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- Passive radiometer at L-band (1.4 GHz, 21 cm)
Full polarimetric and multi incidence angle capabilities
(0º-60º)

- Aperture synthesis
- 69 antennas, 4 meters arms -> resolution of a ~ 7 m
antenna ~43 km (FWHM)

- Global coverage. Maximum revisit time of 3 days
(equator). Overpasses 6 AM/6PM (Ascending/descending).

L-Band thermal emission
- Negligible attenuation by atmosphere
- Sensitivity to changes of surface temperature and
roughness, soil moisture and ocean salinity
- Low attenuation due to vegetation
- Probes larger depth of the surface soil layer than
shorter wavelengths
- Absolute values of soil moisture

Soil Moisture and Ocean Salinity (SMOS)
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Retrievals
- SMOS	L2	SM,	Kerr	et	al.	(2012,	TGARS)
- SMOS	L3	SM,	Al	Bitar et	al.	(2017,	ESSD)
- SMOS	INRA-CESBIO	Fernandez-Moran	et	al.	(2017)

SMOS	Tb	monitoring	and	data	assimilation	
experiments	
- Munoz	Sabater et	al.	(2019,	QJRMS)
- De	Rosnay et	al.	(2020,	RSE)	

Forward modeling / observation operator

De	Rosnay et	al.	(2020,	RSE)	
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Assimilation	 of	SMOS	TB	(atmospheric	 impact)

• Mostly	neutral	 impact	 on	atmospheric	 states

• Slight	degradation	 of	air	humidity	 in	NH	with	SMOS	TB	assimilation	 only:	pattern	 in	 the	Great	 Plains	
where	 SM	was	improved	 		à model	 inconsistency	 between	 SM	and	air	humidity

15	May-30	Sept	2012&2013

Muñoz-Sabater	 et	al.,	2019	QJRMS
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Towards a new generation of satellite surface 
products ? Soil moisture, skin temperature,...

Land surface models within NWP models show outstanding performances when comparing to in situ 
measurements of SM

Albergel et al. (2012), Kerr et al. (RSE, 2016), Dorigo et al. (2013), Rodriguez-Fernandez et al. (2016) 

One interesting application will be efficient Data 
Assimilation. The retrieved datasets are similar to the model 
fields, by construction, but they are driven by the remote sensing 
input data  Aires, Prigent, Rossow 2005, JGR

Instead of computing the complex radiation transfer trough 
the biosphere why not linking directly the best remote 
sensing observations to the best NWP models ?

Prigent & Aires 2006, JGR; Prigent, Aires, et al. 2005, JGR

Neural network SM can be produced in near-real-time and with associated errors Rodriguez-Fernandez et al. (2017, 
HESS)
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Neural	networks	can	also	be	used	to	develop	a	new	
retrieval	algorithm	linking	remote	sensing	observables	
to	global	soil	moisture	simulated	fields	from	NWP	
models.		

Prigent,	Aires,	et	al.	2005,	JGR
Aires,	Prigent,	Rossow2005,	JGR	

Monthly	 means	of:	ERS,	SSM/I,	NDVI	
(AVHRR),	Tskin (ISCCP)	

Training	with	NCEP	or	ECMWF	models

Global retrieval of soil moisture using neural 
networks



Cliquez pour modifier le style du titre

N.	Rodríguez-Fernández.	2020	AMS	Annual	Meeting,	34th	Conference	on	Hydrology	

Statistical retrievals using Neural Networks

• Surface	models	(Rodriguez-Fernandez	et	al.	2015,	TGARS)
• Radiation	transfer	simulations	(Rodriguez-Fernandez	et	al.	IGARSS	2017a)
• In	situ	measurements	(Rodriguez-Fernandez	et	al.	IGARSS	2017b)
SMOS	Level	2	SM	(Rodriguez-Fernandez	et	al.	2017,	HESS)

Adapt	NN
weights

Test	different	
input	data

Once	trained,	the	NN	
output	is	only	driven	
by	the	remote	
sensing	input	data

No	global	bias	with	
respect	to	the	
reference	data
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ESA neural net near-real-time soil moisture

SMOS	ESA	NRT	SM
• Training	on	SMOS	Level	2	SM
• Includes	error	estimation
• Disseminated	by	ESA	and	EUMETCast since	2016
• Maximum	latency:	3.5	hours

(Rodriguez-Fernandez	et	al.	2017,	HESS)

• Similar	to	SMOS	L2	SM	but	available	in	
NRT		for	your	operations	applications
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An offline SMOS NN SM DA experiment

Remote Sens. 2019, 11, 334 8 of 23

Table 2. Comparison of the IFS Land Data Assimilation System (LDAS) and the surface-only LDAS.

IFS-LDAS so-LDAS
Assimilation technique SEKF SEKF
Assimilation window 12 h 24 h
Surface-atmosphere fully coupled uncoupled,
coupling surface forced by ERA-Interim
Observation input grid Independent of the model grid Same grid as the model grid
Analysis RH2m, T2m, SM, soil temperature, SM

snow cover and snow temperature
Observation input RH2m, T2m, ASCAT SM, LST, RH2m and T2m analysed with IFS-LDAS,

snow cover and snow temperature, ASCAT SM, SMOS SM
SMOS TBs (in development)

Increment applied analysis time Initial time step and additional trajectory
Background error 0.01 m3m�3 5% of water holding capacity

The so-LDAS relies on an offline sequential data assimilation in a 24-h window, based on the
H-TESSEL land surface model [37] with ERA-Interim atmospheric forcing [42]. The control vector
x has three elements corresponding to the SM from the three first soil layers of the model. For each
observation within the assimilation window, the observation vector yo has one element when only
NNSM is assimilated or three elements if T2m and RH2m are also assimilated. The analysis increments,
Dx, are computed as the product of the Kalman gain matrix K and the innovations or first guest departures
vector (difference of the model at time t, yt, and the observation operator h applied to the control
vector at time 0).

