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 Parallel computing?

Types of computer

 Parallel Computers today

 Challenges in parallel computing

 Parallel Programming Languages

 OpenMP/OpenACC and MPI
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Outline
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Introduction to Parallel Computing

What is Parallel Computing?

The simultaneous use of more than 

one processor or computer to solve a 

problem 
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 Serial computing is too slow

 Need for large amounts of memory not  

accessible by a single processor
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Why do we need Parallel Computing?
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Operational performance requirement
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T2047 IFS global model (10 km) performance on CRAY XE6, 2012
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10 day forecast in 1 hour = 240 forecast days / day
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 Wall Clock

 Floating point operations per second (FLOPS or FLOP/S)

 Peak (Hardware), Sustained (Application)

 SI prefixes

 Mega Mflops 10**6

 Giga Gflops 10**9 

 Tera Tflops 10**12 

 Peta Pflops 10**15 ECMWF: 2 * 1.79 Pflops peak (XC-30)   

 Exa, Zetta, Yotta

 Instructions per second, Mips, etc,

 Transactions per second (Databases)
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Measuring Performance
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Computing at ECMWF
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Sustained Exaflop in 2033 ?
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Introduction to Parallel Computing

Types of Parallel Computer

P=Processor

M=Memory

S=Switch

Shared Memory Distributed Memory

P

M

P … P

M

P

M

S

…
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IBM/CRAY Cluster 

(Distributed + Shared memory)
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P=Processor

M=Memory

S=Switch

…

S

P

M

P … P

M

P …

Node Node
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CRAY XC-30 clusters at ECMWF

Introduction to Parallel Computing

One of the 

TWO 

identical 

XC-30 

clusters
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…and one the world’s fastest (#4) and largest 

supercomputers – Fujitsu K computer
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705,024 Sparc64 

processor cores
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• #1 in Nov 2012 Top500 list, and #2 today

• 7.5X peak perf. of ECMWF’s CRAY XC-30 
clusters (CCA+CCB=3.6 Petaflops peak)

• Gemini interconnect

• 3-D Torus 

• Globally addressable memory

• AMD Interlagos cores (16 cores per node)

• Accelerated node design using NVIDIA K20 
“Kepler” GPUs

• 600 TB DDR3 mem. + 88 TB GDDR5 mem
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ORNL’s “Titan” 

System

Titan Specs

Compute Nodes 18,688

Login & I/O Nodes 512

Memory per node
32 GB + 6 

GB

# of NVIDIA K20

“Kepler” processors
14,592

Total System Memory 688 TB

Total System Peak 

Performance
27 Petaflops

Source (edited): James J. Hack, Director, Oak Ridge National Laboratory
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Types of Processor

Introduction to Parallel Computing

DO J=1,1000

A(J)=B(J) + C

ENDDO

LOAD   B(J)
FADD   C
STORE  A(J)
INCR   J
TEST

SCALAR 

PROCESSOR

VECTOR 

PROCESSOR

LOADV   B->V1
FADDV   V1,C->V2
STOREV  V2->A

Single instruction 

processes one 

element

Single instruction 

processes many 

elements
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 started in 1993

 Top 500 sites reported

 Report produced twice a year

 EUROPE in JUNE (ISC15)

 USA in NOV (SC14)

 Performance based on LINPACK benchmark

 dominated by matrix multiply (DGEMM)

 High performance conjugate gradient (HPCG) benchmark 
announced at SC13

 http://www.top500.org/
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The TOP500 project
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Top500: SC14 top 6 systems



ECMWF in Top 500
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Rmax – Tflop/sec achieved with LINPACK Benchmark

Rpeak – Peak Hardware Tflop/sec (that will never be reached!)

TFlops
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Top500: Performance Development
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Top500: Projected Performance Development
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Why is Matrix-Matrix Multiply (DGEMM) so efficient?

Introduction to Parallel Computing

VL

1

VL   is vector 

register length

VL FMA’s

(VL + 1)  LD’s

VECTOR SCALAR / CACHE

n

m

(m * n) + (m + n)

< # registers

m * n  FMA’s

m + n  LD’s

FMA’s  ~=  LD’s FMA’s  >> LD’s
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 GPU – Graphics Processing Unit

 High performance, low power, but ‘challenging’ to program for 

large applications, separate memory, GPU/CPU interface (PCIx

8GB/sec)

 Expect GPU technology to be more easily useable on future HPCs 

 http://gpgpu.org/developer

 GPU hardware today mainly supplied by NVIDIA

 INTEL  (Xeon Phi, aka “MIC”)

 “Knights Corner”  requires CPU host (via PCIx connector)

