
PBS12+ 1

(© Cray Inc 2015)

UNDERSTANDING LUSTRE STRIPING
Reading and writing data to disk (Input/Output) can be a time consuming part of any large

parallel application. Writing to a single disk has a limited bandwidth, far lower than is practical

for a large parallel application, so to improve overall bandwidth files are streamed to multiple

disks in parallel. The Lustre parallel file system provides an automatic way of streaming data

over multiple sets of disks under a single namespace. Each file is striped in regular chunks over

a set of Object Storage Targets (OSTs), the size and number of which is configurable by users.

EVALUATING LUSTRE STRIPE SIZES AND COUNTS
Each Lustre file system consists of a single Metadata Server (MDS) and a fixed number of OSTs.

Each file is striped into user-specified chunks over a random subset of the OSTs when data is

first written into it. These two options give the user control over the amount of parallelism

when reading or writing the file, the stripe count and the stripe size.

Stripe size and stripe count are set via the lfs command:

lfs –c <stripe_count> -s <stripe_size> <file|dir>

Single logical file

e.g. /work/example

File automatically divided
into stripes

Stripes are written/read from
across multiple drives

To achieve fast bandwidth reading or writing
to disk....

PBS12+ 2

Choosing the right file size and stripe count is important to achieving optimal application I/O

bandwidth and while experimentation and measurement are the only ways to be sure, a

convenient rule of thumb for choosing the number of stripes on Lustre is:

of Files # of OSTs Command

1 per PE 1 OST per file lfs –c 1 <file|dir>

1 per run All OSTS lfs –c -1 <file|dir>

1 < #files < #PEs #OSTS / #files lfs –c N -<file|dir>

(however, for large configurations using all OSTs probably does not make much sense)

PRACTICAL

EVALUATING THE EFFECT OF STRIPE SIZE AND COUNT WITH VH1

The provided benchmark, VH1, performs “file-per-process” I/O, like many applications, writing

one NetCDF file per PE to disk. We can assess the impact of changing stripe size and count on

application performance using the CrayPAT-lite tools to report I/O performance for an

individual run.

Once you have unpacked the source code provided by the tutor you can build the executable by

running:

cd src

module load cray-netcdf

module load perftools-lite

make

We need to make sure that both the CrayPAT-lite (perftools-lite) and NetCDF modules are

loaded for the application to correctly compile. This will now create a binary in the bin

directory depending upon the currently loaded Programming Environment.

bin/vh1-mpi-<prgenv>

Now enter the run directory and inspect the run_XXX.pbs script (choose the appropriate one

for your environment).

cd ../run/

vim run_XXX.pbs

You may need to edit the value of the EXE environment variable to point to the executable that

you have just built (if you are not using the system defaults). You will also find two other

variables, STRIPE_SIZE and STRIPE_COUNT which control the stripe size and stripe count of

the output NetCDF files (these set the default values for files in the output directory when they

are created). Run the benchmark by running:

qsub run_XXX.pbs

PBS12+ 3

Once the job has run check the contents of the output file vh1.o<jobid>. This will contain job

output, but will also contain profiling information from the CrayPAT-lite suite (if it does not,

check that you had the perftools-lite module loaded before all source was compiled). You will

find two tables relating to I/O: Table 2 contains the ten slowest file reads and Table 3 for the ten

slowest file writes. e.g.

Table 3: File Output Stats by Filename

 Write | Write | Write Rate | Writes | Bytes/ |File Name[max10]

 Time | MBytes | MBytes/sec | | Call | PE=HIDE

 3.315631 | 1731.612668 | 522.257315 | 482.0 | 3767069.47 |Total

|--

| 0.262812 | 71.504402 | 272.074611 | 18.0 | 4165433.33 |output/NCState_1002.0001.nc

| 0.227137 | 71.504402 | 314.807912 | 18.0 | 4165433.33 |output/NCState_1002.0003.nc

| 0.165433 | 71.504402 | 432.225494 | 18.0 | 4165433.33 |output/NCState_1002.0002.nc

| 0.153452 | 71.504402 | 465.970923 | 18.0 | 4165433.33 |output/NCState_1003.0003.nc

| 0.139180 | 71.504402 | 513.754982 | 18.0 | 4165433.33 |output/NCState_1000.0003.nc

| 0.137193 | 71.504402 | 521.194379 | 18.0 | 4165433.33 |output/NCState_1004.0001.nc

| 0.137123 | 71.504402 | 521.462672 | 18.0 | 4165433.33 |output/NCState_1004.0000.nc

| 0.136001 | 71.504402 | 525.762035 | 18.0 | 4165433.33 |output/NCState_1000.0000.nc

| 0.134345 | 71.504402 | 532.245964 | 18.0 | 4165433.33 |output/NCState_1003.0001.nc

| 0.132812 | 71.504402 | 538.386987 | 18.0 | 4165433.33 |output/NCState_1001.0000.nc

|==

Example output from a VH1 run with CrayPAT-lite profiling.

EXERCISES
Investigate which combination of Lustre parameters gives the best I/O performance for the

slowest performing file in Table 3 (File Output Stats by Filename), you may find this table

helpful for keeping track of your results:

Size/Count 1 2 4 6 8

1m

2m

4m

8m

16m

32m

Look at Table 2 (File Input Stats by Filename): Why might the performance of the reads be so

much higher than that of the writes (remember, no binary data is supplied to this benchmark in

the setup script, where is the data the benchmark is reading coming from)?

PBS12+ 4

ADVANCED EXERCISE
For programmers into NETCDF only.

Try adapting VH1 to use parallel NetCDF4 to write data files. Compare the performance with

file-per-process. What are the advantages and disadvantages for the developer and the user of

these approaches?