Dx = K(yt � h(x0)) (1)

The Kalman gain is computed as:

K = BHT(HBHT + R)�1 (2)

where B is the background error covariance matrix, R is the observation error covariance matrix and
H is the Jacobian of the observation operator, which is estimated by perturbing each component
of the control vector. The observations are assimilated over a 24 h window divided in 1-h bins.
The increments are applied at the beginning of the 24-h data assimilation window, as in the simplified
2D-VAR proposed by [29]. Following the approach of [31], for every 24-h analysis cycle, five trajectories
of H-TESSEL are produced. The first trajectory provides the model background. Three more trajectories
are produced by perturbing the soil moisture initial condition of the first, second and third layer,
respectively. In the last trajectory the analysis increments are applied at the beginning of the 24-h
window. It provides the analysed trajectory.

The matrix B is time-independent (simplified EKF). For each grid point, B is a diagonal matrix
whose non-zero elements are the errors sb of the three upper model layers, which were fixed to 5%
of the water holding capacity, which is the difference between the volumetric field capacity and the
wilting point. It is calculated for each layer and grid point as a function of soil type [56]. The model
and the DA framework use volumetric SM in m3/m3 units. Figure 2 shows a global map of the model
background error sb.

For each grid point, the observation error covariance matrix R is a diagonal matrix with elements
sT2m (set to 1 K) and sRH2m (set to 4%) and sSM. The uncertainty of the NN output (sNN) is variable in
space and time but it is a lower limit to the actual observation error [12]. Therefore, in the context of
this DA study sSM, was taken as three times the NN output error. The multiplicative factor used to
compute sSM was determined to obtain an average close to 0.05 m3/m3, which is the error used for
the operational assimilation of ASCAT in the ECMWF IFS.. Figure 2 shows an example of sSM.

Table 3 summarizes the assimilation experiments conducted for this study. The first three
experiments are the Open-Loop (OL, H-TESSEL without assimilation), “NNSM” and “NNSM-SLV”.
In addition, two other experiments were carried out to evaluate the sensitivity of the DA to the
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An offline SMOS NN SM DA experiment

• Experiments
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NNSM DA: evaluation against in situ SM

• Small	impact	on	surface	SM	at	the	positions	with	
in	situ	measurements	…	where	models	are	
already	strongly	constrained	by	conventional	
observations
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NNSM DA: evaluation of atmospheric forecasts using the 
surface analysis

• T	2m NNSM+SLV					T+36h

SLV														T+36h
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A specific NRT SMOS SM for DA

• Designed	at	CESBIO/Obs.	Paris
• Implemented	and	running	at	

ECMWF
• ESA	funded

• Operationally	assimilated	at	
ECMWF	since	June	2019

• Polarizations: H and V
• Incidence angles: three bins 30-35, 35-40, 40-45
• Brightness temperatures (BTs)
• Local linear estimators, index I2, computed from extreme BTs

• In contrast to ESA NRT SM product
• no soil temperature is used for the DA-specific NN
• the training is done using ECMWF SM (0-7 cm) from 
AUXEC files, instead of Level 2 SM 
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T_2m RH_2m
ASCAT SM

SMOS NN SM

Soil Analysis (SEKF)
SM1, SM2, SM3

𝜎𝑜𝐴𝑆𝐶𝐴𝑇 = 0.05	𝑚3𝑚↓3
𝜎𝑜	𝑇2𝑚	 = 1𝐾
𝜎𝑜𝑅𝐻2𝑚 = 4%

𝜎𝑏	 = 0.01	𝑚3𝑚↓3

NWP Forecast
Coupled Land-Atmosphere

SMOS neural network: Implementation in the ECMWF 
Integrated Forecasting System (IFS)

Observations

𝜎𝑜𝑆𝑀𝑂𝑆 = 0.02 + 𝑎	𝑆𝑀↓𝐸𝑅𝑅	𝑚3𝑚↓3
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SMOS L1 
NRT TB

SMOS 
EC SM

SMOS EC Neural Network

New SMOS-EC neural network 
à Operational SMOS NN SM for 
assimilation

de Rosnay et al., 2020, in prep
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EDA SEKF and SMOS NN DA impact 
Ø Enhanced	coupling:

- Use	the	EDA	to	compute	the	SEKF	Jacobian
- assimilate	soil	moisture	from	SMOS	in	coupled	land-atmosphere	forecasting	system

Ø Improved	efficiency:
- CPU	reduction	 (factor	3.6)	from	EDA	SEKF,	cost	neutral	for	SMOS

Different Jacobians tapering 
coefficients at depth EDA&SMOS  - CTRL 

SMOS – CTRL

Atmospheric impact (T2m) 

15

de Rosnay et al, 2020, in prep
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Summary

• The	use	of	a	neural	network	to	link	SMOS	brightness	temperatures	to	
ECMWF	SM	field	have	given	good	results	in	and	offline	DA	experiment

• A	near-real	time	SMOS	SM	processing	chain	specific	for	DA	at	ECMWF	has	
been	implemented	in	parallel	to	the	ESA	SMOS	NRT	product

• This	SMOS	NRT	is	assimilated	operationally	by	ECMWF	with	promising	
results

• Think	of	this	alternative	approach	for	your	DA	…	if	you	want	to	assimilate	
SMOS	data	we	can	provide	support
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Thanks for your attention !

• More information @SMOS_satellite
SMOS	blog

The future of	L-band	
radiometry:	SMOS-HR

Nemesio.rodriguez@cesbio.cnes.fr @NemesioRF