 “Knights Landing” available 2016, does not require CPU host

Introduction to Parallel Computing

Accelerators
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Key Architectural Features of a Supercomputer

CPU 

Performance

MEMORY 

Latency / Bandwidth

Interconnect

Latency / Bandwidth

Parallel File-system 

Performance

“a balancing act to achieve good sustained performance”
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 Parallel Computers

 Have ever increasing processors, memory, performance, but

 Need more space (new computer halls = $)

 Need more power (MWs = $)

 Parallel computers require/produce a lot of data (I/O)

 Require parallel file systems (GPFS, Lustre) + archive store

 Applications need to scale to increasing numbers of processors, 
problems areas are

 Load imbalance, Serial sections, Global Communications

 Debugging parallel applications (totalview, ddt)

 We are going to be using more processors in the future!

 More cores per socket, little/no clock speed improvements
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Challenges in parallel computing
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 OpenMP

 directive based (www.openmp.org)

 support for Fortran and C/C++

 shared memory programming only

 OpenACC

 directive based (www.openacc.org)

 support for Fortran and C

 GPU programming (e.g. NVIDIA)

 PGAS (Partitioned Global Address Space)

 UPC, Fortran 2008 Coarrays

 One programming model for inter and intra node parallelism

 One-sided communication

Introduction to Parallel Computing

Parallel Programming Languages
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Introduction to Parallel Computing

OpenMP example

!$OMP PARALLEL DO SCHEDULE(STATIC,1)&

!$OMP& PRIVATE(JMLOCF,IM,ISTA,IEND)

DO JMLOCF=NPTRMF(MYSETN),NPTRMF(MYSETN+1)-1

IM=MYMS(JMLOCF)

ISTA=NSPSTAF(IM)

IEND=ISTA+2*(NSMAX+1-IM)-1

CALL SPCSI(CDCONF,IM,ISTA,IEND,LLONEM,ISPEC2V,&

&ZSPVORG,ZSPDIVG,ZSPTG,ZSPSPG)

ENDDO

!$OMP END PARALLEL DO
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Why OpenMP? Ans: For performance and memory

Introduction to Parallel Computing 27

Testing combinations 9216Tx1t, 4608Tx2t, 3072Tx3t, 1536Tx6t, 768Tx12t, 384Tx24t and 192Tx48t
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OpenACC example

!$acc parallel loop copyin(dt,rmass), &

!$acc private(i,j), present(pos,vel,f,a,np,nd)

do i = 1,np

do j = 1,nd

pos(j,i) = pos(j,i) + vel(j,i)*dt + 0.5*dt*dt*a(j,i)

vel(j,i) = vel(j,i) + 0.5*dt*(f(j,i)*rmass + a(j,i))

a(j,i) = f(j,i)*rmass

enddo

enddo

!$acc end parallel loop
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http://www.ecmwf.int/sites/default/files/HPC-WS-Mozdzynski.pdf

Link includes results of a port of IFS spectral transform kernel to GPU using OpenACC

http://www.ecmwf.int/sites/default/files/HPC-WS-Mozdzynski.pdf


Fortran2008 coarray (PGAS) example

!$OMP PARALLEL DO SCHEDULE(DYNAMIC,1) PRIVATE(JM,IM,JW,IPE,ILEN,ILENS,IOFFS,IOFFR)

DO JM=1,D%NUMP

IM = D%MYMS(JM)

CALL LTINV(IM,JM,KF_OUT_LT,KF_UV,KF_SCALARS,KF_SCDERS,ILEI2,IDIM1,&

& PSPVOR,PSPDIV,PSPSCALAR ,&

& PSPSC3A,PSPSC3B,PSPSC2 , &

& KFLDPTRUV,KFLDPTRSC,FSPGL_PROC)

DO JW=1,NPRTRW

CALL SET2PE(IPE,0,0,JW,MYSETV)

ILEN = D%NLEN_M(JW,1,JM)*IFIELD

IF( ILEN > 0 )THEN

IOFFS = (D%NSTAGT0B(JW)+D%NOFF_M(JW,1,JM))*IFIELD

IOFFR = (D%NSTAGT0BW(JW,MYSETW)+D%NOFF_M(JW,1,JM))*IFIELD

FOUBUF_C(IOFFR+1:IOFFR+ILEN)[IPE]=FOUBUF_IN(IOFFS+1:IOFFS+ILEN)

ENDIF

ILENS = D%NLEN_M(JW,2,JM)*IFIELD

IF( ILENS > 0 )THEN

IOFFS = (D%NSTAGT0B(JW)+D%NOFF_M(JW,2,JM))*IFIELD

IOFFR = (D%NSTAGT0BW(JW,MYSETW)+D%NOFF_M(JW,2,JM))*IFIELD

FOUBUF_C(IOFFR+1:IOFFR+ILENS)[IPE]=FOUBUF_IN(IOFFS+1:IOFFS+ILENS)

ENDIF

ENDDO

ENDDO

!$OMP END PARALLEL DO

SYNC IMAGES(D%NMYSETW)

FOUBUF(1:IBLEN)=FOUBUF_C(1:IBLEN)[MYPROC]

Introduction to Parallel Computing 29



 MPI 

 Most widely used since mid-90’s (www.mpi-forum.org)

 MPI-3.0 standard is 852 pages!

