is a small (and fast) memory closer to processor

 Cache line typically 128 bytes

 Good for cache performance

- Single stride access is always the best

- Over  inner loop leftmost  index (fortran)

Introduction to Parallel Computing

Cache on scalar systems

BETTER

DO J=1,N

DO I=1,M

A(I,J)= . . .

ENDDO

ENDDO

WORSE

DO J=1,N

DO I=1,M

A(J,I)= . . .

ENDDO

ENDDO

35



Introduction to Parallel Computing

DO J=1, NGPTOT, NPROMA

CALL GP_CALCS

ENDDO

U(NGPTOT,NLEV)

NGPTOT = NLAT * NLON

NLEV = vertical levels

NLON

NLAT

SUB GP_CALCS

DO I=1,NPROMA

ENDDO

END

NLAT

Scalar

Vector

Lots of work

Independent for each J

36

IFS Grid-Point Calculations (cache blocking example)



Grid point space blocking for Cache

Introduction to Parallel Computing

RAPS9 FC T799L91 

192 tasks x 4 threads 

200

250

300

350

400

450

500

550

1 10 100 1000

Grid Space blocking (NPROMA)

S
E

C
O

N
D

S

Optimal use of cache / 

subroutine call overhead



Introduction to Parallel Computing

T799 FC 192x4 (10 runs)

226

228

230

232

234

236

238

240

242

244

246

20 25 30 35 40 45 50 55 60

NPROMA

S
E

C
O

N
D

S

38



Introduction to Parallel Computing

TL799 1024 tasks 2D partitioning (used in past)

2D partitioning results in 
non-optimal Semi-Lagrangian 
comms requirement at poles 
and equator!

Square shaped partitions are 
better than rectangular 
shaped partitions.

 

 



 

 
x

arrival

departure

mid-point

MPI task 

partition

x

39



Introduction to Parallel Computing

eq_regions partitioning algorithm (used in IFS)

40



 Computation of a trajectory from each grid-point 
backwards in time, and

 Interpolation of various quantities at the departure 
and at the mid-point of the trajectory

Introduction to Parallel Computing

Halo example : IFS Semi-Lagrangian Transport

 

 



 

 

x

arrival

departure

mid-point

MPI task partition

x

41



Halo’s in IFS (T799 model, 256 tasks, showing task 11)

Introduction to Parallel Computing

Black – grid points 

owned by task 11

Blue – halo grid points ,

max wind x time-step

Red – grid points in halo 

actually used by task 11

Bottom two  graphics

LH – using MPI

RH – using Fortran2008

coarrays (PGAS)

42



5 km IFS model scaling on TITAN  (Fortran2008 coarrays)

Introduction to Parallel Computing 43



 Computation

- High computational intensity

- Little use of memory bandwidth

 Memory

- Locality of reference

- Registers or first level cache

 Communication

- Infrequent nearest neighbour or no communication

 Input/Output

- Relatively low volume, or

- Parallel implementation (in dedicated nodes)

Introduction to Parallel Computing

Characteristics of codes that will perform well on all 

parallel computers

44



Introduction to Parallel Computing 45