 MPI-2.2 is the default MPI on most systems

 Most users will use a small subset of MPI facilities

 Use collectives (e.g. MPI_alltoallv) and non-blocking calls for 

performance

 MPI-only application scaling issues?

 GASPI/GPI

 PGAS one-sided programming (www.gpi-site.com/gpi2)

 Interoperable with MPI

Introduction to Parallel Computing

Parallel Programming Libraries
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 Fortran, C/C++ with MPI for communicating between tasks

 works for applications running on shared and distributed 

memory systems

 Fortran, C/C++ with OpenMP

 For applications that need performance that is satisfied by a 

single node (shared memory)

 Hybrid combination of MPI/OpenMP

 ECMWF’s IFS uses this approach (over 15 years now)

 Hybrid combination of MPI/OpenACC (for GPU)

 Meteo-Swiss have ported COSMO to NVIDIA GPU

 Early years for DAGs (e.g. MPI + OmpSs)

Introduction to Parallel Computing

Parallel Programmers use…
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DAG example: Cholesky Inversion

Source:  Stan Tomov, ICL, University of Tennessee, Knoxville

DAG = Directed Acyclic Graph

Can IFS use this technology?
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Topics in Parallel Computing …

Introduction to Parallel Computing

Cache, Cache line

Domain decomposition

Halo, halo exchange

Load imbalance

Synchronization

Barrier
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Cache

Introduction to Parallel Computing

P

M

C

P=Processor

C=Cache

M=Memory

M

P

C1 C1

C2

P
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 Processors are 100’s of cycles away from Memory

 Cache is a small (and fast) memory closer to processor

 Cache line typically 128 bytes

 Good for cache performance

- Single stride access is always the best

- Over  inner loop leftmost  index (fortran)

Introduction to Parallel Computing

Cache on scalar systems

BETTER

DO J=1,N

DO I=1,M

A(I,J)= . . .

ENDDO

ENDDO

WORSE

DO J=1,N

DO I=1,M

A(J,I)= . . .

ENDDO

ENDDO
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Introduction to Parallel Computing

DO J=1, NGPTOT, NPROMA

CALL GP_CALCS

ENDDO

U(NGPTOT,NLEV)

NGPTOT = NLAT * NLON

NLEV = vertical levels

NLON

NLAT

SUB GP_CALCS

DO I=1,NPROMA

ENDDO

END

NLAT

Scalar

Vector

Lots of work

Independent for each J

36

IFS Grid-Point Calculations (cache blocking example)



Grid point space blocking for Cache

Introduction to Parallel Computing

RAPS9 FC T799L91 

192 tasks x 4 threads 
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T799 FC 192x4 (10 runs)
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Introduction to Parallel Computing

TL799 1024 tasks 2D partitioning (used in past)

2D partitioning results in 
non-optimal Semi-Lagrangian 
comms requirement at poles 
and equator!

Square shaped partitions are 
better than rectangular 
shaped partitions.

 

 



 
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x

arrival

departure

mid-point

MPI task 

partition

x
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eq_regions partitioning algorithm (used in IFS)
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 Computation of a trajectory from each grid-point 
backwards in time, and

 Interpolation of various quantities at the departure 
and at the mid-point of the trajectory

Introduction to Parallel Computing

Halo example : IFS Semi-Lagrangian Transport
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Halo’s in IFS (T799 model, 256 tasks, showing task 11)

Introduction to Parallel Computing

Black – grid points 

owned by task 11

Blue – halo grid points ,

max wind x time-step

Red – grid points in halo 

actually used by task 11

Bottom two  graphics

LH – using MPI

RH – using Fortran2008

coarrays (PGAS)
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5 km IFS model scaling on TITAN  (Fortran2008 coarrays)
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 Computation

- High computational intensity

- Little use of memory bandwidth

 Memory

- Locality of reference

- Registers or first level cache

 Communication

- Infrequent nearest neighbour or no communication

 Input/Output

- Relatively low volume, or

- Parallel implementation (in dedicated nodes)

Introduction to Parallel Computing

Characteristics of codes that will perform well on all 

parallel computers
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